摇蚊幼虫生态学特征及其在水处理过程中去除技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化使得摇蚊幼虫在水库、湖泊类水源中大量孳生繁殖,直接导致其可以在给水处理系统中出现。1龄摇蚊幼虫具有较强的游动性,可以穿透滤池进入到清水池中,由于常规的水处理消毒工艺对其难以有效地灭活,在我国一些大中城市的管网水中都曾发现过摇蚊幼虫。尽管目前不能证实摇蚊幼虫会威胁到公众健康,但是人们常常把这些生物的存在和饮用水不卫生联系起来,引起他们对水质信心的下降。
     本研究旨在通过两条途径来解决给水处理系统中摇蚊幼虫的威胁:一是研究摇蚊幼虫的生理生态学特性,为摇蚊幼虫的预测预报提供基础数据,以指导水厂在其暴发期间采取应急措施;另一条途径则是从改进与强化水处理工艺入手,研究行之有效的水处理工艺技术,达到使其被有效去除的目的。
     深圳水源水和给水处理系统中的摇蚊优势种属为花翅摇蚊。在18、22、26、30和34℃五个恒定温度下,研究了温度对花翅摇蚊的生长发育、存活及繁殖的影响。在试验温度范围内,花翅摇蚊各虫态发育历期随温度升高而逐渐缩短,发育速率与温度呈正比关系,并得出各虫态发育速率与温度的5个回归关系式,可用于花翅摇蚊发生期的有效积温预测。花翅摇蚊的世代发育起点温度和有效积温分别为6.68℃和742.97d·℃。26℃时世代存活率、成虫繁殖力和种群增长指数均高于其它温度处理。在5个温度条件下,内禀增长力(rm)和周限增长速率(λ)均随温度的升高而增大,至34℃时最大,分别为0.175和1.191。净增殖率(R0)在26℃时最大,其与温度呈二次抛物线关系。平均世代周期(T)和种群数量加倍时间(t)均随温度的升高而缩短,至34℃最短,分别为24.53d和3.96d。花翅摇蚊对温度较敏感,30~34℃为其种群增长的最适温区。根据有效积温推算,花翅摇蚊在深圳地区一年发生8个世代,5~10月为其多发期,这与深圳地区夏秋季多发的动态相吻合。除温度外,湿度和光照周期等环境因子对花翅摇蚊的成虫繁殖力均具有显著影响。在一定范围内,随湿度升高每雌产卵量逐渐增大,在85%RH下每雌产卵量达到最大值,而后呈下降趋势。每雌产卵量与光照周期呈抛物线关系,并在光照12h时达到最高。以上结果为分析摇蚊种群动态规律提供了参考依据。
     三种化学氧化剂中,二氧化氯对摇蚊不同龄期幼虫的毒力最高,臭氧次之,液氯最低;25℃时二氧化氯、臭氧和液氯对4龄幼虫的24h半致死浓度
As a consequense of eutrophication, Chironomid larvae excessively propagates in water sources, such as reservoir and fresh lake, which induced the 1st instar larvae of Chironomid in source water to enter drinking water treatment system. Several researchers reported that Chironomid larvae is difficult to inactivate using free chlorine at concentrations commonly used in drinking water utilities. In addition, the 1st instar larvae can easily penetrate sand filter and then goes into waterworks reservoir and municipal service pipe due to its motility. Although there are no indications that these organisms pose a threat to public health, their presence is still not appreciated because most people associate the organisms with low hygiene.
     This study attempted to settle the danger of Chironomid larvae as to ensure drinking water security by two approaches: one is to research on physiology and ecology of Chironomid larvae in order to provide basis data for the forecast of Chironomid larvae and service to the departments of water supply for solving breaking-out of Chironomid larvae; the other is to effectively remove Chironomid larvae from water by strengthening water treatment process as to attain the radical solution for the problem of Chironomid larvae.
     The result showed that the dominant species in water source and drinking water treatment system was Chironomus kiiensis. Development, growth, survivor and reproduction of the experimental populations of Chironomus kiiensis were observed at 18℃, 22℃, 26℃, 30℃and 34℃respectively. It was found that under 18~34℃the developmental duration decreased while the developmental rate increased linearly with temperature. The relationship between the developmental rate and temperature were further described with five regression equations, which could be applied to predict occurrence period and effective accumulative temperature. The development threshold temperature and effective accumulative temperature for whole generation were 6.68℃and 742.97 day-degrees, respectively. The the generation survival rate, fecundity and population trend index attained their respective maximun values at 26℃. In the tested temperature range, both intrinsic rate of increase (rm) and finite rate of
引文
1 张自杰. 排水工程(下册). 中国建筑工业出版社, 1996: 12~13
    2 严煦世. 水和废水技术研究. 中国建筑工业出版社, 1992: 33~49
    3 国家环境保护总局. 2004 年中国环境状况公报, 2005: 3~7
    4 林涛. 水中剑水蚤生物污染的去除方法研究. 哈尔滨工业大学博士学位论文, 2004: 8~9
    5 刘鸿亮, 金相灿. 关于湖泊水库富营养化问题. 中国科学出版社, 1985: 1~11
    6 任南琪, 周大石, 马放. 水污染控制微生物学. 黑龙江科学技术出版社, 1997: 248~249
    7 Y. Ling, L. Chen. Comparisons of Primary Productivity and Phytoplankton Size Structure in Marginal Regions of Southern East China Sea. Continental Shelf Research. 2000, 12(20): 437~458
    8 闫庆松. 浅谈水体富营养化. 山东环境. 1994, 9(2): 43~46
    9 P. P. Shan, Q. Shi. Analysis of Microcystins in Cyanobacteria Blooms and Surface Water Samples from Meilian Bay, Taihu Lake, China. Environment International. 2003, 29(5): 641~647
    10 隋海霞, 陈艳, 严卫星等. 淡水湖泊中微囊藻毒素的污染. 中国食品卫生杂志. 2004, 16(2): 112~114
    11 L. Tore, O. Petra, K. H. Katriina. Toxic Algae and Fish Mortality in a Brackislrwater Lake in Aland. SW Finland: Hydrobiologia. 1999, 397(4): 109~120
    12 M. Skulber, G. Codd. Toxic Blue Green Algae Bloons in Europe: a Growing Broblem. Ambio. 1984, 13(4): 244~247
    13 刘建康. 高级水生生物学. 中国科学出版社, 1999: 115~118
    14 况琪军, 夏宜峥, 庄德辉等. 安徽太平湖水库饵料生物资源及其变化研究.长江流域资源与环境. 1996, 5(4): 316~320
    15 熊金林, 梅兴国, 胡传林. 不同污染程度湖泊底栖动物群落结构及多样性比较. 湖泊科学. 2003, 15(2): 161~168
    16 赵文, 董双林, 张美昭等. 盐碱池塘底栖动物的初步研究. 应用与环境生物学报. 2001, 7(3): 239~243
    17 傅相明, 王宇庭, 曲晓. 黄河三角洲平原型水库摇蚊幼虫对磷的积累效应. 农业环境科学学报. 2005, 24(增刊): 134~136
    18 P. Armitage, P. S. Cranston, L. C. V. Pinder. The Chironomidae: The Biology and Ecology of Non-Biting Midge. Chapman and Hall, 1995: 225~268
    19 C. A. Menzie. Production Ecology of Cricotups sylvestris (Fabricius) (Diptera: Chironomidae) in a Shallow Estuarine Cove. Limnology and Oceanography. 1981, 26(7): 467~481
    20 M. Ladle, J. S. Welton, J. A. B. Bass. Larval Growth and Prodution of Three Species of Chironomidae from an Experimental Recirculation Stream. Archiv für Hydrobiologie. 1984, 102(11): 201~214
    21 F. R. Hauer, A. C. Benke. Rapid Growth of Snag-Dwelling Chironomids in a Blackwater River: the Influence of Temperature and Discharge. Journal of North American Benthological Society. 1991, 10(2): 154~164
    22 D. M. Rosenberg, A. P. Wiens, O. A. Saether. Life History of Cricotopus bicinctus and C. mackenziensis (Diptera: Chironomidae) in the Simpson Area, Northwest Territoties. Journal of the Fisheries Research Board of Canada. 1977, 34(1): 247~253
    23 徐希莲. 水生昆虫与水质的生物监测. 莱阳农学院学报. 2001, 18(1): 66~70
    24 吴洁, 王国龙. 西湖与青山水库底栖动物群落的研究. 环境监测管理与技术. 2000, 12(增刊): 17~19
    25 刘建康. 武汉东湖生态学研究. 中国科学出版社, 1990: 415~421
    26 J. H. M. Van Lieverloo, D. W. Bosboom, G. L. Bakker. Sampling and Quantifying Invertebrates Form Drinking Water Distribution Mains. Water Research. 2004, 38(3): 1101~1112
    27 卢靖华. 自来水中塞氏摇蚊幼虫的生长规律及防治对策. 中国给水排水. 2001, 17(6): 53~54
    28 World Health Organization. Guidelines for Drinking Water Quality. Health Criteria and other Supporting Information. World Health Organization, Geneva, 1996: 25~27
    29 M. K. Alexander. New Strategies for the Control of the Parthenogenetic Chironomed. Jounal of the American Mosquito Control Association. 1997, 13(2): 189~192
    30 E. C. Bay. Chironomid (Diptera:Chironomidae) Larval Occurrence and Transport in a Municipal Water System. Journal of the American Mosquito Control Association. 1993, 9(4): 275~284
    31 周令, 张金松, 雷萍等. 净水工艺中红虫污染治理的研究动态. 给水排水. 2003, 29(1): 25~28
    32 D. R. Oliver. Life History of the Chironomidae. Annual Review of Entomology. 1971, 16(2): 211~230
    33 L. C. V. Pinder. Biology of Freshwater Chironomidae. Annual Review of Entomology. 1986, 31(8): 1~23
    34 王新华, 郑乐怡, 纪炳纯. 中国直突摇蚊亚科记述Ⅱ. 布摇蚊属(双翅目:摇蚊科).昆虫学报. 1994, 37(3): 359~363
    35 李宏俊, 王俊才. 长白山寡角摇蚊亚科幼虫研究. 沈阳师范学院学报. 1999, 4(3): 49~52
    36 N. Pourang. Heavy Metal Concentrations in Surficial Sediments and Benthic Macroinvertebrates from Anzali Wetlant, Iran. Hydrobiologia. 1996, 331(6): 53~61
    37 S. K. Mousavi, R. Primicerio, P. A. Amundsen. Diversity and Structure of Chironomidae (Diptera) Communities along a Gradient of Heavy Metal Contamination in a Subarctic Water Course. The Science of The Total Environment. 2003, 307(1): 93~110
    38 B. C. Cowell. Distribution and Seasonal Abundance of Benthic Macroinvertebrates in a Subtropical Florida Lake. Hydrobiologia. 1981, 78(3): 97~105
    39 D. Gyorgy. An Attempt to Trace Eutrophication in a Shallow Lake Using Chironomids. Hydrobiologia. 1983, 103(1): 169~175
    40 P. Armitage, P. S. Cranston, L. C. V. Pinder. The Chironomidae: The Biology and Ecology of Non-Biting Midge. London; Chapman and Hall, 1995: 385~404
    41 徐希莲. 水生昆虫与水质的生物监测. 莱阳农学院学报. 2001, 18(1): 66~70
    42 T. Iwakwma. Three Large Species of Chironomidae(Diptera) as Biological Indicators of Lae Eutrophication. Biological Mornitoring of Environmental Pollution. Tokai Uversity Press, 1988: 113~119
    43 R. K. Johnson, L. Eriksson, T. Wiederholm. Ordination of Profundal Zoobenthos. Water Air and Soil Pollution. 1992, 65(7): 339~351
    44 J. S. Richardson, P. M. Kiffney. Responses of a Macroinvertebrate Community from a Pristine, Southern British Colombia, Canada, Stream to Metals in Experimental Mesocosms. Environmental Toxicology and Chemistry. 2000, 19(6): 736~743
    45 E. M. de Haas, M. L. Paumen, A. A. Koelmans et al. Combined Effects of Copper and Food on the Midge Chironomus riparius in Whole-Sediment Bioassays. Environmental Pollution. 2004, 127(4): 99~107
    46 B. Lods-Crozet, O. Reymond. Ten Year Trends in the Oligochaete and Chironomid Fauna of Lake Neuchatel (Switzer Land). Revue Suisse de Zoologie. 2005, 112(8): 543~558
    47 陆国强. 利用底栖动物的群落结构进行洞庭湖水质的生物评价. 环境科学. 1985, 6(2): 59~63
    48 孙刚, 盛连喜, 李明全. 长春南湖底栖动物群落特征及其环境因子的关系. 应用生态学报. 2001, 12(2): 319~320
    49 刘保元, 梁小民. 太平湖水库的底栖动物. 湖泊科学. 1997, 9(3): 237~243
    50 史玉强, 赵国华, 荆万钧等. 辽宁大伙房水库水质生态学检测的研究. 中国环境监测. 2000, 16(1): 12~15
    51 马徐发, 熊邦喜, 王明学. 湖北道观河水库大型底栖动物的群落结构及物种多样性. 湖泊科学. 2004, 16(1): 49~55
    52 王俊才, 方志刚, 鞠复华等. 摇蚊幼虫分布及其与水质的关系.生态学杂志. 2000, 19(4): 27~37
    53 C. Ingersoll, M. K. Nelson. Testing Sediment Toxicity with Hyalella Azteca (Amphipod) and Chironomus riparius (Diptera). Aquatic Toxicology and Risk Assessment. American Society of Testing and Materials, 1990: 93~110
    54 A. C. Vermeulen, G. Liberboo, P. Dumont et al. Exposure of Chironomus riparius (Diptera) to Lead, Mercury and β-Sitosterol: Effects on Mouthpart Deformation and Moulting. Chemosphere. 2000, 41(4): 1581~1591
    55 P. Kosalwat, A. W. Knight. Chronic Toxicity of Copper to a Partial Life Cycle of the Midge, Chironomus decorus. Archives of Environment Contamination and Toxicology. 1987, 16(9): 283~290
    56 L. Janssens de Bisthoven, C. Huysmans, F. Ollevier. The in SituRelationships between Sediment Concentrations of Micropollutants and Morphological Deformities in Chironomus gr. thummi Larvae (Diptera, Chironomidae) from Lowland Rivers (Belgium): a Spatial Comparison. In: Cranston, P. (Ed.), Chironomids. CSIRO Publications, 1995: 63~68
    57 E. Martinez, B. C. Moore, J. Schaumloffel et al. Morphological Abnormalities in Chironomus tentans Exposed to Cadmium-and Copper-Spiked Sediments. Ecotoxicology and Environmental Safety. 2003, 55(2): 204~212
    58 C. P. Madden, P. J. Suter, B. C. Nicholson et al. Deformities in Chironomid Larvae as Indicators of Pollution (Pesticide) Stress. Netherlands Journal of Aquatic Ecology. 1992, 26(4): 551~557
    59 G. Meregalli, L. Pluymers, F. Ollevier. Induction of Mouthpart Deformities in Chironomus riparius Larvae Exposed to 4-n-Nonylphenol. Environmental Pollution. 2001, 111(3): 241~246
    60 M. M. Watts, D. Pascoe, K. Carroll. Exposure to 17α-Ethinylestradiol and Bisphenol a-Effects on Larval Moulting and Mouthpart Structure of Chironomus riparius. Ecotoxicology and Environmental. 2003, 54(1): 208~215
    61 A. C. Vermeulen, P. C. Dall, C. Lindegaard et al. Improving the Methodology of Chironomid Deformation Analysis for Sediment Toxicity Assessment: a Cse Study in Three Danish lowland streams. Archiv für Hydrobiologie. 1998, 144(5): 103~125
    62 B. S. Khangarot, P. K. Ray. Sensitivity of Midge Larvae of Chironomus tentans Fabricius (Diptera: Chironomidae) to Heavy Metals. Bulletin of Environment Contamination and Toxicology. 1989, 42(6): 325~330
    63 A. Craig, L. Hare, A. Tessier. Experimental Evidence for Cadmiun Uptake via Calcium Channels in the Aquatic Insect Chironomus staegere. Aquatic Toxicology. 1999, 44(4): 255~262
    64 E. A. J. Bleeker, H. G. van der Geest, M. H. S. Kraak et al. Comparative Ecotoxicity of NPAHs to Larvae of the Midge Chironomus riparius. Aquatic Toxicology. 1998, 41(4): 51~62
    65 M. Crane, W. Sildanchandra, R. Kheir. Callaghan a Relationship between Biomarker Activity and Developmental Endpoints in Chironomus ripariusMeigen Exposed to an Organophosphate Insecticide. Ecotoxicology and Environmental Safety. 2002. 53(2): 361~369
    66 A. Callaghan, T. C. Fisher, A. Grosso et al. Effect of Temperature and Pirimiphos Methyl on Biochemical Biomarkers in Chironomus riparius Meigen. Ecotoxicology and Environmental Safety. 2002, 52(1): 128~133
    67 A. Callaghan, G. Hirthe, T. Fisher et al. Effect of Short-Term Exposure to Chlorpyrifos on Developmental Parameters and Biochemical Biomarkers in Chironomus riparius Meigen. Ecotoxicology and Environmental Safety. 2001, 50(3): 19~24
    68 K. A. M?enp??, A. J. Sormunen, J. V. K. Kukkonen. Bioaccumulation and Toxicity of Sediment Associated Herbicides (Ioxynil, Pendimethalin, and Bentazone) in Lumbriculus variegates (Oligochaeta) and Chironomus riparius (Insecta). Ecotoxicology and Environmental Safety. 2003, 56(4): 398~410
    69 P. A. Pape-Lindstrom, M. J. Lydy. Synergistic Toxicity of Atrazine and Organophosphate Insecticides Contravenes the Response Addition Mixture Model. Environmental Toxicology and Chemistry. 1997, 64(16): 2415~2420
    70 J. B. Belden, M. J. Lydy. Impact of Atrazine on Organophosphate Insecticide Toxicity. Environmental Toxicology and Chemistry. 2000, 19(2): 2266~2274
    71 J. B. Belden, M. J. Lydy. Effects of Atrazine on Acetylcholinesterase Activity in Midges (Chironomus tentans) Exposed to Organophosphorus Insecticides. Chemosphere. 2001, 44(5): 1685~1689
    72 T. D. Anderson, K. Y. Zhu. Synergistic and Antagonistic Effects of Atrazine on the Toxicity of Organophosphorodithioate and Organophosphorothioate Insecticides to Chironomus tentans (Diptera:Chironomidae). Pesticide Biochemistry and Physiology. 2004, 80(1): 54~64
    73 M. M. Stevens, S. Helliwell, G. N. Warren. Fipronil Seed Treatments for the Control of Chironomid Larvae(Diptera: Chironomidae) in Aerially-Sown Rice Crops. Field Crops Research. 1998, 57(3): 195~207
    74 M. M. Stevens, R. J. Akhurst, M. A. Clifton et al. Factors Affecting the Toxicity of Bacillus Thuringiensis var. israelensis and Bacillus sphaericus to Fouth Instar Larvae of Chironomus tepperi (Diptera: Chironomidae). Journal of Invertebrate Pathology. 2004, 86(4): 104~110
    75 P. A. Hughes, M. M. Stevens, H. W. Park et al. Response of Larval Chironomus tepperi(Diptera: Chironomidae) to Individual Bacillus Thuringiensis Var. israelensis Toxins and Toxin Mixtures. Journal of Invertebrate Pathology. 2005, 88(3): 34~39
    76 陈天乙, 谭元生, 田明. 有机锡化合物对底栖动物的急性毒性研究. 环境科学. 1994, 15(5): 63~65
    77 宋志慧, 陈天乙, 刘如冰. 三丁基锡对摇蚊幼虫的毒性作用.环境科学. 1998, 19(2): 87~88
    78 C. Powlesland, J. George. Acute and Chronic Toxicity of Nickel to Chironomus Riparis (Meigen). Environmental Pollution Series A, Ecological and Biological. 1986, 42(1): 47~64
    79 M. Oetkena, B. Stachelb, M. Pfenningera et al. Impact of a Flood Disaster on Sediment Toxicity in a Major River System-the Elbe Flood 2002 as a Case Study. Environmental Pollution. 2005, 134(3): 87~95
    80 M. D. Kahl, E. A. Makynen, P. A. Kosian et al. Toxicity of 4-Nonylphenol in a Life-Cycle Test with the Midge Chironomus tentans. Ecotoxicology and Environmental Safety. 1997, 38(4): 155~160
    81 M. M. Watts, D. Pascoe, K. Carroll. Chronic Exposure to 17α-Ethinylestradiol and Bisphenol a-Effects on Development and Reproduction in the Freshwater Invertebrate Chironomus tiparis (Diptera: Chironomidae). Aquatic Toxicology. 2001, 55(1): 113~124
    82 D. S. Becker, C. D. Rose, G. N. Bigham et al. Comparison of the 10-Day Freshwater Sediment Toxicity Tests Using Hyalella Aztica and Chironomus tentans. Environmental Toxicology and Chemistry. 1995, 14(3): 2089~2094
    83 D. L. DeFoe, G. T. Ankley. Evaluation of Time-to-Effects as a Basis for Quantifying the Toxicity of Contaminated Sediments. Chemosphere. 2003, 51(2): 1~5
    84 N. K. Kzrouna-Renier, J. P. Zehr. Short-Term Exposures to Chronically Toxic Copper Concentrations Induce HSP70 Proteins in Midge Larvae (Chironomus tentans). The Science of Total Environment. 2003, 312(5): 267~272
    85 H. Hwang, S. W. Fisher, P. F. Landrum. Identifying Body Residues of HCBP Associated with 10-d Mortality and Partial Life Cycle Effects in the Midge.Aquatic Toxicology. 2001, 52(1): 251~267
    86 B. W. Brooks, P. K. Turner, J. K. Stanley et al. Wateborne and Sediment Toxicity of Fluxetine to Select Organisms. Chemsphere. 2003, 52(6): 135~142
    87 J.Y ou, L. J. Schuler, M. J. Lydy. Acute Toxicity of Sediment-Sorbed Endrin, Methoxychlor, and Endosulfan to Hyalella Azteca and Chironomus Tentans. Bulletin of Environmental Contamination and Toxicology. 2004, 73(2): 457~464
    88 Y. L. Phyu, M. S. J. Warne, R. P. Lim. The Toxicity and Bioavailability of Atrazine and Molinate to Chironomus tepperi Larvae in Laboratory and River Water in the Presence and Absence of Sediment. Chemosphere. 2005, 58(3): 1231~1239
    89 卢靖华, 周广宇. 超声波对自来水中大龄摇蚊幼虫的杀灭作用. 中国给水排水. 2003, 19(1): 91
    90 P. Lei, W. M.Zhao, S. Y. Yang et al. Impact of Environmental Factors on the Toxicity of Bacillus thuringiensisvar. israelensis IPS82 to Chironomus kiiensis. Journal of the American Mosquito Control Association. 2005, 21(3): 59~63
    91 R. P. Mitcham, M. W. Shelley, C. M. Wheadon. Free Chlorine Versus Ammonia-Chlorine: Disinfection, Trihalomethane Formation, and Zooplankton Removal. Journal of the American Water Works Association. 1983, 75(4): 196~198
    92 崔福义, 林涛, 刘冬梅等. 几种常见氧化剂对剑水蚤类浮游动物的灭活效能及影响因素. 哈尔滨工业大学学报. 2004, 36(2): 143~146
    93 T. Lin, F. Y. Cui, D. M. Liu et al. Full-Scale Study of Removal Effect on Cyclops of Zooplankton with Chlorine Dioxide. Journal of Environmental Sciences. 2004, 16(5): 746~750
    94 R. J. B. Peters, C. Erkelens, E. W. B. de Leer et al. The Analysis of Halogeneted Acetic Acids in Dutch Drinking Water. Water Research. 1991, 25(4): 473~477
    95 G. Sansebastiano, B. Rebizzi, E. Bellelli et al. Total Halogenated Organic (TOX) Measurement in Ground Waters Treated with Hypochlorite and with Chlorine Dioxide. Initial Results of an Experiment Carried Out inEmilia-Romagna (Italy). Water Research. 1995, 29(6): 1207~1209
    96 李星, 杨艳玲, 刘锐平等. 高锰酸钾净水的氧化副产物研究. 环境科学学报. 2004, 24(1): 56~59
    97 刘锐平. 高锰酸钾及其复合剂氧化吸附集成化除污染效能与机制. 哈尔滨工业大学博士学位论文, 2005: 11~13
    98 K. Biswas, S. Craik, D. W. Smith et al. Synergistic Inactivation of Cryptosporidium parvum Using Ozone Followed by Free Chlorine in Natural Water. Water Research. 2003, 37(7): 4737~4747
    99 M. Sivaganesan, B. J. Mari?as. Development of a Ct Equation Taking into Consideration the Effect of Lotvariability on the Inactivation of Cryptosporidium parvum Oocysts with Ozone. Water Research. 2005, 39(3): 2429~2437
    100 J. Rositano, G. Newcombe, B. Nicholson et al. Ozonation of NOM and Algal Toxins in Four Treated Waters. Water Research. 2001, 35(1): 23~32
    101 董文艺. 臭氧化组合工艺净水效能及副产物控制对策研究. 哈尔滨工业大学博士学位论文, 2004: 76~93
    102 M. Sivaganesan, E. W. Rice, B. J. Mari?as. A Bayesian Method of Estimating Kinetic Parameters for the Inactivation of Cryptosporidium parvum Oocysts with Chlorinedioxide and Ozone. Water Research. 2003, 37(5): 4533~4543
    103 J. W. Li, Z. T. Xin, X. W. Wang et al. Mechanisms of Inactivation of Hepatitis a Virus in Water by Chlorine Dioxide. Water Research. 2004, 38(2): 1514~1519
    104 C. Y. Chang, Y. H. Hsieh, S. S. Hsu et al. The Formation of Disinfection By-products in Water Treated with Chlorine Dioxide. Journal of Hazardous Materials. 2000, 79(5): 89~102
    105 J. Choi, H. Roche, T. Caquet. Hypoxia, Hyperoxia and Exposure to Potassium Dichromate or Fenitrothion Alter the Energy Metabolism in Chironomus Riparius Mg.(Diptera: Chironomidae) Larvae. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology. 2001, 130(6): 11~17
    106 牟吉元, 徐洪富. 昆虫生态与农业害虫预测预报. 中国农业科技出版社, 1997: 96~102
    107 丁岩钦. 昆虫数学生态学. 中国科学出版社, 1994: 318~329
    108 张治科, 杨彩霞, 高立原. 甘草莹叶甲发育起点温度与有效积温的研究. 宁夏大学学报. 2004, 25(2): 164~166
    109 张孝曦. 昆虫生态及预测预报. 中国农业出版社, 2002: 218~219
    110 G. C. Varley, G. R. Gradwell. Recent Advance in Insect Population Dynamics. Annual Review of Entomology. 1970, 15(6): 1~24
    111 徐汝梅. 昆虫种群生态学. 北京师范大学出版社, 1987: 97~107
    112 焦懿, 赵苹. 不同温度下白蜡花翅跳小蜂的实验种群生命表. 昆虫学报. 2002, 45(1): 86~90
    113 刘树生. 昆虫生命表制作与分析中的几个问题. 昆虫知识. 1986, 23(1): 113~115
    114 吴占福. 生物统计学. 中国科学出版社, 2004: 110~115
    115 中华人民共和国卫生部卫生法制与监督司. 生活饮用水卫生规范, 2001: 340~342
    116 魏复盛. 水和废水检测分析方法. 中国环境科学出版社, 2002: 155~157
    117 苏寿汦, 叶炳辉. 现代医学昆虫学. 高等教育出版社, 1996: 185~188
    118 周岩梅. 多环芳烃有机物在天然颗粒物界面上的吸附机理研究. 中国科学院生态环境研究中心博士论文, 2003: 46~47
    119 M. M. Stevens. Larval Development in Chironomus tepperi (Diptera: Chironomidae) under Laboratory Conditions. Environmental Entomology. 1993, 22(6): 776~780
    120 C. Naylor, J. Howcroft. Sediment Bioassays with Chironomus riparius: Understanding the Iinfluense of Experimental Design on Test Sensitivity. Chemosphere. 1997, 35(8): 1831~1845
    121 林昌善. 动物种群数量变动的理论与试验Ⅱ: 杂拟谷盗(Tribolium confusum)的内禀增长力 rm 研究. 动物学报. 1964, 16(3): 323~336
    122 吴坤君. 温度对棉铃虫实验种群的影响. 昆虫学报. 1980, 23(4): 358~367
    123 孙治荣, 王宝贞. 饮用水处理中的几种消毒剂. 环境保护科学. 1999, 25(1): 10~12
    124 王宝贞, 王欣泽, 李冰. 优质饮用水的消毒方法. 哈尔滨工业大学学报. 2000, 34(4): 478~482
    125 H. Gallard, U. von Gunten. Chlorination of Natural Organic Matter: Kinetics of Chlorination and of THM Formation. Water Research. 2002, 36(1): 65~67
    126 S. Monarca, D. Feretti, C. C. Lli. The Influence of Different Disinfectants on Mutagenicity and Toxity of Urban Wastewater. Water Research. 2000, 34(17): 4261~4269
    127 C. Y. Chang, Y. H. Hsieh, Y. M. Lin et al. The Organic Precursors Affecting the Formation of Disinfection By-products with Chlorine Dioxide. Chemosphere. 2001, 44(4): 1153~1158
    128 D. P. Jeanine, K. E. James. Effect of Ozone on Algae as Precursors for Trihalomethane and Haloacetic Acid Production. Environmental Science and Technology. 2001, 35(18): 3661~3668
    129 Y. Kanio, L. Kimata. Inactivation of Cryptosporidium parvum Oocysts with Ozone and Ultraviolet Irradiation Evaluated by in Vitro Excystation and Animal Infectivity. Water Science and Technology. 2000, 41(7): 119~125
    130 U. V. Gunter, U. Pinkernell. Ozonation of Bromide-Containing Drinking Qaters: a Delicate Balance between Disinfection and Bromate Formation. Water Science and Technology. 2000, 41(7): 53~59
    131 P. C. Chiang, Y. W. Ko, C. H. Liang et al. Modeling an Ozone Bubble Column for Predicting Its Disinfection Efficiency and Control of DBP Formation. Chemosphere. 1999, 39(8): 55~57
    132 J. D. Plummer, J. K. Edzwald. Effect of Ozone on Disinfection By-product Formation of Algae. Water Science and Technology. 1998, 37(6): 49~55
    133 C. N. Chang, Y. S. Ma, F. F. Zing. Reducing the Formation of Disinfection By-products by Pre-ozonation. Chemosphere. 2002, 46(3): 21~30
    134 K. Zhu, X.Y. Fu. Study on Disinfection and Anti-Microbial Technologies for Drinking Water. Journal of Lanzhou Rallway University. 2001, 20(1): 64~72
    135 K. M. Ruffell, J. L. Rennecker, B. J. Marinas. Inactivation of Cryptosporidium parvum Oocysts with Chlorine Dioxide. Water Research. 2000, 34(3): 868~876
    136 C. Korn, R. C. Anderws, M. D. Escobar. Development of Chlorine Dioxide-Related By-product Models for Drinking Water Treatmemt. Water Research. 2002, 27(6): 364~367
    137 乔勇, 张玉先. 给水处理中二氧化氯与臭氧的应用比较. 化工标准·计量·质量. 2001, 8(10): 21~25, 37
    138 彭梅, 邓新平. 甜菜夜蛾不同龄期幼虫药剂敏感性及酶活性差异. 西南农业大学学报. 2005, 27(2): 173~175
    139 C. S. Charbonneau, R. D. Drobney, C. F. Rabeni. Effects of Bacillus thuringiensis var. israelensis on Nontarget Benthic Organisms in a Lentic Habitat and Factors Affecting the Efficacy of the Larvicide. Environmental Toxicology and Chemistry. 1994, 13(6): 267~279
    140 K. C. Williams, D. W. J. Green, D. Pascoe et al. The Acute Toxicity of Cadmium to Different Larval Stages of Chironomus riparius(Diptera: Chrionomidae) and Its Ecological Significance for Pollution Regulation. Oecologia. 1986, 70(8): 362~366
    141 C. Powlesland, J. George. Acute and Chronic Toxicity of Nickel to Chironomus riparis (Meigen). Environmental Pollution Series A, Ecological and Biological. 1986, 42(1): 47~64
    142 张彤, 金洪钧. 丙烯腈、乙腈和硫氰酸钠对摇蚊幼虫的急性毒性. 污染防治技术. 1996, 9(1): 12~14.
    143 陈焕瑜, 冯夏, 高琴. 不同温度下阿维菌素对小菜蛾的毒力测定. 广东农业科学. 1999, (5): 41~42
    144 王晓昌. 臭氧用于给水处理的几个理论和技术问题. 西安建筑科技大学学报. 1998, 30(4): 307~311
    145 金春华, 丁爱侠, 王春琳. 漂白粉蓄积对日本鲟 4 种组织超微结构的影响. 水产科学. 2005, 24(5): 11~16
    146 丁爱侠, 王春琳. 三唑磷对蓄积日本鲟 4 种组织超微结构的影响. 浙江海洋学院学报(自然科学版). 2004, 23(4): 279~284
    147 徐勤松, 施国新, 杜开和. Cd2+对苜草叶片保护酶活性和细胞超微结构的毒害影响. 水生生物学报. 2003, 27(6): 584-588
    148 杨东升, 张金桐. 川素对家蝇幼虫中肠细胞及淀粉酶活性的影响. 寄生虫与医学昆虫学报. 2002, 9(1): 39~43
    149 汝少国, 李永祺, 姜明等. 久效磷对中国对虾细胞超微结构的影响Ⅰ. 对肝胰脏和肌肉的毒性效应. 水产学报. 1996, 20(1): 1~4
    150 S. A. Craik, D. W. Smith, M. Chandrakanth et al. Effect of Turbulent Gas-Liquid Contact in a Static Mixer on Cryptosporidium parvum Oocysts Inactivation by Ozone. Water Research. 2003, 37(5): 3622~3631
    151 B. M. Hsu, H. H. Yen. Removal of Giardia and Cryptosporidium in Drinking Qater Treatment: a Pilot-Scale Study. Water Research. 2003, 37(8):1111~1117
    152 A. M. Driedger, J. L. Rennecker, B. J. Mari?as. Sequential Inactivation of Cryptosporidium parvum Oocysts with Ozone and Free Chlorine. Water Research. 2000, 34(14): 3591~3597
    153 J. L. Huang, L. Wang, N. Q. Ren. Disinfection Effect of Chlorine Dioxide on Bacteria in Water. Water Research. 1997, 31(3) : 607~613
    154 黄君礼. 新型水处理剂—二氧化氯技术及其应用. 化学工业出版社, 2002: 186~188
    155 J. Hoigné. Characterization of Water Quality Criteria for Ozonation Processes. PartⅠ: Minimal Set of Analytical Data. Ozone Science and Engineering. 1994, 16(2): 113~120
    156 陈国青, 梁增辉. 氯和二氧化氯灭活 f2 噬菌体的效果观察. 中国公共卫生. 1998, 14(7): 431~432
    157 邱豫伟, 伍冀湘, 皮镇江. 酸碱性对含氯消毒剂消毒效果的影响. 中华医院感染学杂志. 2003, 23(3): 97~103
    158 J. L. Rennecker, A. M. Driedger, S. A. Rubin et al. Synergy in Sequential Inactivation of Cryptosporidium parvum Oocysts with Ozone/Free Chlorine and Ozone/Monochloramine. Water Research. 2000, 34(17): 4121~4130
    159 C. N. Haas. Disinfection. In Water Quality and Treatment: A Handbook of Community Water Supplies. New York, 1990: 877~932
    160 M. D. Gurol, P. C. Singer. Kinetics of Ozone Decomposition: a Dynamic Approach. Environmental Sciense and Technology. 1982, 16(8): 377~383
    161 P. Westerhoff, G. Aiken, G. Amy et al. Relationships between the Structure of NOM and Its Reactivity Molecular Ozone and Hydroxyl Radicals. Water Research. 1999, 33(9): 2265~2276
    162 N. Facile, B. Benoit, M. Prevost et al. Evaluating Bacterial Aerobic Spores as a Surrogate for Giardia and Cryptosporidium Inactivation by Ozone. Water Research. 2000, 34(6): 3238~3246
    163 J. Hoigne, H. Bader. The Role of Hydroxyl Radical Reactions in Ozonation Process in Aqueous Solutions. Water Research. 1976, 10(8): 377~386
    164 K. N. Hunt, B. J. Mari?as. Kinetics of Escherichia coli Inactivation with Ozone. Water Research. 1997, 31(6): 1355~1362
    165 M. A. Larson, B. J. Mari?as. Inactivation of Bacillus Subtilis Spores withOzone and Monochloramine. Water Research. 2003, 37(2): 833~844
    166 L. R. J. Liyanage, G. R. Finch, M. Belosevic. Sequential Disinfection of Cryptosporidium parvum by Ozone and Chlorine Dioxide. Ozone Science and Engineering. 1997, 58(19): 409~423
    167 J. Hoigné, H. Bader. Kinetics of Reactions of Chlorine Dioxide (OClO) in Water—I. Rate Constants for Inorganic and Organic Compounds. Water Research. 1994, 64(7): 45~55
    168 M. Kristen, L. Jason, J. Benito. Inactivation on Cryptosporidium parvum Oocysts with Chlorine Dioxide. Water Research. 2000, 34(3): 868~876
    169 C. Y. Chang, Y. H. Hsieh, S. S. Hsu et al. The Formation of Disinfection By-products in Water Treated with Chlorine Dioxide. Journal of Hazardous Materials. 2000, 79(2): 89~102
    170 C. Radziminski, L. Ballantyne, J. Hodson et al. Disinfection of Bacillus subtilis Spores with Chlorine Dioxide: a Bench-Scale and Pilot-Scale Study. Water Research. 2002, 36(5): 1629~1639
    171 J. L. Rennecker, B. J. Mari?as, J. H. Owens et al. Inactivation of Cryptosporidium parvum Oocysis with Ozone. Water Research. 1999, 33(11): 2481~2488
    172 H. Li, G. R. Finch, D. W. Smith et al. Sequential Inactivation of Cryptosporidium parvum Using Ozone and Chlorine. Water Research. 2001, 35(18): 4339~4348
    173 A. M. Driedger, J. L. Rennecker, B. J. Mari?as. Inactivation of Cryptosporidium parvum Oocysis with Ozone and Monochloramine at Low Temperature. Water Research. 2001, 35(1): 41~48
    174 H. Li, L. L. Gyürék, G .R. Finch et al. Effect of Temperature on Ozone Inactivation of Cryptosporidium parvum in Oxidant Demand-Free Phosphate Buffer. ASCE Journal of Environmental Engineering. 2001, 127(5): 456~467
    175 徐振林, 吕康, 赵安刚等. 二氧化氯在水厂灭藻除嗅的应用. 净水技术. 2001, 20(1): 31~32
    176 D. A. Reckhow. Chlorination By-products in Drinking Waters: from Formation Potentials to Finished Water Concentrations. Journal of American Water Association. 1990, 82(4): 173~180
    177 E. Veschetti, B. Cittadini, D. Maresca et al. Inorganic By-products in WatersDisinfected with Chlorine Dioxide. Microchemical Journal. 2005, 79(10): 165~170
    178 A. Katz, N. Narkis. Removal of Chlorine Dioxide Disinfection By-products by Ferrous Salts. Water Research. 2001, 35(7): 101~108
    179 V. Langvik, B. Holmbom. Formation of Mutagentic Organic By-products and AOX by Chlorination of Fractions of Humic Water. Water Research. 1994, 28(3): 553~557
    180 黄君礼, 李百祥. 二氧化氯和液氯消毒饮用水致突变性的比较. 环境化学. 1998, 17(4): 34~38
    181 F. Fiessinger. Advantages and Disadvantages of Chemical Oxidation and Disinfection of Ozone and Chlorine Dioxide. Science of the Total Environment. 1991, 48(18): 245~246
    182 World Health Organization. Guidelines for Drinking Water Quality. World Health Organization, Geneva, 2004: 104~111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700