乙醛酸电合成的催化剂制备和原位红外反射光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙醛酸是一种重要的精细化工产品,分子中同时含有醛基和羧基,可与多种化合物发生缩合反应,广泛应用于合成香料、医药、农药、化妆品、油漆、皮革、造纸等工业。乙醛酸可由多种方法合成,其中电合成法用电子作为氧化剂或还原剂,减少污染,降低能源和原材料消耗,具有其它方法无法比拟的优越性。一般采用两种电合成法:草酸电还原法和乙二醛电氧化法。电合成乙醛酸得到广泛关注,具有原料价廉易得、流程简单、副产物少、产品容易分离、产品质量高、反应条件温和,以及无“三废”污染等特点。本文针对乙醛酸电合成中的催化剂和反应过程与机理两个关键科学问题,开展系统深入的研究,取得以下重要结果:
     1.发展离子色谱电导检测技术,成功地应用于乙醛酸电合成过程中电解液所含物种的定性与定量检测。电合成乙醛酸的电解液中可能存在乙醇酸、乙醛酸、乙二醛和草酸等物种,由于它们的分子结构极为相似,给分离和检测带来困难。运用我们发展的离子色谱电导检测技术获得的结果有:(ⅰ)在草酸电还原合成乙醛酸反应中,电解液主要含乙醇酸、乙醛酸和草酸。选用4.8 mM NaHCO_3+6.0mM Na_2CO_3为洗脱液,虽可实现对草酸定量检测,但此时乙醇酸与乙醛酸的谱峰部分重叠;通过改变洗脱液的浓度,即以0.40 mM NaHCO_3+0.50 mM Na_2CO_3为洗脱液,可改善乙醇酸和乙醛酸两者的分离度,实现同时对乙醇酸和乙醛酸的检测。(ⅱ)在乙二醛电氧化制备乙醛酸中,电解液主要物种有乙醛酸、草酸和乙二醛。以4.8 mM NaHCO_3+6.0 mM Na_2CO_3为洗脱液,可以对乙醛酸和草酸同时进行检测与分析。而乙二醛为中性分子,在离子色谱电导检测中是无法直接进行检测的。但本文巧妙选择2.0 mM NaOH+0.05 mM Na_2CO_3碱性溶液为洗脱液,结果意外发现乙二醛在色谱柱中经碱催化发生坎尼查罗反应生成乙醇酸,从而实现通过离子色谱电导检测技术对乙二醛的检测与分析。
     2.运用电化学原位红外反射光谱,在分子水平上研究乙醛酸电合成的反应过程与机理。关于草酸电还原和乙二醛电氧化反应过程的深入认识,可为反应条件的选择、催化剂的研制等提供依据,因此具有重要的指导意义。在草酸电还原制备乙醛酸和乙二醛电氧化合成乙醛酸反应过程进行中,红外光谱可原位检测各种中间体、产物和跟踪反应历程等,使电催化的研究深入到分子水平,为反应机理研究提供直接的实验依据。(ⅰ)运用多步电位阶跃、单次电位改变和时间分辨傅立叶变换红外反射光谱,研究了草酸在本体铅电极和nano-Pb/GC电催化剂还原过程中,草酸、乙醛酸和乙醇酸各主要官能团振动吸收谱峰的产生与变化。发现草酸在nano-Pb/GC电极上电还原的还原电位与其在本体Pb电极上相比正移。另外时间分辨红外光谱结果显示:在nano-Pb/GC电极上检测到乙醛酸生成的时间比在本体Pb电极上短。红外光谱研究结果表明nano-Pb/GC具有比本体Pb电极更好的电催化活性。(ⅱ)多步电位阶跃红外反射光谱研究了乙二醛在Pd/GC、Pb/GC和Pb-Pd/GC电极上电氧化过程红外吸收谱峰的变化。研究结果指出起始氧化电位顺序为:Pb-Pd/GC(0.95V)<Pd/GC(1.00V)<Pb/GC(1.15V),说明Pb-Pd/GC催化剂比单金属催化剂(Pd/GC或Pb/GC)具有更好的催化活性。
     3.采用电沉积法制备了多种Pb基金属电催化剂。电极不仅是实施电子转移的场所,而且作为催化剂参与电化学反应。因此寻找对体系电催化性能较好的电催化剂是至关重要的课题。(ⅰ)针对草酸电还原合成乙醛酸中的电极材料进行研究,采用循环伏安法、计时电位法和电位阶跃法制备了Pb/GC、Bi-Pb/GC、Pt-Pb/GC和Pd-Pb/GC电催化剂,运用场发射扫描电镜对电催化剂形貌进行表征,研究了各个电催化剂对草酸电还原的催化活性。研究结果表明:计时电位法制备的纳米Pb/GC比本体Pb的催化活性高;Pt-Pb/GC对草酸电还原不具有催化活性;而Pd-Pb/GC比Pb/GC对乙醛酸的选择性略好。(ⅱ)对于乙二醛选择性电氧化制备乙醛酸,采用循环伏安法制备了Pb/GC、Pd/GC和不同比例的Pb-Pd/GC电催化剂,研究各个电催化剂对乙二醛电氧化的催化活性。这些电催化剂对乙醛酸的选择性均很高,在89~95%;而在乙二醛转化率方面,Pb-Pd/GC比Pb/GC和Pd/GC高。即二元Pb-Pd电催化剂比单金属Pd或Pb的催化活性好。
     4.设计电化学流动微反应器,并采用MEMS技术制备了不同尺度的微电极阵列,开展了前期的研究。20世纪90年代中期微反应器技术兴起以来,微结构反应器已被应用于液相反应、气-液反应、光化学与电化学、气相反应等中。已经有利用微反应器进行药物和精细化学品合成的产业化实例。微反应器本身的特点和优点,以及所取得的研究成果均显示出微反应器在精细化工领域的巨大应用价值。本文针对乙醛酸电合成的特点,设计并利用MEMS技术研制梳齿状微电极阵列和相应的微型流动反应器,开展了初步的研究工作。
Glyoxylic acid, HOOC-CHO, is an important fine chemical. The molecule contains aldehyde and carboxyl that can react with many compounds by reduction reaction. It can be widely used in the synthesis of perfumery, medicine, pesticide, cosmetic, paint, leather, papermaking and so on. There are many ways to synthesis glyoxylic acid. Among them the electrosynthesis method which employs electron as oxidant or reductant, can significantly reduce pollution. It can also decrease energy and raw material consumption. So this kind of synthesis method shows huge advantages. There are mainly two kinds of electrosythesis methods: electroreduction oxalic acid and selective electrooxidation glyoxal. The electrosynthesis of glyoxylic acid with non-expensive raw material, simple process, little byproduct, easy separation products, high quality, mild reaction conditions, and no "three wastes" pollution characteristics, has attracted wide attention. This work was mainly aimed at the systemic and in-depth studies of electrocatalysts and reaction process and mechanism, two key scientific issues in the electrosynthesis of glyoxylic acid. The following important results have been obtained.
     1. Based on ion chromatography technology, we have developed a new method that combines ion chromatography with a conductivity detector to separate and determine the substances of glycolic acid, glyoxylic acid, glyoxal and oxalic acid. The method was applied for the first time in quantitative determination of substances involved in the electrosynthesis of glyoxylic acid. In the synthesis of glyoxylic acid, the main species existing in the electrolyte is glycolic acid, glyoxylic acid, glyoxal and oxalic acid. Since the structures of these four substances are similar, quanlitative and quantitative analysis are often difficult to achieve simultaneously. The existing methods and techniques for the analysis of these four substances are not satisfactory. Each method may have one or more disadvantages. With the newly developed method, we have achieved: ( i) In the process of electroreduction oxalic acid to glyoxylic acid, the main species existing in the electrolyte are glycolic acid (byproduct), glyoxylic acid (main product) and oxalic acid (reactant). When 4.8 mM NaHCO_3 + 6.0 mM Na_2CO_3 was the eluent, the peak of oxalic acid was well separated from the others in addition to glycolic acid together with glyoxylic acid. The standard calibration equation can be obtained from the detection of the standard solutions under the same experimental conditions. So, quantitative determination of oxalic acid has been achieved. The overlap of peaks for glycolic acid and glyoxylic acid arises difficulties for qualitative and quantitative analysis of them. Fortunately, changing the concentration of the eluent, that is, using 0.40 mM NaHCO_3 + 0.50 mM Na_2CO_3 as the eluent, glycolic acid and glyoxylic acid can be completely separated and simultaneously detected; (ii) In the process of electrooxidation of glyoxal, the electrolyte mainly contains glyoxylic acid (main product), oxalic acid (byproduct) and glyoxal (reactant). Selecting 4.8 mM NaHCO_3 + 6.0 mM Na_2CO_3 as the eluent, glyoxylic acid and oxalic acid can be simultaneously detected. For glyoxal, it is a neutral molecule, not existing in the form of an ion. According to the detecting principle of ion chromatography with conductivity detector, the substance of glyoxal could not be directly detected. However, glyoxal is an active molecule that can be easily converted to glycolic acid by catalyst of strong base such as sodium hydroxide. So we skillfully select 2.0 mM NaOH + 0.05 mM Na_2CO_3 alkaline solution as the eluent. We discover that there is a strong peak in the ion chromatogram. Its retention time just coincided with that of glycolic acid. With this discovery, the quantitative determination of glyoxal has been done.
     2. Study of the reaction process and mechanism of electrosynthesis glyoxylic acid at molecular level using electrochemical in situ FTIR spectroscopy. There are few reports about the reaction mechanism study for electroreduction oxalic acid and electrooxidation glyoxal. Electrochemical in situ FTIR spectroscopy was applied for the investigation of electroreduction oxalic acid and electrocatalytic oxidation of glyoxal into glyoxylic acid at molecular level. It is significant to understand the reaction process and provide direct experimental evidence for reaction mechanism of electroreduction oxalic acid and electrooxidation glyoxal. (i) MSFTIRs, SPAFTIRs and TRFTIRs were used to study the electroreduction of oxalic acid on bulk and nano-Pb/GC electrodes. The results of MSFTIRs and SPAFTIRs demonstrate that the redox potential for the electroreduction oxalic acid on nano-Pb/GC is more positive than that on bulk Pb electrode. And the results of TRFTIRs illustrate that the time to detection of glyoxylic acid production on nano-Pb/GC is shorter than on bulk Pb electrode. So, it can be concluded that nano-Pb/GC exhibits higher electrocatalytic activity than bulk Pb electrode. (ii) MSFTIR spectroscopy was applied to study the process of electrooxidation glyoxal on Pd/GC, Pb/GC and Pb-Pd/GC electrodes. The results demonstrated an order of the initial oxidation potential for glyoxal is Pb-Pd/GC (0.95V) < Pd/GC (1.00V) < Pb/GC (1.15V). It illustrates Pb-Pd/GC binary electrocatalyst has better catalytic activity than mono-metal electrocatalyst (Pd/GC or Pb/GC).
     3. Preparation of various Pb-based metal electrocatalysts by electrochemical method. As we all know, electrode is a media for electronic transfer, and also a catalyst reacting with species involved in reaction, is important for electrochemical reaction. So it is essential to search and prepare electrocatalysts with high catalytic performance. We have done: (i) In the reaction of electroreduction oxalic acid, cyclic voltammetry, chronopotentiometry and potential step were used to prepare Pb/GC, Bi-Pb/GC, Pt-Pb/GC and Pd-Pb/GC electrocatalysts. The field emission scanning electron microscopy was applied to character the morphologies of each electrocatalyst. The catalytic activities for electroreduction oxalic acid of every electrocatalysts were studied by chronopotentiometry and ion chromatography. The catalytic activity of nano-Pb/GC prepared by chronopotentiometry is higher than that of bulk Pb electrode. Pt-Pb/GC has not catalytic activity for electroreduction oxalic acid. The selectivity towards glyoxylic acid for Pd-Pb/GC is slightly better than that for Pb/GC electrode. (ii) For the selective electrooxidation glyoxal, cyclic voltammetry was used to prepare Pb/GC, Pd/GC and Pb-Pd/GC electrocatalysts of different composition. The catalytic activities of various electrocatalysts for electrooxidation glyoxal were studied. These electrocatalysts for the selectivity towards glyoxylic acid are very high in 89~95%. But about the conversion of glyoxal, Pb-Pd/GC is better than Pb/GC or Pd/GC. So it can be concluded that the catalytic activity of the binary metal electrocatalyst Pb-Pd/GC is better than mono-metal catalysts (Pd/GC or Pb/GC).
     4. Design of a flow electrochemical microreactor, and fabricate an array of microelectrode with different scale by MEMS technology, and carry out preliminary relevant study. Since the rise of microreactor technology in mid-1990s, it has been successfully applied to many liquid reactions, gas-liquid reactions, photochemistry, electrochemistry, gas reactions and so on. Microreactor has been industrially used for drugs and fine chemicals synthesis. It shows huge value in the field of fine chemicals because of its own characteristics and advantages. According to the characteristics of glyoxylc acid synthesis, we use MEMS technology to prepare comb-microelectrode array and fabricate the corresponding flow microreactor. A relevant preliminary study has been carried out.
引文
[1]王光信,张积树,有机电合成导论[M],化学工业出版社,1997年第一版
    [2]江琳才,电合成[M],高等教育出版社,1993
    [3]马淳安,有机电化学合成导论[M],科学出版社,2002
    [4]李云飞,草酸电解还原过程的研究以及添加剂的作用[D],上海华东理工大学硕士学位论文,2004,2
    [5]孙建梅,东玉武,王景明,乙醛酸的应用及生产方法探析[J],天津化工,2004,18(1):37-40
    [6]潘鹤林,田恒水,乙醛酸的生产与应用[J],浙江化工,2000,31(1):22-24
    [7]高会元,乙醛酸生产、应用研究新进展[J],上海化工,2002,(15-16):51-54
    [8]李庆文 蒋俊树,乙醛酸制备及应用[J],安徽化工,1998,(4):1-3
    [9]王守庆,王景明,乙醛酸的应用及生产方法探讨[J],河南化工,1999,(4):6-8
    [10]李兴存,范金石,乙醛酸的生产与市场研究进展[J],化工进展,2001,(8):53-55
    [11]李荣才,乙醛酸合成方法及其应用[J],1999,江苏化工,27(6):10-15
    [12]苏文莉,刘长春,乙醛酸的生产及其下游产品的开放应用[J],当代化工,2003,32(1):92-95
    [13]李建生,孙洋洲,用乙醛酸合成2-羟基膦乙酸[J],精细与专用化学品,1999,(20):22
    [14]李桂云,栗洪道,L---醛硝酸氧化法合成乙醛酸研究[J],江苏石油化工学院学报,2000,12(2):12-14
    [15]王银华,单文国,崔秀菊,乙二醛硝酸氧化法生产乙醛酸技术改进[J],河北化工,2005,(5).56
    [16]Mitani T.Preparation of glyoxylic acid[P]J P:572091950,1982206208.
    [17]Mitani T.,Endo M.Process for preparation of glyoxylic acid[P].US:4503246,1985203205.
    [18]陈兴权,赵天生,褚衍来,蒙军,乙醛酸的合成及市场前景[J],应用化工,2003,32(4):5-8
    [19]Mitani T.,Preparation of glyoxylic acid[P].J P:582046037,1983203217
    [20]Arashiba N.Production of glyoxylic acid[P].J P:632083043,1988204213.
    [21]Hoechst A G.,Electrochemical process for preparing glyoxylic acid[P].US 5474658,1995-12-12.
    [22]Degussa Aktiengesellschaft.Catalyst for the production of a glyoxylic acid by catalytic oxidation of glyoxal and method of its production[P].US 5395965,1995-03-07.
    [23]Aurore Deffernez,Sophie Hermans,Michel Devillers,Bimetallic Bi-Pt,Ru-Pt and Ru-Pd and trimetallic catalysts for the selective oxidation of glyoxal into glyoxalic acid in aqueous phase [J],Applied Catalysis A:General,2005,282:303-313
    [24]F.Alardin,B.Delmonb,P.Ruiz,M.Devillers,Stability of bimetallic Bi-Pd and Pb-Pd carbon-supported catalysts during their use in glyoxal oxidation[J],Catalysis Today,2000,61:255-262
    [25]F.Alardin,H.Wullens,S.Hermans,M.Devillers,Mechanistic and kinetic studies on glyoxal oxidation with Bi- and Pb-promoted Pd/C catalysts[J],Journal of Molecular Catalysis A:Chemical,2005,225:79-89
    [26]Sophie Hermans,Michel Devillers,Gold as a promoter for the activity of palladium in carbon-supported catalysts for the liquid phase oxidation of glyoxal to glyoxalic acid[J],Catalysis Letters,2005,99:55-64
    [27]Gallezot P,Mesanstourne R,Christidis Y,et al.Catalytic oxidation of glyoxylic acid on platinum metals[J],J Cata.,1992,133(2):479-485.
    [28]郭少青,朱凌皓,乙二醛催化空气氧化制乙醛酸技术进展[J],化工科技市场,1999,(10):6-9
    [29]Sumino Y.Production of glyoxylic acid[P].J P:62157399,1994206203.
    [30]Sudou K.Production ofglyoxylic acid[P].J P:72149689,1995206213.
    [31]Schouteeten A,Christidis Y.Process for the manufacture of aqueous solution of glyoxylic acid [P].EP:349406,1992202225.
    [32]William T B,Gerhard A C.Production of glyoxylic acid[J].Ind Eng Chem,Prod Res Develop,1966,5(4)3502351.
    [33]孙自才,张亚刚,吾满江,艾力,臭氧氧化法合成乙醛酸的研究进展[J],现代化工(增刊),2005,25:28-31
    [34]G.D.Yadav,V.R.Gupta,Synthesis of glyoxalic acid from glyoxal[J],Process Biochemistry,2000,36:73-78.
    [35]Anton D L,Dicosimo R.,Oxidation of glycolic acid to glyoxylic acid using a microbial cell transformant as catalyst[P].US:5834262.1998211210.
    [36]张建国,杨洁,生物法合成乙醛酸[J],微生物学杂志,2003,23(3):32-35
    [37]J.R.Ochoa,A.Dediego,J.Santaolalla,Electrosynthesis of glyoxylic acid using a continuously electrogenerated cathode[J],J.Appl.Electrochem.23(1993)905-909.
    [38]K.Scott,The role of temperature in oxalic acid electroreduction[J],Electrochimica Acta,1992,37:1381-1388.
    [39]Scharbert B,Dapperheld S,Babustiau P.Electrochemical process for preparing glyoxylic acid [P]US:5474658,19952122121
    [40]Ochoa J R,de Diego A,Santa-O.Electrosynthesis of glyoxylic acid using a continuously electrogenerated cathode[J],J Appl Electrochem,1993,23(9):9052-9091
    [41]张苏洪,陈昌国,黄晓军,草酸电解还原生成乙醛酸的影响因素[J],化工科技,2001,9(4):35-37
    [42]胡晓慧,剡翔飞,苏玉忠,李军,李清彪,草酸电解合成乙醛酸连续化工艺研究[J],电化学,2005,11(4):425-429
    [43]张新胜,陈银生,戴迎春,草酸电解还原制备乙醛酸的放大研究[J],精细化工(增刊),2000,17:37-39
    [44]Harada Hiroyuki,Hirao Kazuhiro,Ichino Masaaki,et al.Process for producing glyoxalic acid by electrolytic oxidation[P],US:4235684,1985211225.
    [45]陈银生,张新胜,胡军,戴迎春,乙二醛电氧化制备乙醛酸[J],电化学,2000,6(1):102-107
    [46]Kawai Motomasu,Kyora Tadamitsu.Preparation of glyoxylic acids from acrylic acids[P].J P:32056439,19912032121
    [47]胡晓慧,三维电极反应器电合成乙醛酸研究[D],厦门大学硕士学位论文
    [48]徐刚,方如云,徐科,配对电解合成乙醛酸的研究[J],石油化工高等学校学报,1999,12(2):46
    [49]Goodridge F,Lister K and Scott K.,Scale-up Studies of the Electrolytic Reduction of Oxalic to Glyoxylic Acid[J],J.appl.Electrochem.,1980,10:55
    [50]杜治平,喻幼卿,任慧,吴元欣,李定或,电位滴定用于乙醛酸的分析[J],化学世界,2002,(4):181-184
    [51]徐嘉凉,王诚瑜,汤晓东,双波长和三波长分光光度法同时测定乙醛酸和乙二醛[J],分析化学,1997,25(9):1086-1089
    [52]周昕,赵志超,王光信,王海川,反相离子对色谱法测试电合成乙醛酸[J],湖北化工,1997,(1):60-61
    [53]杨秀平,张风云,翟梅枝,陈凡,气相色谱法测定乙醛酸含量[J],应用化工,2003,32(5):52-54
    [54]胡军,张新胜,吴明东,戴迎春,乙二醛阳极氧化制乙醛酸过程的化学分析方法[J],华东理工大学学报,2001,27(1):34-37
    [55]Feng Qu,Shifen Mou,Determination of Monochloroacetic Acid and Dichloroacetic Acid for Quality Control of Acetic Acid Chlorination Industry by Ion Chromatography[J],MicrochemicalJoumal,1999,63:317—321
    [56]Austin Dailey,Jungwon Shin,Carol Korzeniewski,Ethylene glycol electrochemical oxidation at platinum probed by ion chromatography and infrared spectroscopy[J],Electrochimica Acta,1998,44(6-7):1147-1152
    [57]Joung Hae Lee,Jong Seung Kim,Byung Hoon Min,Sun Tac Kim,Jong Hun Kim.,Determination of anions in certified reference materials by ion chromatography[J],Journal of Chromatography A,1998,813(I):85-90
    [58]Maria Concetta Bruzoniti,Edoardo Mentasti,Corrado Sarzanini.Simultaneous determination of inorganic anions and metal ions by suppressed ion chromatography[J],Analytica Chimica Acta,1999,382(3):291-299
    [59]M.-Y.Ding,P.-R.Chert,G.-A.Luo,Simultaneous determination of organic acids and inorganic anions in tea by ion chromatography[J],Journal of Chromatography A,1997,764(2):341-345
    [60]Jose A.Morales,Ligbel S.de Graterol,Harvi Velasquez,Marlene G.de Nava.Determination by ion chromatography of selected organic and inorganic acids in rainwater at Maracaibo,Venezuela[J],Journal of Chromatography A,1998,804(1-2):289-294
    [61]Zhongqing Lu,Yan Liu,Victor Barreto,Chris Pohl,Nebojsa Avdalovic,Robert Joyce,Beverly Newton.Determination of anions at trace levels in power plant water samples by ion chromatography with electrolytic eluent generation and suppression[J],Journal of Chromatography A,2002,956(1-2):129-138
    [62]Jose A.Morales,Ligbel S.de Graterol,Johan Mesa.Determination of chloride,sulfate and nitrate in groundwater samples by ion chromatography[J],Journal of Chromatography A,2000,884(1-2):185-190
    [63]Jinshu Qiu,Xiaohong Jin.Development and optimization of organic acid analysis in tobacco with ion chromatography and suppressed conductivity detection[J],Journal of Chromatography A,2002,950(1-2):81-88
    [64]Peter E.Jackson and Kirk Chassaniol.,Advances in the determination of inorganic ions in potable waters by ion chromatography[J],Journal of Environmental monitoring,2002,4(1):10-15
    [65]牟世芬,刘克纳 编著,离子色谱方法及应用[M],化学工业出版社,2000.9第1版P3
    [66]丁明玉,田松柏著,离子色谱原理与应用[M],清华大学出版社,2001年3月第1版
    [67]H.Small,T.S.Stevens,W.C.Baumann,Novel ion exchange chromatographic method using conductimetric detection[J],Anal.Chem.1975,47,1801
    [68]Gjerde D.T.,Fritz and G Schmuckler,Anion chromatography with low-conductivity eluents[J],Journal of Chromatography,1979,186,509-519
    [69]牟世芬,刘开录,编著,离子色谱[M],科学出版社,1986
    [70]Wesss J.Handbook of Ion chromatography[Z].CA.Dionex,Sunnyvale,1986
    [71]Rocklin R.D.Detection in ion chromatography[J],Journal of Chromatography,1991,546,175
    [72]Buchberger W.W.,Haddad,P.R.,Advances in detection techniques for ion chromatography,J.Chromatography A,1997,789,67-83
    [73]李淑敏,岳银玲,鄂学礼,应波,饮用水中痕量溴酸盐的离子色谱测定法[J],环境与健康杂志,2006,23(1):66-68
    [74]黄碧兰,刘丽,刘俩燕,饮用水中F~-、Cl~-、Br~-、NO_3~-、ClO_3~-、SO_4~(2-)、HPO_4~(2-)7种离子的离子色谱分析[J],中国卫生检验杂志,2006,16(10):1199-1200
    [75]袁蕙,王瑛,庄国顺,气溶胶、降水中的有机酸、甲磺酸及无机阴离子的离子色谱同时快速测定法[J],分析测试学报,2003,22(6):11-14
    [76]李亚男,王宇新,离子色谱技术在环境监测中的应用及预处理技术[J],环境科学与管理,2005,30(4):105-106
    [77]Shreekant V.Karmarkar,Analysis of wastewater for anionic and cationic nutrients by ion chromatography in a single run with sequential flow injection[J],Journal of Chromatography A,1999,850:303-309
    [78]Monica M.McDowell,Michelle M.Ivey,Mary E.Lee,Verena V.V.D.Firpo,Tina M.Salmassi,Crist S.Khachikian,Krishna L.Foster,Detection of hypophosphite,phosphite,and orthophosphate in natural geothermal water by ion chromatography[J],Journal of Chromatography A,2004,1039:105-111
    [79]Jose A.Morales,Ligbel S.de Graterol,Harvi Velasquez,Marlene G.de Nava,Beatriz S.de Borrego,Determination by ion chromatography of selected organic and inorganic acids in rainwater at Maracaibo,Venezuela[J],Journal of Chromatography A,1998,804:289-294
    [80]Terri T.Christison a,Jeffrey S.Rohrer,Direct determination of free cyanide in drinking water by ion chromatography with pulsed amperometric detection[J],Journal of Chromatography A,2007,in press
    [81]Fang Wang,Greg W.Dicinoski,Yah Zhu,Paul R.Haddad,Simultaneous determination of monofluoroacetate,difluoroacetate and trifluoroacetate in environmental samples by ion chromatography[J],Joumal of Chromatography A,2004,1032:31-35
    [82]Matthew J.Shaw,Paul R.Haddad,The determination of trace metal pollutants in environmental matrices using ion chromatography[J],Environment International,2004,30:403-431
    [83]Leon Barron,Pavel N.Nesterenko,Brett Paull,Use of temperature programming to improve resolution of inorganic anions,haloacetic acids and oxyhalides in drinking,water by suppressed ion chromatography[J],Journal of Chromatography A,2005,1072:207-215
    [84]陈九武,赵素梅,胡伟,陈凯舟,应用离子色谱技术分析食品中的痕量成分[J],湖北工学院学报,2000,15(1):71-74
    [85]Johnson Mathew,Jay Gandhi,Joe Hedrick,离子色谱/质谱联用分析水和食品中的高氯酸盐[J],环境化学,2004,23(4):469-474
    [86]崔鹤,李戈,纪雷,刘钢,商金义,离子色谱脉冲安培法测定蜂蜜中的葡萄糖、果糖、蔗糖[J],化学分析计量,2001,10(1):25-26
    [87]李路华,周建科,岳强,李敬霞,离子色谱间接电导法测定酱油及醋中的氨基酸[J],中国调味品,2005,(1):49-51
    [88]G.Saccani,S.Gherardi,A.Trifiro,C.Soresi Bordin,M.Calza,C.Freddi,Use of Ion Chromatography for the measurement of organic acids in fruit juices[J],Journal of Chromatography A,1995,706:395-403
    [89]Brian M.De Borba,Jeff S.Rohrer,Determination of biogenic amines in alcoholic beverages by ion chromatography with suppressed conductivity detection and integrated pulsed amperometric detection[J],Journal of Chromatography A,2007,in press
    [90]Yongjian Liu,Shifen Mou,Simultaneous determination of trace level bromate and chlorinated haloacetic acids in bottled drinking water by ion chromatography[J],Microchemical Journal,2003,75:79-86
    [91]刘光磊,离子色谱技术在电厂水汽系统中的应用[J],现代科学仪器,2004,(4),48-50
    [92]Zhongqing Lu,Yan Liu,Victor Barreto,Chris Pohl,Nebojsa Avdalovic,Robert Joyce,Beverly Newton,Determination of anions at trace levels in power plant water samples by ion chromatography with electrolytic eluent generation and suppression[J],Journal of Chromatography A,956(2002)129-138
    [93]L.E.Vanatta,Application of ion chromatography in the semiconductor industry[J],trends in analytical chemistry[J],2001,20(6-7):336-345
    [94]S.Jessie Lue,C.Huang,Applications of ion chromatography in the semiconductor industry Ⅱ.Determination of basic airborne contaminants in a cleanroom[J],Journal of Chromatography A,1999,850:283-287
    [95]裘一珠,张培敏,张佑球,尿样中草酸根的离子色谱分析研究[J],浙江科技学院学报,2002,14(2):5-8
    [96]施青红,吴东亮,陈志斌,叶明立,李明,凌艳艳,朱岩,离子色谱荧光检测植物生长调节素吲哚-3-乙酸和吲哚-3-丁酸[J],宁波高等专科学校学报,2001,13(增刊):147-150
    [97]Benjamin C.Blount,Liza Valentin-Blasini,Analysis of perchlorate,thiocyanate,nitrate and iodide in human amniotic fluid using ion chromatography and electrospray tandem mass spectrometry[J],Analytica ChimicaActa,2006,567:87-93
    [98]John M.Monaghan,Ken Cook,David Gara,David Crowther,Determination of nitrite and nitrate in human serum[J],Journal of Chromatography A,1997,770:143-149
    [99]林峰,徐志明,李燕梅,陈世佳,气田水的非抑制型离子色谱分析[J],西南石油学院学报,2005,27(3):17-20
    [100]熊启勇,王雅静,王爽,帕提古丽,离子色谱在油田油垢无机成分分析上的应用[J],化学分析计量,2003,11(2):43-44
    [101]朱岩著,离子色谱方法及应用[J],浙江工业大学出版社,2002,第一版
    [102]KadnarR,Determination of anions in oilfield waters by ion chromatography,Journal of chromatography A,1995,706:301
    [103]M.Elena Fema'ndez-Boy,Francisco Cabrera,Fe'lix Moreno,Analysis of inorganic anions in drainage water and soil solution by single-column ion chromatography[J],Journal of Chromatography A,1998,823:285-290
    [104]N.D.Gangal,S.S.Bondre,P.S.Ramanathan,Determination of some pesticides and intermediates by ion chromatography[J],Journal of Chromatography A,2000,884:243-249
    [105]H.L.Tucker,R.W.Flack,Determination of iodide in ground water and soil by ion chromatography[J],Journal of Chromatography A,1998,804:131-135
    [106]Ivo Vande Gucht,Determination of chelating agents in fertilizers by ion chromatography[J],Journal of Chromatography A,1994,671(1-2):359-365
    [107]Constantino Fernandez Pereira,Application of ion chromatography to the determination of inorganic anions in foodstuffs[J],Journal of Chromatography A,1992,624(1-2):451-470
    [108]Pier Luigi Buldini,Jawahar Lal Sharma and Donatella Fen'i,Determination of total phosphorus in soaps/detergents by ion chromatography[J],Journal of Chromatography A,1993,654(1):129-134
    [109]P.Linares,M.D.Luque de Castro and M.Valcarel,Determination of polyphosphates in intermediate materials for detergent manufacture by ion high-performance liquid chromatography with post-column derivatization[J],Journal of Chromatography A,1991,585(2):267-271
    [110]陈声培,黄桃,张麒,黄维雄,孙世刚,基于离子色谱的有机电合成快速检测分析新方法[J],高等学校化学学报,2004,25(1):151-153
    [111]陈声培,黄桃,孙世刚,侯晓雯,胡荣宗,离子色谱在乙二醛电氧化过程中的应用[J],精细化工,2004,21(12):934-937
    [112]Shengpei Chen,Tao Huang,Shigang Sun,A New Method of Ion Chromatography Technology for Speedy Determination and Analysis in Organic Electrosynthesis of Glyoxylic Acid[J],Joumal ofChromatographyA,2005,1089:142-147
    [113]万新军,陈声培,黄桃,孙世刚,单室无隔膜电解槽中恒电流合成丁二酸的研究[J],厦门大学学报(自然科学版),2005,44(1):63-66
    [114]于振兴,张恒彬,曹学静,李树家,草酸电解还原制乙醛酸的动力学研究[J],化学工程师,1998,(3):7-8
    [115]刘欣,李宇展,胡瑞省,顾登平,草酸电还原反应机理的研究[J],电化学,2004,10(1):41-45
    [116]J.Gonzalez-Velasco,Electro-oxidation mechanism of glyoxal on a gold electrode in acidic media[J],Journal of Power Sources,1989,27(4):273-286
    [117]孙世刚,洪双进,陈声培,卢国强,戴鸿平,肖晓银,电化学原位扫描显微红外反射光谱及其对铂表面CO吸附的红外成象[J],中国科学(B辑),1999,29(4):348-354
    [118]陈友江,厦门大学硕士学位论文[D],厦门,2004
    [119]李君涛,厦门大学硕士学位论文[D],厦门,2005
    [120]Beden B,Lamy C,Bewick A,et al.Electrosorption of methanol on a platinum electrode.IR spectroscopic evidence for adsorbed CO species[J].J Electroanal Chem,1981,121:343-347
    [121]Beden B,Lamy C,Infrared reflection spectroscopy,Chap.5.In:Gale RJ,ed.Spectroelectrochemistry- Theory and Practice.New York,London:Plenum Press,1988.189-261
    [122]Sun S G.Studying electrocatalytic oxidation of small organic molecules with in situ infrared spectroscopy,Chap 6.In:Lipkowski J,Ross P N,eds.Electrocatalysis.New York:Wiley2VCH,Inc,1998.243-290
    [123]Sun S G,Clavilier J.,Bewick A.,The mechanismof electrocatalytic oxidation of formic acid on Pt(100)and Pt(111)in sulphuric acid solution,an EMIRS study.J Electroanal Chem,1988,240:147-159
    [124]Daschbach J,Heisler D,Pons S.Time-resolved infrared spectroscopy[J].Appl Spectrosc,1986,40:489-491
    [125]T.Iwasita,A.Rodes,E.Pastor,Vibrational spectroscopy of carbonate adsorbed on Pt(111)and Pt(110)single-crystal electrodes[J],J.Electroanal.Chem.,1995,383:181
    [126]Antonio Berne,Antonio Rodes,Juan M.Feliu,An in situ infrared and electrochemical study of oxalic acid adsorption at stepped platinum single crystal electrodes in the[0-11]zone[J],Electrochimica Acta,2004,49:1257-1269
    [127]Antonio Bern_a,Antonio Rodes,Juan M.Feliu,Oxalic acid adsorption and oxidation at platinum single crystal electrodes[J],Journal of Electroanalytical Chemistry,2004,563:49-62
    [128]Zou S.Z.,Gomez R.,Weaver M.J.,Infrared spectroscopy of carbon monoxide and nitric oxide on palladium(111)in aqueous solution:unexpected adlayer structural differences between electrochemical and ultrahigh-vacuum interfaces[J],J.Electroanal.Chem.,1999,47:155
    [129]Weaver M.J.,Binding sites and vibrational frequencies for dilute carbon monoxide and nitric oxide adlayers in electrochemical versus ultrahigh-vacuum environments:the roles of double-layer salvation[J],Surface Science,1999,437:215
    [130]Tang C,Zou S Z,Chang S C,Coadsorbate vibrational interactions within mixed carbon monoxide-nitric oxide adlayers on ordered low-index platinum-group electrodes[J],J.Electroanal.Chem.,1999,467:92
    [131]Xia X H,Iwasita T,Ge F,et al.Structural effects and reactivity in methanol oxidation on polycrystalline and single crystal platinum[J],Electrochim Acta,1996,41:711
    [132]Gomez R,Weaver M.J.,Electrochemical infrared studies of monocrystalline iridium surfaces Part Ⅰ:Electrooxidation of formic acid and methanol[J],J.Electroanal.Chem.1997,435:205
    [133]Sun S G,Lu G Q,Tian Z W,Kinetics of dissociative adsorption of formaldehyde on a Pt(111)electrode in sulphuric acid solutions studied using a programmed potential step technique and time-resolved Fourier transform IR spectroscopy[J],J electroanal Chem.1995,393:97-104
    [134]Yang Y Y,Zhou Z Y,Sun S G,In situ FTIRS studies of kinetics of HCOOH oxidation on Pt(110)electrode modified with antimony adatoms[J],J Electroanal.Chem,1999,500,233
    [135]Sun S G,Clavilier J,Bewick A,The mechanism of electrocatalytic oxidation of formic acid on Pt(100)and Pt(111)in sulphuric acid solution:an emirs study,J.Electroanal.Chem,1988,240:147
    [136]杨毅芸,孙世刚,铂单晶表面不可逆反应动力学Ⅰ.Pt(100)单晶电极上甲酸氧化的现场红外反射光谱研究[J],物理化学学报,1997,13:632-636
    [137]Xia X H,Leiss H D,Iwasita T,Early stages in the oxidation of ethanol at low index single crystal platinum electrodes,J Electroanal.Chem.1997,437:233
    [138]Dailey A,Shin J,Korzeniewski C,Ethylene glycol electrochemical oxidation at platinum probed by ion chromatography and infrared spectroscopy[J],Electrochim Acta,1998,44:1147
    [139]Sun S G,Lin Y,In situ FTIR spectroscopic investigations of reaction mechanism of isopropanol oxidation on platinum single crystal electrodes[J],Electrochim Acta,1996,41:693
    [140]Proenca L,Lopes M I S,Fonseca I,et al.On the oxidation of D-sorbitol on platinum single crystal electrodes:a voltammetric and in situ FTIRS study[J],Electrochm Acta,1998,44:735
    [141]Huerta F,Morallon E,Perez J M,et al.Oxidation of methylamine and ethylamine on Pt single crystal electrodes in acid medium[J],J Electroanal.Chem.,1999,469,159-169
    [142]Climent V,Rodes A,Orts J M,et al.The electrochemistry of nitrogen-containing compounds at platinum single crystal electrodes:Part 2.Semicarbazide on Pt(100)electrodes[J],J Electroanal.Chem.1997,436:245-255
    [143]Climent V,Rodes A,Orts J M,et al.The electrochemistry of nitrogen-containing compounds at platinum single crystal electrodes:Part 3.Carbohydrazide on Pt(hkl)electrodes[J],J Electroanal.Chem.1999,467,20-29
    [144]Climent V,Rodes A,Orts J M,et al.,Urea adsorption on Pt(111)electrodes[J],J Electroanal.Chem.1999,461,65-75
    [145]Climent V,Rodes A,Perez M,et al.,Urea Adsorption at Rhodium Single-Crystal Electrodes [J],Langmuir.2000,16:10376
    [146]Huerta F,Moorallon E,Vazquez J L,et al.,Electrochemical behaviour of amino acids on Pt(hkl).A voltammetric and in situ FTIR study:Part III.Glycine on Pt(100)and Pt(110)[J],J Electroanal.Chem.1998,445,155-164
    [147]Huerta F,Moorallon E,Vazquez J L,et al.Electrochemical behaviour of amino acids on Pt(hkl).A voltammetric and in situ FTIR study:Part IV.Serine and alanine on Pt(100)and Pt(110)[J],J Electroanal.Chem.1999,475:38-45
    [148]Richer J F,Chen A,Lipkowski J,Quantitative studies of benzonitrile adsorption at the low-index gold single crystal electrodes[J],Electrochim Acta,1998,44:1037
    [149]Ikezawa Y,Sekiguchi R,Kitazume T,Adsorption of benzoic acid on Au(111)and Au(110)electrodes in acidic media by IRAS[J],Electrochim Acta,2000,46:731
    [150]吴辉煌主编,电化学[M],化学工业出版社,2004年第一版
    [151]W.Ehrfeld,V Hessel,H.Lowe著,骆广生,王玉军,吕阳成译,微反应器——现代化学中的新技术[M],化学工业出版社,2004年第一版
    [152]Klaus Jahnisch,Volker Hessel,Holger Lowe,and Manfred Baems,Chemistry in Microstructured Reactors[J],Angew.Chem.Int.Ed.2004,43:406-446
    [153]W.Ehrfeld,V.Hessel,V.Haverkamp,Ullmann's Encyclopedia of Industrial Chemistry[M],6th ed.,Wiley-VCH,Weinheim,1999.
    [154]
    a)W.Ehrfeld,V.Hessel,H.Lowe,Microreactors[M],Wiley-VCH,Weinheim,2000;
    b)V.Hessel,S.Hardt,H.Lowe,Chemical Micro Process Engineering[M],Wiley-VCH,Weinheim,2004.
    [155] V. Hessel, H. Lowe, Chem. Ing. Tech. 2002,74,185.
    
    [156] K. F. Jensen, Microreaction engineering — is small better? [J], Chemical Engineering Science, 2001, 56: 293-303
    
    [157] K. Schubert, J. Brandner, M. Fichtner, G. Under, U. Schygulla, A. Wenka, Microscale Thermophys.Eng. 2001,5,17.
    [158] A. de Mello, R. Wootton, On-chip generation and reaction of unstable intermediates-monolithic nanoreactors for diazonium chemistry [J], Lab ON A Chip, 2002, 2, 3-7N.
    [159] A. Gavriilidis, P. Angeli, E. Cao, K. K. Yeong, Y. S. S. Wan, Trans.Inst.Chem.Eng. Part A 2002, 80, 3.
    
    [160] W. LDhder, L. Bergann (Akademie der Wissenschaften der DDR), DD 246257,1986.
    
    [161] K. Schubert, W. Bier, G. Linder, D. Seidel, Chem.Ing. Tech. 1989, 61, 172.
    
    [162] R.W. Wegeng, C. J. Call, M. K. Drost, American Institute of Chemical Engineers Spring National Meeting (New Orleans, USA, 1996), p. 1.
    
    [163] W. Ehrfeld, DECHEMA-Monographs, DECHEMA, Frankfurt, 1995, p. 132.
    [164] Lerous J J, Harold M P, Ryley J, et al. Microfabricated Minichemical Systems: Technical Feasibility. In: Ehrfeld W Microsystem Technol. for Chem. and Biol. Microreactors. Weinheim: Verlag Chemie ,1996 ,51 ~ 69
    [165] Ehrfeld W, Hessel V, Mo K H, et al. Potential and Realization of Microreactors. In: Ehrfeld W. Microsystem Technol, for Chem, and Biol. Microreactors. Weinheim: Verlag Chemie,1996,1~28.
    [166] K. Golbig, S. Taghavi-Moghadam, P. Born, IMRET 6: 6th International Conference on Microreaction Technology (New Orleans, USA, 2002), American Institute of Chemical Engineers Pub. No. 164, p. 131.
    [167] A. Freitag, T. R. Dietrich, IMRET 4: 4th International Conference on Microreaction Technology (Atlanta, USA, 2000), American Institute of Chemical Engineers Topical Conference Proceedings, p. 48.
    
    [168] Freamantle M, Numbering up small reactions [J], Chem. & Eng. News, 2003, 81(24), 36-37
    [169] Freamantle M, Finding the best conditions rapidly [J], Chem. & Eng. News, 2005, 83(6), 11
    [170] Thayer A M Harnessing microreactors [J], Chem. & Eng. News, 2005, 83(24): 43-52
    [171]李斌,微反应器技术在精细化工中的应用[J],精细化工,2006,23(1):1-7
    [172]O.Worz,K.P.Jackel,T.Richter,A.Wolf,Microreactors - A New Efficient Tool for Reactor Development[J],Chem.Eng.Technol.,2001,24(2):138-142
    [173]K.Schubert,J.Brandner,M.Fichtner,G.Linder,U.Schygulla,A.Wenka,Microscale Thermophys.Eng.2001,5,17
    [174]Bums J R,Ramshaw C.[J],Transactions of the Institution of Chemical Engineers,1999,77:206-211
    [175]郑亚锋,赵阳,辛峰,微反应器研究及展望[J],化工进展,2004,23(5),461-467
    [176]Roberge D M,Ducry L,Bieler N,et al.Microreactor technology:a revolution for the fine chemical and pharmaceutical industries?[J],Chem.Eng.Technol.2005,28(3):318-323
    [177]B.Ondruschka,P.Scholz,R.Gorges,W.Klemm,K.Schubert,A.Halbritter,H.Lowe,Chem.Ing.Tech.2002,74,1577.
    [178]Andrea Lionello,Jacques Josserand,Henrik Jensen and Hubert H.Girault,Dynamic protein adsorption in microchannels by "stop-flow" and continuous flowElectronic supplementary information(ESI)available:general forms of the equations of the model(Galerkin formulation);numerical technique;effects of the velocity profile,diffusion coefficient and channel length on the adsorption;time comparison between continuous flow and "stop-flow" in a diffusion limited case[J],LAB ON A CHIP,2005,5,1096-1103
    [179]Zhiyong Wu,Henrik Jensen,Jean Gamby,Xiaoxia Bai and Hubert H.Girault,A flexible sample introduction method for polymer microfluidic chips using a push/pull pressure pump[J],LAB ONA CHIP,2004,4,512-515
    [180]Virginie Mengeaud,Olivier Bagel,Rosaria Ferrigno,Hubert H.Girault and Akhtar Haiderb,A ceramic electrochemical microreactor for the methoxylation of methyl-2-furoate with direct mass spectrometry coupling,Lab ON A Chip,2002,2,39-44
    [181]Ping He,Paul Watts,Frank Marken,Stephen J.Haswell,Electrolyte free electro-organic synthesis:The cathodic dimerisation of 4-nitrobenzylbromide in a micro-gap flow cell[J],Electrochem.Commun.,2005,7:918-924
    [182]D.Horii,M.Atobe,T.Fuchigami,E Marken,Self-supported paired electrosynthesis of 2,5-dimethoxy-2,5-dihydrofuran using a thin layer flow cell without intentionally added supporting electrolyte[J],Electrochem.Commun.,2005,7:35
    [183]Jun-ichi Yoshida,Flash chemistry using electrochemical method and microsystems[J],Chem.Commun.,2005,(36):509-4516
    [184]Hideo Wakami and Jun-ichi Yoshida,Grignard Exchange Reaction Using a Microflow System:From Bench to Pilot Plant[J],Organic Process Research & Development 2005,9:787-791
    [185]Aiichiro Nagaki,Manabu Togai,Seiji Suga,Nobuaki Aoki,Kazuhiro Mae,and Jun-ichi Yoshida,Control of extremely fast competitive consecutive reactions using micromixing.Selective Friedel-Crafts aminoalkylation[J],J.AM.CHEM.SOC.2005,127,11666-11675
    [186]Jun-ichi Yoshida,Aiichiro Nagaki,Takeshi Iwasaki and Seiji Suga,Enhancement of Chemical Selectivity by Microreactors[J],Chem.Eng.Technol.2005,28(3):259-266
    [187]H.Lowe,W.Ehrfeld,State-of-the-art in microreaction technology:concepts,manufacturing and applications[J],Electrochimica Acta,1999,44:3679-3689
    [188]Wolfgang Ehrfeld,Klaus Golbig,Volker Hessel,Holger Lolwe,and Thomas Richter,Characterization of Mixing in Micromixers by a Test Reaction:Single Mixing Units and Mixer Arrays[J],Ind.Eng.Chem.Res.1999,38,1075-1082
    [189]Wolfgang Ehrfeld,Electrochemistry and Microsystems[J],Electrochimica Acta,2003,48:2857-2868
    [190]Helmut Pennemann,Paul Watts,Stephen J.Haswell,Volker Hessel,and Holger Lowe,Benchmarking of Microreactor Applications,Organic Process Research & Development,2004,8:422-439
    [191]M.Kupper,V.Hessel,H.Lowe,W.Stark,J.Kinkel,M.Michel,H.Schmidt-Traub,Micro reactor for electroorganic synthesis in the simulated moving bed-reaction and separation environment[J],Electrochimica Acta,2003,48:2889-2896
    [192]Volker Hessel and Holger Lowe,Organic Synthesis with Microstructured Reactors[J],Chem.Eng.Technol.2005,28(3):267-284
    [193]高世桥,曲大成,微机电系统(MEMS)技术的研究与应用[J],高技术 2004,(4):17-21
    [194]戴亚春,周建忠,王匀,马欣涛,MEMS的微细加工技术[J],机床与液压,2006(15):15-19
    [195]黄良甫,贾付云,微机电系统的加工技术及其研究进展[J],真空与低温,2003,9(1):1-5
    [196]隋丽,石庚辰,EFAB加工技术及其在微机电系统中的应用[J],微计算机信息,2007,23(1-2),257-280
    [197]Tian Z W,Feng Z D,Tian Z Q,et al.Confined etchannt layer technique for two-dimensional lithography at high resolution using electrochemical scanning tunneling microscope[J].Faraday Discuss,1992,94:37.
    [198]陈光红,于映,罗仲梓,吴清鑫,AZ5214E反转光刻胶的性能研究及其在剥离工艺中的应用[J],功能材料,2005,36(3):431-444
    [199]周明宝,崔铮,AZ5214光刻胶及像反转特性的实验研究[J],微细加工技术,1999,(2):23-27
    [200]张清涛,李艳秋,MEMS器件中电极制作工艺的研究[J],微细加工技术,2005,(3):53-56
    [1]陈友江,方波电位法制备纳米结构Pt薄膜阵列及其原位红外和拉曼光谱研究[D],厦门大学硕士学位论文,厦门,2004
    [2]陈卫,不同聚集态Pt纳米粒子的合成、表面组装及其电化学和特殊红外性能研究[D],厦门大学博士学位论文,厦门
    [3]A.Bewick,K.Kunimatsu,B.S.Pons,et al.electrochemically modulated infrared spectroscopy (EMIRS):experimental details[J],J.Electroanal.Chem.,1984,160(1-2):47-61
    [4]D S Corrigan,L W H Legung,M J Weaver,Single potential-alteration surface infrared spectroscopy:examination of absorbed species involved in irreversible electrode reactions[J],Anal.Chem.,1987,59:2252-2256.
    [5]W FLin,S G Sun,In situ FTIRS investigation of surface processes of Rh electrode-novel observation of twin adsorbates of carbon monoxide on rhodium electrode in acid solution[J],Electrochimica Acta,1996,41(6):803-809.
    [6]LU Guo-Qiang,SUN Shi-Gang,CHEN Sheng-Pei,CAI Li-Rong,Novel properties of dispersed Pt and Pd thin layers supported on GC for CO adsorption studied using in situ MS-FTIR reflection spectroscopy[J],J.Electroanal.Chem.,1997,421:19-23
    [7]LU Guo-Qiang,SUN Shi-Gang,Li-Rong,CHEN Sheng-Pei,and TIAN Zhao-Wu,In Situ FTIR Spectroscopic Studies of Adsorption of CO,SCN-,and Poly(o-phenylenediamine)on Electrodes of Nanometer Thin Films of Pt,Pd,and Rh:Abnormal Infrared Effects(AIREs)[J],Langmuir [J],2000,16:778-786
    [8]CHEN Wei,SUN Shi-Gang,ZHOU Zhi-You,and CHEN Sheng-Pei,IR Optical Properties of Pt Nanoparticles and Their Agglomerates Investigated by in Situ FTIRS Using CO as the Probe Molecule[J],J.Phys.Chem.B[J],2003,107:9808-9812
    [9]赖丽旻,酶反应偶联离子色谱法的研究与应用[D],厦门大学硕士学位论文
    [10]牟世芬,刘开录编著,离子色谱[M],科学出版社,1986
    [11]刘静,离子色谱及快速溶解萃取在农产品安全和品质检验中的应用[J],现代科学仪器2005,1,42-45
    [12]王炯,顾海宁,郭莹莹,朱岩,氯乙酸类化合物在离子色谱中保留时间机理探讨[J],现代科学仪器,2001,(5):60-63
    [13]左演声,陈文哲,梁伟,材料现代分析方法[M],北京工业大学出版社,2000.
    [14]张帅,贾育秦,MEMS技术的研究现状和新进展[J],现代制造工程2005(9):109-112
    [15]金铃,MEMS技术研究及应用[J],现代雷达,Vol.26,No.12,2004,26-29
    [16]田昭武,林华水,孙建军,周勇亮,祖延斌,田中群,罗瑾,林仲华,谢兆雄,胡维玲,胡涌刚,苏文煅,微系统科技的发展及电化学的新应用[J],电化学 2001,7(1):1-9
    [1]陈声培,黄桃,张麒,黄维雄,孙世刚,基于离子色谱的有机电合成快速检测分析新方法[J],高等学校化学学报,2004,25(1):151-153
    [2]Shengpei Chen,Tao Huang,Shigang Sun,A New Method of Ion Chromatography Technology for Speedy Determination and Analysis in Organic Electrosynthesis of Glyoxylic Acid[J],Journal of Chromatography A,2005,1089:142-147
    [3]周昕,赵志超,王光信,王海川,反相离子对色谱法测试电合成乙醛酸[J],湖北化工,1997,(1):60-61
    [4]杨秀平,张凤云,翟梅枝,陈凡,气相色谱法测定乙醛酸含量[J],应用化工,2003,32(5):52-54
    [5]牟世芬,刘克纳 编著,离子色谱方法及应用[M],化学工业出版社,2000年第一版
    [6]丁明玉,田松柏 著,离子色谱原理与应用[M],清华大学出版社,2001年第一版
    [7]陈声培,黄桃,孙世刚,侯晓雯,胡荣宗,离子色谱在乙二醛电氧化过程中的应用精细化工[J],2004,21(12):934-937
    [8]胡军,张新胜,周杨柳,戴迎春,萃取法分离提纯乙二醛中的乙醛酸[J],华东理工大学学报,2001,27(4):334-347
    [9]胡军,张新胜,吴明东,等,乙二醛阳极氧化制乙醛酸过程的化学分析方法[J],华东理工大学学报,2001,27(1):34-37
    [10]杜治平,喻幼卿,任慧,吴元欣,李定或,电位滴定用于乙醛酸的分析[J],化学世界,2002,(4):181-184
    [11]徐嘉凉,王诚瑜,汤晓东,双波长和三波长分光光度法同时测定乙醛酸和乙二醛[J],分析化学,1997,25(9):1086-1089
    [12]万新军,陈声培,黄桃,孙世刚,单室无隔膜电解槽中恒电流合成丁二酸的研究[J],厦门大学学报(自然科学版),2005,44(1):63-66
    [13]金维高,医药中间体生产实用技术手册[M].北京:化学工业出版社,2002
    [14]张宏坤,张雪英,顾登平,成对电解同时合成丁二酸和乙醛酸[J].精细化工,1997,14(5):56-57
    [15]陈松茂,有机化工产品电解合成[M],上海:上海科学技术文献出版社,1994,52
    [16]顾家山,楮道葆,周幸福,沈广霞,纳米TiO_2膜修饰电极异相电催化还原马来酸[J],化学学报,2003,61(9):1405-1409
    [17]Trujillo Ferrara,Ivan Vazquez,Judith Espinosa,et al.Reversible and irreversible inhibitory of succinic acid andmaleic acid derivatives on acetylcholinesterase[J].European Journal of Pharmaceutical Sciences,2003,18:313-322
    [1]Beden B,Lamy C,Bewick A,et al.,Electrosorption of methanol on a platinum electrode.IR spectroscopic evidence for adsorbed CO species[J],J Electroanal Chem,1981,121:343-347
    [2]Beden B,Lamy C.Infrared reflection spectroscopy,Chap 5.In:Gale RJ,ed.Spectroelectrochemistry—Theory and Practice[M].New York,London:Plenum Press,1988,189-261
    [3]Sun S.G.Studying electrocatalytic oxidation of small organic molecules with in situ infrared spectroscopy[M],Chap 6.In:Lipkowski J,Ross P N,eds.Electrocatalysis.New York:Wiley-VCH,Inc,1998,243-290
    [4]于振兴,张恒彬,曹学静,李树家,草酸电解还原制乙醛酸的动力学研究[J],化学工程师,1998,(3):7-8
    [5]刘欣,李宇展,胡瑞省,顾登平,草酸电还原反应机理的研究[J],电化学,2004,10(1):41-45
    [6]J.Gonzalez-Velasco,Electro-oxidation mechanism of glyoxal on a gold electrode in acidic media[J],Journal of Power Sources,1989,27(4):273-286
    [1]J.R.Ochoa,A.De Diego,J.Santa-Olalla,Electrosynthesis of glyoxylic acid using a continuously electrogenerated lead cathode,J.Appl.Electrochem.,1993,23:905.
    [2]K.Scott,The role of temperature in oxalic acid electroreduction,Electrochim.Acta,1992,37:1381
    [3]Scharbert B,Dapperheld S,Babustiau P.Electrochemical process for preparing glyoxylic acid[P]US:5474658,19952122121
    [4]Ochoa J R,De Diego A,Santa-Olalla J.,Electrosynthesis of glyoxylic acid using a continuously electrogenerated cathode[J],J Appl Electrochem,1993,23(9):9052-9091
    [5]张苏洪,陈昌国,黄晓军,草酸电解还原生成乙醛酸的影响因素,化工科技,2001,,9(4),35-37
    [6]胡晓慧,剡翔飞,苏玉忠,李军,李清彪,草酸电解合成乙醛酸连续化工艺研究,电化学,2005,11(4),425-429
    [7]张新胜,陈银生,戴迎春,草酸电解还原制备乙醛酸的放大研究,精细化工(增刊),2000,17,37-39
    [1]F.Alardin,P.Ruiz,B.Delmon,M.Devillers,Bismuth-promoted palladium catalysts for the selective oxidation of glyoxal into glyoxalic acid[J],Applied Catalysis A:General,2001,215:125-136
    [2]赵光辉,任敦泾,李建忠,刘鑫,孙吉明,陈勇,乙醛酸的生产、市场及其衍生物的开发[J],化工科技市场,2006,29(2):32-35
    [3]李桂云,栗洪道,乙二醛硝酸氧化法合成乙醛酸研究[J],江苏石油化工学院学报,2000,12(2):12-14
    [4]J.Gonzalez-Velasco,Electro-oxidation mechanism of glyoxal on a gold electrode in acidic media[J],Journal of Power Sources,1989,27(4):273-286
    [5]李媚,应伟利,蓝丽红,蓝平,廖安平,尺度稳定阳极催化氧化乙二醛制备乙醛酸研究[J],化学世界,2006(8):481-483
    [6]Sheng-Pei Chen,Tao Huang,Shi-Gang Sun,A New Method of Ion Chromatography Technology for Speedy Determination and Analysis in Organic Electrosynthesis of Glyoxylic Acid[J],Journal of chromatography A,2005,1089:142-147
    [7]F.Alardin,H.Wullens,S.Hermans,M.Devillers,Mechanistic and kinetic studies on glyoxal oxidation with Bi- and Pb-promoted Pd/C catalysts[J],Journal of Molecular Catalysis A:Chemical,2005,225:79-89
    [8]Aurore Deffernez,Sophie Hermans,Michel Devillers,Bismuth-promoted palladium catalysts for the selective oxidation of glyoxal into glyoxalic acid[J],Applied Catalysis A:General,2001,215:125-136
    [1]W.Ehrfeld,V.Hessel,H.Lowe著,骆广生,王玉军,吕阳成 译,微反应器——现代化学中的新技术[M],化学工业出版社出版,2004年第一版
    [2]A.Ziogas,H.Lowe,M.Kupper,W.Ehrfeld,Microreaction Technology——ImRET 3:Proceedings of the 3rd International Conference on Microreaction Technology(Ed.:W.Ehrfeld)Springer,Berlin,2000.P136
    [3]Klaus Jahnisch,Volker Hessel,Holer Lowe and Manfred Baerns,Chemistry in Microstructrued Reactors[J],Angew.Chem.Int.Ed.2004,43,406-446
    [4]CHRISTOPHER A.PADDON,MAHITO ATOBE,TOSHIO FUCHIGAMI,PING HE,PAUL WATTS,STEPHEN J.HASWELL,GARETH J.PRITCHARD,STEVEN D.BULL and FRANK MARKEN,Towards paired and coupled electrode reactions for clean organic microreactor electrosyntheses[J],Journal of Applied Electrochemistry(2006)36:617-632
    [5]D.Horii,M.Atobe,T.Fuchigami,F.Marken,Self-supported paired electrosynthesis of 2,5-dimethoxy-2,5-dihydrofuran using a thin layer flow cell without intentionally added supporting electrolyte[J],Electrochem.Commun.,2005,7:35
    [6]Ping He,Paul Watts,Frank Marken,Stephen J.Haswell,Electrolyte free electro-organic synthesis:The cathodic dimerisation of 4-nitrobenzylbromide in a micro-gap flow cell[J],Electrochem.Commun.,2005,7:918-924

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700