羌塘盆地主要中生代烃源岩石油地球化学特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
位于青藏高原的羌塘盆地是我国陆上勘探程度相对较低的具有较好勘探前景的含油气盆地,由于特殊的地理和地质条件,对于羌塘盆地的油气勘探还存在许多亟待研究解决的地质科学问题和技术方法问题。本文通过对164块采自羌塘盆地中生代主要烃源岩层系的地表烃源岩样品和钻井岩芯样品进行的系统石油地球化学分析测试,研究了羌塘盆地主要烃源岩层系的有机地球化学特征,以期为深入研究该区的油气生、运、聚规律提供石油地球化学依据。
     大量有机地球化学数据表明,羌塘盆地侏罗系和上三叠系烃源岩的有机质成熟度普遍很高,处于高成熟—过成熟阶段。干酪根镜质体反射率(R_o)均在2.8%以上;绝大部分烃源岩的岩石热解最大峰温值在455℃以上;干酪根中腐泥组和壳质组显微组分消失,已转化为次生的微粒体、各向异性体和镜状体;烃源岩中的有机质基本上是残留有机质,烃源岩热解分析,可溶烃S_1=0.04mg/g,热解烃S_2在0.01~0.10mg/g,残余碳S_4为0.01~11.11mg/g,沥青A含量在0.0005%~0.0283%。
     羌塘盆地烃源岩中的有机质丰度普遍不高,但总有机碳含量比较稳定。泥岩和页岩的总有机质含量在0.03~0.52%,碳酸岩总有机质含量在0.05~1.22%,按照有关烃源岩等级划分标准,以中等烃源岩和好烃源岩为主。
     羌塘盆地侏罗系烃源岩的沉积环境为海相还原环境。Pr/Ph值在0.18~0.8之间。有机质母质主要为低等水生生物,有高等植物的混入。nC_(21)-/nC_(21+)值在0.84~2.18之间,以大于1为主;正构烷烃大部分以nC_(17)为主峰碳,少数为nC_(27)。C_(27)、C_(28)、C_(29)规则甾烷呈不规则“V”字型分布,C_(27)和C_(29)的丰度大致相当。
     高程度热演化对羌塘盆地中生代烃源岩的分子地球化学特征有显著影响。甾、萜类化合物遭受严重破坏,并生成了丰富的高稠合度多环芳烃和烯烃系列化合物,碳同位素组成也被明显歧化。
     风化作用对羌塘盆地地表烃源岩的地球化学信息有明显的改造作用。地表烃源岩有比井下烃源岩明显低的总有机碳丰度和可溶有机质丰度,岩石热解峰温值明显升高;地表干酪根中氧、氮原子流失明显,元素组成变得没有地层规律。
Qiangtang Basin is considered to be of good prospect for oil and gas exploration. Due to that it is located in the Qinghai-Tibet Plateau under special geographical and geological conditions, it remains low level explored so that many geoscientifical and exploration methodological problems need to be solved. Based on a series of organic geochemical analyses of 164 outcrop and core source rocks collected from Qiangtang Basin, this thesis reports the results of a study on the petroleum geochemical characteristics of the main Mesozoic source rocks of Qiangtang Basin in order to provide some fundamental references for the studies on the oil generation, migration and accumulation history and patterns in the basin.
     The organic geochemical data shows that the organic matter in the Jurassic and Triassic source rocks in Qiangtang Basin has a very high maturity at high mature-postmature stage. The vitrinite reflectance of kerogen (Ro) is above 2.8%. The T_(max) values of Rock-Eval analyses are above 455℃for most of the source rocks. The inertinites and liptinites (formerly called exinite) disappear from kerogen due to that they are derived into secondary maceral groups. Furthermore, the organic matter in the source rocks is basically proved to be of only residues. The Rock-Eval pyrolysis of source rocks shows that the content of S_1 component takes 0.04 mg/g as the maximal, S_2 component ranges 0.01-0.10 mg/g, while S_4 component dorminates with its content up to 11.11 mg/g. The content of chloroform bitumen A is only 0.0005% to 0.0283% as well.
     The abundance of organic matter in the source rocks is very low, and the TOC value varies within a narrow range. The TOC values of the mudstones and shales range from 0.03% to 0.52%, while those of the carbonate source rocks range from 0.05% to 1.22%. According to the relevant source rock classification criterion, source rocks in Qiangtang Basin belong to medium to good source rock classes.
     The sedimentary environment of Jurassic source rocks in Qiangtang Basin was marine and reductive. The Pr/Ph ratio ranges from 0.18 to 0.8 while most source rocks have the value smaller than 1. The nC_(21)/nC_(21)+ value lies between 0.84 and 2.18 while most of the values greater than 1. The organic matter is mainly derived from aquatic organisms together with small amount of terrestrial organism input. Most of the source rocks demonstrate a single-peak type distribution pattern of n-alkanes with the highest peak of C_(17) component. The regular steranes show a "V" type distribution pattern, in which the abundance of C_(27)- and C_(29)-steranes is roughly equal.
     The high level thermal evolution has seriously affected the molecular geochemical characteristics of the Mesozoic source rocks in Qiangtang Basin. Both steranes and terpanes suffered serious damage, and plenty of polyaromatics and alkenes were derived as the result. Even the carbon isotope composition has been obviously altered as well.
     The geochemical information of the outcrop source rocks in Qiangtang basin is obviously altered by weathering effection. The outcrop source rocks have clearly lower TOC content and lower abundance of soluble organic matter than those of core source rocks, but the T_(max) value of Rock-Eval analysis obviously increases. The oxygen and nitrogen in Kerogen of the outcrop source rocks loss so obviously that the composition of the organic elements shows no regularity varying with the formations what is held by the core source rocks.
引文
[1]郭宝申.我国油气资源的长期宏观预警研究[A].中国油气勘探战略与规划部署[C].北京:地质出版社,1997,(4):1-13
    [2]雷清亮,戴国汉.西藏油气远景分析[J].石油与天然气地质,1996,17(1):22-26
    [3]罗本家,戴国汉.羌塘盆地有利勘探区块[J].石油与天然气地质,1996,17(1):58-61
    [4]伍新和,王成善,伊海生,等.西藏羌塘盆地烃源岩古油藏带及其油气勘探远景[J].石油学报,2005,26(1):13-17.
    [5]陈文彬,杨平,张予杰,等.南羌塘盆地扎仁古油藏白云岩储层特征及成因研究[J].沉积与特提斯地质,2006,26(2):42-46.
    [6]王成善,伊海生,李勇,等.羌塘盆地地质演化与油气远景评价[M].北京:地质出版社,2001:184-215.
    [7]赵政璋,李永铁,叶和飞,等.青藏高原大地构造特征及盆地演化[M].北京:科学出版社,2000:1-5
    [8]陈荣书.石油及天然气地质学[M].武汉:中国地质大学出版社,1994
    [9]周玉琦、易荣龙、舒文培等,未来中国的油气资源前景探讨石油实验地质[J].25(3),2003
    [10]张厚福等编,石油地质学[M].石油_T业出版社,1999
    [11]陈荣书主编,石油及大然气地质学[M].中国地质大学出版社,1994
    [12]陈作全主编,石油地质学简明教程[M].地质出版社,1987
    [13]Durand B.1980.Kerogen-Insolusle organic matter from sedimentary rocks,Paris,Edition,Technip.,78-94
    [14]傅家谟,秦匡宗主编.干酪根地球化学[M].广东科技出版社,1995
    [15]M.A.Rogers,应用有机相概念评价生油岩.第十届世界石油会议报告论文集[R],1980
    [16]郝石生.我国有机地球化学的发展与展望.沉积学报[J],15(2),1997
    [17]吴应林,李兴振,丘东洲,等.1996.青藏高原的构造演化与含油气盆地分析.地球科学,21(2):130-135.
    [18]赵政璋,李永铁,叶和飞,等.青藏高原海相烃源层的油气生成[M].北京:科学出版社,2000.610-613
    [19]赵政璋,李永铁,叶和飞,等.青藏高原羌塘盆地石油地质[M].北京:科学出版社,2000. 336-67
    [20]王成善,张哨楠.西藏高原含油气盆地分析及油气资源预测[J].地球科学-中国地质大学学报,1996,21(2):120-129.
    [21]王成善,伊海生,刘池洋,等.西藏羌塘盆地古油藏发现及其意义[J].石油与天然气地质,2004,25(2):139-143.
    [22]西藏地质矿产局.西藏自治区岩石地层[M].武汉:中国地质大学出版社,1994
    [23]刘增乾,徐宪,潘桂棠,等.青藏高原大地构造与形成演化[M].北京:地质出版社,1990
    [24]叶和飞,罗建宁,等.特提斯构造域与油气勘探[J].沉积与特提斯地质,2000,20(1):1-27
    [25]KLEMME H D,ULMISHEK D J.Effective petroleum source rocks of the world:Stratigraphic distribution and controlling depositional factors.AAPG Bulletin,1991,75(12):1148 -1159
    [26]王启军,陈建渝.油气地球化学[M].武汉:中国地质大学出版社,1988
    [27]CARMALT S W,ST JOHN B.Giant oil and gas fields[A].Halbouty M T.AAPG memoir 40.Future Petroleum Provinces of the World[C].Tulsa:AAPG Housing Bureau,1992,11-53
    [28]王岫岩,云金表,腾玉洪,等.西藏羌塘盆地动力学演化与油气前景分析[J].石油学报,1999,20(3):38-42
    [29]OWENS T J,ZANDT G.Implications of crustal property variations for models of Tibetan plateau evolution[J].Nature,1997,387(5):37-42
    [30]Wang Chengshan,Chang E Z,Zhang Shaonan.Potential oil and gas bearing basins on the Qinghai-Tibet Plateau of China[J].International Geological Review,1997,39(10):876-890
    [31]孙鸿烈.青藏高原的形成演化[M].上海:上海科学技术出版社,1996.79-87
    [32]Pepper A S,Corvit P J.Simple kinetic models of petroleum formation.Part Ⅰ:oil and gas generation from kerogen[J].1995,12(3):291-319
    [33]Pepper A S,Dodd T A.Simple kinetic models of petroleum formation.Part Ⅱ:oil-gas cracking[J].1995,12(3):321-340
    [34]Pepper A S,Corvi P J.Simple kinetic models of petroleum formation.Part Ⅲ:modelling an open system[J].1995,12(4):417-452
    [35]刘德汉,史继杨.高演化碳酸盐岩地球化学特征及非常规评价方法探讨[J].石油勘探与开发,1994,21(3):113-115
    [36]Wang Chengshan,Edmund Z,Zhang Shaonan,et al.Potential oil and gas bearing basins on the Qinghai2Tibet Plateau of China[J].International Geological Review,1997,39(10):876-890
    [37]和钟铧,李才,杨的明,等.西藏羌塘盆地的构造沉积特征及演化[J].长春科技大学学报,2000,30(4):347-348
    [38]鲁兵,李永铁,刘忠,等.青藏高原的盆地形成与分类[J].石油学报,2000,21(2):21-23.
    [39]李勇,王成善,伊海生.中生代羌塘前陆盆地充填序列及演化过程[J].地层学杂志,2002,26(1):62-63
    [40]胡明毅,吴一慧.羌塘盆地上三叠统肖茶卡组沉积相与含油性[J].石油学报,2001,22(4):31-34
    [41]黄继钧.羌塘盆地基底构造特征[J].地质学报,2001,75(3):333-337
    [42]王剑,谭富文,李亚林,等.青藏高原重点沉积盆地油气资源潜力分析[M].北京:地质出版社,2004.140-198
    [43]孟仟祥,房嬛,徐永昌,沈平.柴达木盆地石炭系烃源岩和煤岩生物标志物特征及其地球化学意义[J].沉积学报,2001,22(4):729-736
    [44]窦启龙,陈践发,薛燕芬.实验室条件下微生物降解原油的地球化学特征研究[J].沉积学报,2005,9(3):542-547
    [45]梅博文,刘希江.我国原油中异戊间二烯烃的分布及其与地质环境的关系[J].石油与天然气地质,1980,1(2):99-115
    [46]王铁冠,等.生物标志物地球化学研究[M].武汉:中国地质大学出版社,1990
    [47]Powell T,Mckirdy D M.Relationship between ratio of pristine to phytane,crude oil composition and geological environments in Australia.Nature,1973,243:37-39
    [48]SeifertW K,Moldowan J M.Paleoreconstruction by biololgicalmarkers.Geochemica et Cosmochimica Acta,1981,45:7832794
    [49]彼得斯K E,莫尔多万J M.生物标记化合物指南--古代沉积物和石油中分子化石的解释[M].姜乃煌,张永昌,林永汉,等译.北京:石油工业出版社,2001.106
    [50]Shanmugan G.Significance of coniferous rain forests and related oil,Gipp sland Basin,Australia.AAPG Bulletin,1985,69:1241-1254
    [51]BarakatA O,Mostafa A,ElGayarM S,et al.Source dependent biomarker properties of five crude oils from the Gulf of Suez,Egypt.Organic Geochemistry,1997,26:441-450
    [52]林金辉,伊海生,李勇,等.藏北高原双湖地区中侏罗统海相油页岩生物标志物分布特征及其意义[J].沉积学报,2001,19(2):287-292
    [53]陈建平,黄第藩.酒东盆地油气生成和运移[M].北京:石油工业出版社,1995.100-106
    [54]廖永胜.高一过成熟气源岩评价若干问题[J].石油勘探与开发,2005(8):147-151
    [55]程克明,王铁冠,钟宁宁,等.烃源岩地球化学[M].北京:石油工业出版社,1997
    [56]Summons R E,et al.Dinosterane and other steroidal hydrocarbons of dinoflagellate origin in sediments and petroleum.Geochimica et Cosmochimica Acta,1987,51:3075-3082
    [57]Volkman J K.A review of sterol markers for marine and terrigenous organic matter.Organic Geochemistry,1986,9:83-99
    [58]Volkman J K.Biologicalmarker compounds as indicators of the depositional environments of petroleum source rocks.In:Fleet A J,Keits K,TabotM R,eds.Lacustrine Petroleum Source Rocks.Geological Society Special Publication,1988,40:103-122
    [59]张水昌.南方海相地层中生物标志物--细菌和藻类生物的贡献[M].北京:石油工业出版社,1993.155-174
    [60]Peters K E,Moldowan J M.Guide for the Application of Biological Markers.Prentice-Hall,1993.79-187
    [61]Moldwan J M,Albrecht P,Philip R P,ed.Biomarkers in Sediments and Petroleum.Prentice-Hal[J]1,Englewood Cliffs,New Tersey,1991.268-280
    [62]Mackenzie A S,Hoffmann C F,Maxwell J R.Molecular parameters of maturation in the Toarcian shales[J],Paris Basin,France.Changes in aromatic steroid hydrocarbons.Geochimica et Cosmochimica Acta,1981,45:1345-1355
    [63]任拥军,纪友亮,李瑞雪.南祁连盆地石炭系可能烃源岩的甾萜烷地球化学特征及意义[J].石油实验地质,2000,12(2):341-345
    [64]Moldowan J M,Fago F J.Structure and significance of a novel rearranged monoaramatic steroid hydrocarbon in petroleum.Nature,1984,308:439-441
    [65]曾国寿.石油地球化学[M].北京:石油工业出版社,1990
    [66]王培荣.生物标志物质量色谱集[M].北京:石油工业出版社,1992
    [67]赵文津,赵逊,蒋忠惕,等.西藏羌塘盆地的深部结构特征与含油气远景评价[J].中国地质,2006,33(1):1-13.
    [68]汪正江,王剑,尹福光,等.南羌塘侏罗纪盆地的沉积-构造转换与烃源岩[J].中国地质,2006,33(6):1285-1291.
    [69]Radke M,Rullkotter J,Vriend S P.Distribution of naphthalenes in crude oils from Java Sea: source and maturation effects[J].Geochimica et Cosmochimica Acta,1994,58(17):3675-3689
    [70]丁安娜,惠荣耀,张中宁.准格尔盆地白家海凸起湖相原油与烃源岩芳烃地球化学特征[J].石油勘探与开发,1997,24(3):15-20
    [71]George S C,Lisk M,Summons R E,et al.Constraining the oil charge history of the South Pepper oilfield from the analysis of oil-bearing fluid inclusions.Organic Geochemistry,1998,29(1-3):985-1010
    [72]王铁冠,何发岐,李美俊,等.烷基二苯并噻吩类示踪油藏充注途径的分子标志物[J].科学通报,2005,50(2):176-182
    [73]张敏,张俊.塔里木盆地原油噻吩类化合物的组成特征及地球化学意义[J].沉积学报,1999,17(1):121-126
    [74]孟仟祥,张松林,崔明中,等.不同沉积环境湖相低熟原油的芳烃分布特征[J].沉积学报,1999,17(1):112-120
    [75]李林强,林壬子.利用芳烃化合物研究东濮凹陷西斜坡地区原油成熟度[J].沉积学报,2005.22(2):361-365
    [76]Radke M,Welte D H,Willsch H.Maturity parameters based on aromatic hydrocarbon:influence of the organic matter type.Organic Geochemistry,1986,10(1-3):51-63
    [77]Dutkiewicz A,Volk H,Ridley J,et al.Geochemistry of oil influid inclusions in a middle Proterozic igneous intrusion:implications for the source of hydrocarbons in crystalline rocks[J].Organic Geochemistry,2004,35(8):937-957
    [78]Norgate C M,Boreham C J,Wilkins A J.Changes in hydrocarbon maturity indices with coal rake and type,Buller coalfield,NewZealand.Organic Geochemistry,1999,30(8):985-1010
    [79]朱扬明.生油岩五环芳烃的热演化及成熟度参数[J].地质地球化学,1998,(1):75-80
    [80]Matthias Radke,Detlev Leythaeuser,Marlies Teichm(u|¨)ller.Relationship between rank and composition of aromatic hydrocarbons for coals of different origins.Organic Geochemistry,1984,6:423-430
    [81]Chakhmakchev A,Suzuki M,Takayama K.Distrubution of alkylated dibenzothiophenes in petroleum as a tool for maturity assessments[J].Organic Geochemistry,1997,26(7):483-490
    [82]罗健,程克明,付立新,等.烷基二苯并噻吩-烃源岩热演化新指标[J].石油学报,2001,22(3):27-32
    [83]Santamaria- Orozco D,Horsfield B,Di Primio R,et al.Influence of maturity on distributions of benzo-and dibenzothiophenes in Tithonian source rocks and crude oils,Sonda de Campeche,Mexico[J].Organic Geochemistry,1988,28(7-8):423- 439
    [84]李素梅,庞雄奇,金之钧,等.沉积物中NSO杂环芳烃的分布特征及其地球化学意义[J].地球化学,2001,30(4):346-352
    [85]Lu Shantan,Kaplan I R.Diterpanes,triterpanes,steranes and aromatic hydrocarbons in natural bitumens and pyrolysates from different humic coals[J].Geochimic et Cosmochimica Acta.1992,56:2761-2788
    [86]Beach F,Peakman T M,Abbott G D,et al.Laboratory thermal alteration of triaromatic steroid hydrocarbons[J].Organic Geochemistry,1989,14(1):109-111
    [87]Larter S R.Reservoir geochemistry as a reservoir appraisal and management tool,and evaluation[J].AAPG Bulletin,1995,79(8):27-28
    [88]王剑,谭富文,李亚林,李永铁,等.青藏高原重点沉积盆地油气资源潜力分析.地质出版社 2004:145
    [89]张玉修,李勇,李亚林,康沛泉,周家云.西藏羌塘盆地东部侏罗系生油条件与油气显示.合肥工业大学学报(自然科学版),2004,27(6):635-639
    [90]罗建宁,谢渊,王小龙,朱忠发,童箴言,叶和飞,李永铁.羌塘盆地石油地质条件与初步评价.沉积与特提斯地质,2003,23(1):1-15
    [91]R.E.Summons,et al.Dinosterane and other steroidal hydrocarbons of dinoflagellate origin in sediments and petroleum,Geochimica et Cosmochimica Acta,1987,51:3075-3082
    [92]徐文凯,消开华,陆亚秋等.西藏羌塘盆地双湖地区区域石油地质调查报告.潜江:江汉石油管理局勘探开发研究院,1998
    [93]范璞.塔里木油气地球化学.北京:科学出版社,1990,23-29
    [94]王万春,徐永昌,Manfred Schidlowski,等.不同沉积环境及成熟度干酪根的碳氢同位素地球化学特征.沉积学报,1997,15(增刊):133-137
    [95]张爱云,蔡云开,初志明,等.沉积有机质中稳定同位素逆转现象初探.沉积学报,1992,10(4):49-59
    [96]Meyers P A,Simoneit B R T.Effects of extreme heating on the elemental and isotopic compositions of an Upper Cretaceous coal.Organic Geochemistry,1999,30:299-305
    [97]王传刚,王铁冠,何发歧,等.塔河油田原油稳定碳同位素特征及其成藏意义.新疆石油地质,2005,26(2):155-157

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700