用户名: 密码: 验证码:
甜菜碱提高转基因番茄耐热性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物在生长发育的过程中,面临着多种逆境胁迫。高温是夏季常见的一种非生物胁迫因子,对作物的生长和产量造成严重的影响。植物在进化的过程中,积累可溶性物质应对各种环境胁迫。甜菜碱是目前研究最多,也是最有效的相溶性物质之一,可以提高植物对低温、高温、盐胁迫等的耐性。本实验以转胆碱氧化酶(codA)基因的番茄和转甜菜碱醛脱氢酶(BADH)基因的番茄为材料,并对野生型番茄施加甜菜碱,研究甜菜碱对提高番茄在种子萌发期、幼苗生长期耐热性的生理机制。主要结果如下:
     1、番茄种子吸胀时期高温处理后,转codA基因番茄种子相对电导率低于野生型番茄种子,萌发率高于野生型番茄种子;萌发时期高温处理后转codA基因番茄种子萌发率高于野生型番茄种子。转codA基因番茄种子耐热性高于野生型番茄种子。
     2、外源低浓度的甜菜碱处理提高了野生型番茄种子在高温胁迫下的萌发率,提高了对高温的耐性。
     3、高温胁迫下,转codA基因番茄种子中热激蛋白基因的表达水平高于野生型番茄种子,HSP70含量高于野生型番茄。
     4、高温胁迫降低番茄叶片的光合速率。野生型番茄光合速率、表观量子效率、羧化效率的下降幅度明显高于转codA基因番茄。高温胁迫下转codA基因番茄维持较高的光合速率,提高了光合作用对高温的耐性。
     5、叶绿素荧光分析结果表明:转codA基因番茄提高了PSII对高温胁迫的耐性。这种耐性的提高与PSII反应中心对高温胁迫的耐性提高有关。
     6、高温胁迫下番茄体内H2O2,O2的积累明显增加,转codA基因番茄叶片中活性氧的积累较少,而且转codA基因番茄叶片中CAT1基因表达水平高于野生型番茄。高温胁迫下转codA基因番茄通过维持较高的抗氧化物酶活性增强活性氧清除能力,减轻活性氧对光合机构的伤害。
     7、外源施加甜菜碱同样提高了番茄叶片光合作用和PSII反应中心对高温的耐性。
     8、从盐胁迫的菠菜中克隆甜菜碱醛脱氢酶(BADH)基因,构建真核表达载体,利用农杆菌介导的叶盘法转化番茄,用PCR和western杂交的方法对带卡那霉素抗性的转基因番茄植株进一步检测,获得了转BADH基因的番茄植株。
     9、转BADH基因提高了番茄叶片光合作用对高温的耐性。
     10、高温诱导HSP70的积累,转codA基因番茄和转BADH基因番茄叶片中HSP70含量高于野生型番茄;转codA基因番茄类囊体膜上HSP70含量高于野生型番茄;外源施加甜菜碱同样提高了高温下番茄叶片中HSP70的含量。
     11、高温导致PSII反应中心的损伤,尤其是D1蛋白的降解,造成D1蛋白含量的降低。转codA基因和转BADH基因番茄D1蛋白含量高于野生型番茄,而且外源施加甜菜碱番茄叶片中D1蛋白含量高于未施加甜菜碱的番茄。
     以上结果表明,转codA基因番茄种子对高温的耐性提高,而且转codA基因和转BADH基因番茄幼苗对高温的耐性也提高,这种耐性的提高与转基因番茄番茄中甜菜碱的积累有关。高温胁迫下,转基因番茄种子和叶片中热激蛋白的积累以及抗氧化酶活性的提高。热激蛋白含量和抗氧化酶活性的提高可能与甜菜碱促进热激蛋白和抗氧化酶基因表达有关。
As sessile organisms, plants are continuously exposed to biotic and abiotic stress conditions during their whole life cycles. High temperature which affects the growth and the production of crops is a common abiotic stress during summer. Over time, plants have evolved mechanisms to overcome environmental stresses. One mechanism is the accumulation of compatible solutes such as glycinebetaine (GB). GB is one of the organic compatible solutes that can accumulate rapidly in many plants under salinity stress, drought and low temperature, and enhanced the tolerance to adverse conditions. In this study, the codA and BADH transgenic tomato were used to elucidate the effect of GB on tomato under high temperature during germination and seedling growth. Additionally, GB was exogenously applied to further investigate the role of GB in the enhancement of the tolerance to high temperature. The main results are as follows:
     1. After high temperature treatment during imbibition, the relative elective conductivity was greater in wild-type tomato seeds than in the codA transgenic seeds. The germination rate of codA transgenic seeds was higher than that of the wild-type seeds. During the recovery after long time high temperature treatment, the germination rate of codA transgenic seeds was higher than the wild-type seeds. The codA transgenic tomato seeds showed more thermotolerance than that of the wild type seeds.
     2. Exogenous application of low concentration of GB on MS medium increased the germination rate of the wild-type seeds after high temperature treatment. Imbibition in low concentration of GB also enhanced the germination rate of the wild-type seeds.
     3. During high temperature treatment, the transcript of gene for HSP70, HSC70 and MT-sHSP were more in the codA transgenic seeds than in the wild-type seeds. The accumulation of HSP70 was more in the codA transgenic seeds than in the wild-type seeds.
     4. High temperature stress decreased the CO2 assimilation. After high temperature treatment, CO2 assimilation rate, apparent quantum yield and carboxylation efficiency of wild-type tomato leaves decreased greater than that of the codA transgenic tomato leaves.The codA transgenic tomato plants showed higher thermotolerance of photosynthesis than wild type tomato plants.
     5. The analysis of chlorophyll fluorescence demonstrated that photosystemII (PSII) in codA transgenic plants showed more high temperature tolerance than in wild type plants, suggesting that the accumulation of GB leads to increased tolerance to high temperature-induced photo inhibition. This increased tolerance was associated with an improvement of oxygen-evolving complex and the reaction center of PSII to heat stress.
     6. Heat stress increased the accumulation of H2O2, O2 in the wild-type and transgenic tomato, but this accumulation was less in transgenic tomato. High temperature decreased the expression of CAT1 in the wild-type and codA transgenic tomato leaves. However the decrease was more in the wild-type plants than in the codA transgenic plants. GB decreased the accumulation of ROS through maintain relatively higher antioxidant enzyme activities.
     7. Exogenous application of GB also enhanced the thermotolerance of photosynthesis of wild type tomato plants.
     8. The gene for betaine aldehylde dehydrogenase (BADH) was successfully cloned from spinach which was supplied with 200 mM NaCl for 4 d. After the construction of eukaryote expressing vector, the A. tumefaciens mediated infection was used to infect the tomato leaf discs. After the PCR and western blot analysis of the kanamycin resistant tomato plants, the BADH transgenic seedlings were obtained.
     9. BADH transgenic tomato plants also showed higher thermotolerance of photosynthesis than that of wild type plants.
     10. High temperature induced the accumulation of HSP70 in the wild-type and codA, BADH transgenic tomato leaves. The accumulation was greater in the transgenic plants than in the wild-type plants. Exogenous application of GB in wild type tomato plants also increased the accumulation of HSP70 during high temperature stress.
     11. High temperature induced the degradation of D1 protein. The content of D1 protein was more in the codA, BADH transgenic tomato than that of the wild-type plants. Meanwile, the wild-type tomato plants supplied with exogenous GB also maintained greater content of D1 protein when exposed to high temperature stress.
     The results in this study indicated that tomato plants transformed with codA or BADH gene enhane the thermotolerance, and this resulted in the biosynthesis of glycinebetaine in transgenic plants. Under high temperature stress, the transgenic seeds and plants maintained more HSP and higher activities of antioxidant enzymes, which may associated with the improvement of the expression of some genes for heat shock protein and antioxidant enzymes by glycinebetaine during high temperature stress.
引文
陈忠,苏维埃,汤章城.豌豆热激蛋白Hsp60对酶的高温保护功能及其机理.科学通报1999;44:2171-74.
    邓家术,殷杉江,刘中来.植物热激蛋白的研究进展应用.生命化学2003;23:226-28.
    郭北海,张艳敏,李洪杰,杜立群,李银心,张劲松,陈受宜,朱至清.甜
    菜碱醛脱氢酶(BADH)基因转化小麦及其表达.植物学报2000;42:279-83.
    李银心,常风启,杜立群,郭北海,李洪杰,张劲松,陈受宜,朱至清.转甜菜碱醛脱氢酶基因豆瓣菜的耐盐性.植物学报2000;42:480-84.
    梁峥,骆爱玲.甜菜碱和甜菜碱合成酶.植物生理通讯1995;31:1-8.
    梁峥,马德钦,汤岚,洪益国,骆爱玲,戴秀玉.菠菜甜菜碱醛脱氢酶基因在烟草中的表达.生物工程学报1997;13:236-40.
    梁峥,赵原,汤岚,骆爱玲.甜菜碱对呼吸酶的保护效应.植物学报1994;36:947-51.
    刘凤华,郭岩,谷冬梅,肖岗,陈正华,陈受宜.转甜菜碱醛脱氢酶基因植物的耐盐性研究.遗传学报1997;24:54-8.
    刘箭,庄野真理子.高温下线粒体小分子热激蛋白对柠檬酸合成酶、线粒体和花粉粒的保护作用.植物生理学报2001;27:375-80.
    罗广华,王爱国.现代植物生理学实验指南(汤章城主编).北京:科学出版社1999;308-9.
    骆爱玲,刘家尧,马德钦,王学臣,梁峥.转甜菜碱醛脱氢酶基因烟草叶片中抗氧化酶活性增高.科学通报2000;45:1953-56.
    马德华,庞金安,李淑菊,霍振荣.温度逆境锻炼对高温下黄瓜幼苗生理的影响.园艺学报1998;25:350-5.
    钱春梅,伍贤进.高温胁迫对番茄种子萌发的影响.种子2002;20:89.
    孙文越,王辉,黄久常.外源甜菜碱对干早胁迫下小麦幼苗膜脂过氧化作用的影响.西北植物学报2001;21:487-91.
    汪炳良,徐敏,史庆华.高温胁迫对早熟花椰菜叶片抗氧化系统和叶绿素及其荧光参数的影响.中国农业科学2004;37:1245-50.
    王冬梅,许向阳,李景富.番茄耐热性研究进展.中国蔬菜2003;2:58-60.
    王利军,黄卫东,战吉成.水杨酸和高温胁迫与葡萄抗热性及抗氧化关系. 园艺学报2003;30:452-4.
    肖岗,张耕耘,刘凤华,王军,陈受宜,李聪,耿华珠.山菠菜甜菜碱醛脱氢酶基因研究.科学通报1995;40:741-45.
    徐如强,孙其信,张树榛.小麦光合作用与耐热性的关系初探.作物品种资源1997;46:28-9.
    许雯,孙梅好,朱亚芳,苏维埃.甘氨酸甜菜碱增强青菜抗盐性的作用.植物学报2001;43:809-14.
    衣艳君,刘家尧,骆爱玲,张其德,马德钦,王学臣,梁峥.转BADH基因烟草的光系统Ⅱ和呼吸酶活性变化.植物学报1999;41:993-96.
    张士功,高吉寅,宋景芝.甜菜碱对NaCI胁迫下小麦细胞保护酶活性的影响.植物学通报1999;16:429-32.
    鄣培国,李荣华.夜间高温胁迫对水稻叶片光合机构的影响.植物学报1999;42:673-7.
    赵博生,衣艳君等.外源甜菜碱对干旱/盐胁迫下的小麦幼苗生长和光合功能的改善.植物学通报2001;18:378-80.
    赵世杰,史国安,董新纯(主编).植物生理学实验指导中国农业科学技术出版社,北京,2002:58.
    邹琦(主编).植物生理生化实验指导.中国农业出版社,北京,1995.
    Abdalla AA, KVerkerk. Growth, flowering and fruitset of the tomato at high temperature. Neth J Agric Sci 1968; 16: 71-6.
    Alia, Hayashi H, Sakamoto A, Murata N. Enhancement of the tolerance of
    Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J 1998; 16: 155-61.
    Alia, Kondo Y, Sakamoto A, Nonaka H, Hayashi H, Saradhi PP, Chen THH, Murata N. Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. Plant Mol Biol 1999; 40: 279-88.
    Allakhverdiev SI, Feyziev YM, Ahmed A, Hayashi H, Aliev JA, Klimov VV .Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinebetaine and sucrose. J Photochem Photobiol 1996; 34: 149-57.
    Allakhverdiev SI, Hayashi H, Nishiyama Y, Ivanov AG, Aliev JA, Klimov VV, Murata N, Carpentier R. Glycinebetaine protects the D1/D2/Cytb559 complex of photosystem II against photo-induced and heat-induced inactivation. J Plant Physiol 2003; 160: 41-9.
    Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P. Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 2008; 98: 541-50.
    Allakhverdiev SI, Los DA, Mohanty P, Nishiyama Y, Murata N. Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochim Biophys Acta 2007; 1767: 1363-71.
    Allard F, Houde M, Kr?l M, Ivanov A, Huner NPA, Sarhan F. Betaine improves freezing tolerance in wheat. Plant Cell Physiol 1998; 39: 1194-202.
    Aro EM, Suorsa M, Rokka A, Allahverdiyeva Y, Paakkarinen V, Saleem A, Battchikova N, Rintam?ki E. Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 2005; 56: 347-56.
    Aro EM, Virgin I, Andersson B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1993; 1143: 113–34.
    Baker NR. Possible role of photosystem II in environmental perturbations of photosynthesis. Plant Physiol 1991; 81: 563-70.
    Bartoli CG, Simontacchi M, Tambussi E, Beltrano J, Montaldi E, Puntarulo Susana. Drought and watering-dependent oxidative stress: effect on antioxidant content in Triticum aestivum L. leaves. J Exp Bot 1999; 50: 375-83.
    Basha E,Lee GJ,Breci LA,Hausrath AC,Buan NR,Giese KC,Vierling E.The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions.J Biol Chem 2004a; 279:7566-75.
    Basha E,Lee GJ,Demeler B,Vierling E.Chaperone activity of cytosolicsmall heat shock proteins from wheat.Eur J Biochem 2004b; 271:1426-36.
    Beator J,Patter E,Kloppstech K.The effect of heat shock on morphogenesis in barley. Plant Physiol 1992; 100: 1780-86.
    Belkhodja R, Morales FA, Gomez-Aparisj J, Abadia J. Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiol 1994; 104: 667-73.
    Berry J, Bj?rkman. Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 1980; 31: 491- 543.
    Bewley JD. Seed germination and dormancy. Plant Cell 1997; 9: 1055-66.
    Bohnert HJ, Jensen RG. Strategies for engineering water-stress tolerance in plants. TIBT 1996; 14: 89-97
    Brodsky JL. Post-translational protein translocation: not all hsc70s are created equal. Trends Biochem Sci 1996; 21: 122-6.
    Buchner J. Supervising the fold: functional principles of molecular chaperones. FASEB J 1996; 10: 10-19.
    Bukhov NG, Wiese C, Neimanis S, Heber U. Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynth Res 1999; 59: 81-93.
    Bush GL, Meyer DI. The refolding activity of the yeast heat shock proteins Ssa1 and Ssa2 defines their roles in protein translocation. J Cell Biol 1996; 135: 1229-37.
    Camejo D, Rodríguez P, Morales MA, Dell’amico JM, Torrecillas A, AlarcónJJ. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol 2005; 162: 281-9.
    Chen SB, Gollop N, Heuer B. Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycinebetaine. J Exp Bot 2009; 60: 2005-19.
    Chen THH, Murata N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 2002; 5: 250-57.
    Chen THH, Murata N. Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 2008; 13: 499-505.
    Chen WP, Li PH, Chen THH. Glycinebetaine increase chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L. Plant Cell Environ 2000; 23: 609-18.
    Chou M, Chen YM, Lin CY. Thermotolerance of isolated mitochondria associated with heat shock proteins. Plant Physiol 1989; 98: 617-21.
    Craig EA,Gambill BD,Nelson RJ. Heat shock proteins molecular chaperones of protein biogenesis. Mictobiol Rev 1993; 57: 402-14.
    De Las Rivas J, Barber J. Structure and thermal stability of photosystem II reaction centers studied by infrared spectroscopy. Biochemistry 1997; 36: 8897-903.
    De Ronde JAD, Cress WA, Kruger GHJ, Strasser RJ, Staden JV. Photosynthetic response of transgenic soybean plants containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 2004; 61: 1211-44.
    Deshnium P, Gombos Z, Nishiyama Y, Murata N. The action in vivo of glycine betaine in enhancement of tolerance of Synechococcus sp.strain PCC7942 to low temperature. J Biol Chem 1997; 179: 339-44.
    Einset J, Nielsen E, Connolly EL, Bones A, Sparstad T, Winge P, Zhu JK. Membrane-trafficking RabA4c involved in the effect of glycinebetaine on recovery from chilling stress in Arabidopsis. Physiol Plantarum 2007; 130: 511-18.
    Emanuel F, Sabrina A, Jiri M. Modulation of D1 protein turnover under cadmium and heat stresses monitored by [35S] methionine incorporation. Plant Sci 1999; 144: 53-61.
    Farquhar GD, Sharkey TD. Stomata conductance and photosynthesis. Ann Rev Plant Physiol 1982; 33: 317.
    Fridovich I. Superoxide dismutase. Ann Rew Biochem 1975; 44: 147-59.
    Gaitanaris GA, Papavassiliou AG, Rubock P, Silverstein SJ, Gottesman ME. Renaturation of denaturedλrepressor requires heat shock proteins. Cell 1990; 61: 1013-20.
    Gao M, Sakamoto A, Miura K, Murata M, Sugiura A, Tao R. Transformation of Japanese persimmon (Diospyroskaki Thunb.) with a bacterial gene for choline oxidase. Mol Breed 2000; 6: 501-10.
    Glover JR, Lindquist S. Hsp104, hsp70 and hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 1998; 94: 73-82.
    Goloubinoff P, Mogk A, Zvi AP, Tomoyasu T, Bukau B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci 1999; 96: 13732-37.
    Gorham J. Betaines in higher plants-biosynthesis and role in stress metabolism. In Amino Acids and Theirs Derivatives in Higher Plants. (Wallsgrove RM ed). Cambridge: Cambridge University press, 1995, pp.171-203.
    Gorham J, McDonnell E, WynJones RG. Determination of betaines as ultraviolet-absorbing esters. Ann Chim Acta 1982; 138: 277-83.
    Gounaris K, Brain APR, Quinn PJ, Williams WP. Structural reorganization of chloroplast thylakoid membranes in response to heat-stress. Biochim Biophys Acta 1984; 766: 198-208.
    Gounaris K, Mannock DA, Sen A, Brain APR, Williams WP, Quinn PJ. Polyunsaturated fatty acyl residues of galactopipids are involved in the control of bilayer/non bilayer lipid transition in higher plant chloroplasts. Biocim Biophys Acta 1983; 732: 229-42.
    Grennan AK, Ort DR. Cool temperatures interfere with synthesis in tomato by causing ribosomal pausing. Photosynth Res 2007; 94: 375-85.
    Guy GL, Li QB. The organization and evolution of the spinach stress 70 molecular chaperone gene family. Plant Cell 1998; 10: 539-56.
    Haldimann P, Strasser RJ. Effects of anaerobiosis as probed by the polyphasic chlorophyll a fluorescence rise kinetic in pea (Pisum sativum L.). Photosynth Res 1999; 62: 67-83.
    Hamilton EW, Coleman JS. Heat-shock proteins are induced in unstressed leaves of Nicotiana attenuate (Solanaceae) when distant leaves are stressed. Am J Bot 2001; 88: 950-55.
    Havaux M, Tardy F, Ravenel J, Parot P. Thylakoid membrane stability to heat stress studied by flash spectroscopic measurements of the electrochrochromic shift in intact potato leaves: influence of the xanthophyll content. Plant Cell Environ 1996; 19: 1359-68.
    Havaux. Stress tolerance of photosystemⅡin vivo: antagonistic effects water heat photoinhibition stresses. Plant physiol 1992; 100: 424-32.
    Hayashi H, Alia, Mustardy L, Deshnium P, Ida M, Murata N. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 1997; 12: 133-42.
    Hayashi H, Alia, Sakamoto A, Nonaka H, Chen THH, Murata N. Enhanced germination under high-salt conditions of seeds of transgenic Arabidopsis with a bacterial gene (codA) for choline oxidase. J Plant Res 1998; 111: 357-62.
    Heckathorn SA, Down CA, Sharkey TD, Coleman JS. The small, methinonine-rich chloroplast heat-shock protein protects photosystem electron transport during heat stress. Plant Physiol 1998; 116: 439-44.
    Herbert SK, Fork DC, Malkin S. Photoacoustic measurements in vivo of energy storage by cyclic electron flow in alga and higher plants. Plant Physil 1990; 94: 926-34.
    Hermans C, Smeyers M, Rodriguez RM, Eyletters M, Strasser RJ, Delhaye JP. Quality assessment of urban trees: A comparative study of physiological characterization, airborne imaging and on site fluorescence monitoring by the OJIP-test. J Plant Physiol 2003; 160: 81-90.
    Hibino T, Meng YL, Kawamitsu Y. Moleecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumlating mangrove Avcennia marina (Forsk.) Vierh. Plant Mol Biol 2001; 45: 353-63.
    Holmstr?n KO, Somersalo S, Mandal A, Palva ET, Welin B. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycinebetaine. J Exp Bot 2000; 51: 177-85.
    Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, Keller WA, Selvaraj G. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 2000; 122: 747-56.
    Incharoensakdi A, Takabe T, Akazawa T. Effect of betaine on enzyme activity and subunit interaction of ribulose-1,5-bisphosphate carboxylase/oxygenase from Aphanothece halophytica. Plant Physiol 1986; 81: 1044-9.
    Jakob U, Gaestel M, Engel K, Buchner J. Small heat shock proteins are molecular chaperones. J Biol Chem 1993; 268: 1517-20.
    Jolivet Y, Larher F, Hamelin J. Osmoregulation in halophytic higher plants: the protective effect of glycine betaine against the heat destabilization of membranes. Plant Sci Lett 1982; 25: 193-201.
    Kathuria H, Giri J, Nataraja KN, Murata N, Udayakumar M, Tyagi AK. Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes. Plant Biotechnol J 2009; 7: 512-26.
    Kreslavski VD, Balakhnina TI, Khristin MS, Bukhov NG. Pretreatment of bean seedlings by choline compounds increases the resistance of photosynthetic apparatus to UV radiation and elevated temperatures. Photosynthetica 2001; 39: 353-8.
    Lamb C, Dixon RA. The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 1997; 48: 251–75.
    Laurie S, Stewart GR. The effects of compatible solutes on the heat stability of glutamine synthetase from chickpeas grown under different nitrogen and temperature regimes. J Exp Bot 1990; 41: 1415- 22.
    Lee GJ, Pokala N, Vierling E. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem 1995; 270: 10432-38.
    Li QB, Haskell DW, Guy CL. Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato. Plant Mol Biol 1999, 39: 21-34.
    Lin CY, Roberts JK, Key JL. Acquisition of thermotolerance in soybean seedlings: synthesis and accumulation of heat shock proteins and their cellular localization. Plant Physiol 1984; 74: 152-60.
    Liu J, Shono M. Characterization of mitochondria-located small heat shock protein from tomato (Lycopersicon esculentum). Plant Cell Physiol 1999; 40: 1297-304.
    Loka DA, Oosterhuis DM. Effect of high night temperatures on cotton respiration, ATP levels and carbohydrate content. Environ Exp Bot 2010; 68: 258-63.
    Ma QQ, Wang W, Li YH, Li DQ, Zou Q. Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. J.Plant Physiol 2006; 163:165-75.
    M?kel? P, Kontturi M, Pehu E, Somersalo S. Photosynthetic response of drought-and salt-stressed tomato and turnip rape plants to foliar-applied glycinebetaine.Physiol Plant 1999; 105: 45-50.
    M?kel? P, Munns R, Colmer TD, Condon AG, Peltonen-Sainio P. Effect of foliar applications of glycinebetaine on stomatal conductance, abscisic acid and soluble concentrations in leaves of salt or drought stressed tomato. Aust J Plant Physiol 1998; 25: 655-63.
    Mamedov MD, Hayashi H, Murata N. Effects of glycinebetaine and unsaturation of membrane lipids on heat stability of photosynthetic electron transport and phosphorilation reactions in Synechocystis PCC 6803. Biochim Biophys Acta 1993; 1142: 1-5.
    Manetas YA. Re-examination of NaCl effects on phosphoenolpyruvate carboxylase at high (physiological) enzyme concentrations. Physiol Plant 1990; 78: 225-29.
    Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 2002; 7: 405-10.
    Mohammed AR, Tarpley L. High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agr Forest Meteorol 2009b; 149: 999-1008.
    Mohammed AR, Tarpley L. Impact of high nighttime temperature on respiration, membrane stability, antioxidant capacity and yield of rice plants. Crop Sci 2009a; 49: 313-22.
    Mohanty PS, Hayashi H, Papageorgiou GC. Stabilization of the Mn-cluster of the oxygen-evolving complex by glycinebetaine. Biochim Biophys Acta 1993; 1144: 92-6.
    Morishima Y, Murphy PJ, Li DP, Sanchez ER, Pratt WB. Stepwise assembly of a glucocorticoid receptor: hsp90 heterocomplex resolves two sequential ATP dependent events involving first hsp70 and then hsp90 in opening of the steroid binding pocket. J Biol Chem 2000; 275: 18054-60.
    Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 1962; 15: 473-97.
    Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI. Photoinhibitioon ofphotosystem II under environmental stress. Biochimica et Biophysica Acta 2007; 1767: 414-21.
    Nakamoto H, Suzuki N, Roy SK. Constitutive expression of a small heat-shock protein confers cellular thermotolerance and thermal protection to the photosynthetic apparatus in cyanobacteria. FEBS Letters 2000; 483: 169-74.
    Nelson RJ, Ziegelhoffer T, Nicolet C, Werner-Washburne M, Craig EA. The translation machinery and 70 kDa heat shock protein cooperate in protein synthesis. Cell 1992; 71: 97-105.
    Neumann D, Nover L, Parthier B, Rieger R, Scharf KD, Wollgiehn R, Nieden U. Heat shock and other stress response systems of plants. Biol Zentralb 1989; 108: 1-15.
    Nicolás G, Aldasoro JJ. Activity of the pentose phosphate pathway and changes in nicotinamide nucleotide content during germination of seeds of Cicer arietinum L. J Exp Bot 1979; 30: 1163-70.
    Nishiyama Y, Alakhverdiev SI, Murata N. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 2006; 1757: 742-9.
    Ohnishi N, Murata N. Glycinebetaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in Synechococcus sp. PCC 7942. Plant Physiol 2006; 141: 758-65.
    Osteryoung KW, Vierling E. Dynamics of small heat shock protein distribution within the chloroplasts of higher plants. J Biol Chem 1994; 269: 28676-82.
    Papageorgiou GC, Fujimura Y, Murata N. Protection of the oxygen-evolving PhotosystemII complex by glycinebetaine. Biochim Biophys Acta 1991; 1057: 361-6.
    Papageorgiou GC, Murata N. The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth Res 1995; 44: 243-52.
    Park EJ, Jeknic Z, Chen THH. Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant Cell Physiol 2006; 47: 706-14.
    Park EJ, Jeknic Z, Pino MT, Murata N, Chen THH. Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant Cell Environ 2007; 30: 994-1005.
    Park EJ, Jeknic Z, Sakamoto A, DeNoma J, Yuwansiri R, Murata N, Chen THH. Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J 2004; 40: 474-87.
    Prasad KVSK, Pardha Saradhi P. Enhance tolerance to photoinhibition in transgenic plants through targeting of glycinebetaine biosynthesis into chloroplasts. Plant Sci 2004; 166: 1197-212.
    Quan RD, Shang M, Zhang H, Zhao YX, Zhang JR.Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Sci 2004a; 166: 141-9.
    Quan RD, Zhang JR. Engineering of enhanced glycinebetaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2004b; 2: 477-86.
    Quinn PJ, Williams WP. Environmentally induced changes in chloroplast membranes and their effects on photosynthetic function. In: Photosynthetic Mechanisms and the Environment. Eds. J. Barber and N. R. Baker, Elsevier, Amsterdam, 1985, pp 1-47.
    Raison JK, Roberts JKM, Berry JA. Correlation between the thermal stability of chloroplast (thylakoid) membranes and the composition and fluidity of their polar lipids upon acclimation of the higher plant, Nerium oleander, to growth temperature. Biochim Biophys Acta 1982; 688: 218-28.
    Rajendrakumar CS, Suryanarayana T, Reddy AR. DNA helix destabilization by proline and betaine: possible role in the salinity tolerance process. FEBS Lett 1997; 410: 201-05.
    Rees WA, Yager TD, Korte J, von Hippel PH. Betaine can eliminate the base pair composition dependence of DNA melting. Biochemistry 1993; 32: 137-44.
    Robinson SP, Jones GP. Accumulation of glycinebetaine in chloroplasts provides osmotic adjustment during salt stress. Aust J Plant Physiol 1986; 13: 659-68.
    Rmond PA, Bjortman O, Stashelin LA. Dissociation of supramolecularcomplexes in chloroplast membrane: Amanifestation of heat damage to the thotosynthetic aparatus. Biochim Bio Phys Acta 1980; 601: 433-42.
    Rudulier DL, Storm AR, Dandeker AM. Molecular biology of osmoregulation. Science 1984; 224: 1064.
    Sairam RK, Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants. Current Science 2004; 86: 407-21.
    Sakamoto A, Alia, Murata N. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 1998; 38: 1011-19.
    Sakamoto A, Murata N The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 2002; 25: 163-71.
    Sakamoto A, Murata N. Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 2000; 51: 81-8.
    Sakamoto A, Murata N. The use of bacterial choline oxidase, a glycinebetaine-synthesizing enzyme, to create stress resistant transgenic plants. Plant Physiol 2001; 125:180-88.
    Salon C, Raymond P, Pradet A. Quantification of carbon fluxes through the tricarboxylic acid cycle in early germinating lettuce embryos. J Biol Chem 1988; 263: 12278-87.
    Sanmiya K, Suzuki K, Tagiri A, Egawa Y, Shono M. Ovule-specific expression of the genes for mitochondrial and endoplasmic reticulum localized small heat-shock proteins in tomato flower. Plant Cell Tiss Org 2005; 83: 245-50.
    Sanmiya K, Suzuki K, Egawa Y, Shono M. Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett 2004; 557: 265-68.
    Sch?ffl F, Prandl R, Reindl A. Molecular responses to heat stress. In:
    Shinozaki, K Yamaguchi-Shinozaki, K (Eds.), Molecular Responses to Cold, Drought,Heat and Salt Stress in Higher Plants. R G Landes Co, Austin, Texas, 1999, pp. 81-98.
    Schroda M, Vallon O, Wollman FA, Beck CF. A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair ofphotosystem during and after photoinhibition. Plant Cell 1999; 11: 1165-78.
    Sheffield WP, Shore GC, Randall SK. Mitochondrial precursor protein: effects of 70-kilodalton heat shock protein on polypeptide folding, aggregation, and import competence. J Biol Chem 1990; 265: 11069-76.
    Strasser RJ, Govindjee. The Fo and the O-J-I-P fluorescence rise in higher plants and algae. In: Argyroudi-Akoyunoglou, J.H. (Ed.), Regulation of Chloroplast Biogenesis. Plenum Press, New York, pp. 1992, 423-26.
    Strasser RJ, Srivastava A, Govindjee .Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 1995; 61: 32-42.
    Strasser RJ. Donor side capacity of photosystemⅡprobed by chlorophyll a fluorescence transients. Photosynth Res 1997; 52: 147-55.
    Suleyman I, Allakhverdiev, Hayashi H, Nishiyama Y, Ivanov AG, Aliev JA, Klimov VV, Murata N, Carpentier R. Glycinebetaine protects the D1/D2/Cytb559 complex of photosystem II against photo-induced and heat-induced inactivation. J Plant Physiol 2003; 160: 41-9.
    Sung D, Vierling E, Guy CL. Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol 2001; 126: 789-800.
    Sung DY, Guy C. Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis.Evidence for pleiotropic consequences. Plant Physiol 2003; 132: 979-87.
    Süss KH, Yordanov IT. Biosynthesis cause of in vivo acquired thermotolerance of photosynthetic light reaction and metabolic responses of chloroplasts to heat stress. Plant Physiol 1986; 81: 192-9.
    Takabe T, Hayashi Y, Tanaka A, Takabe T, Kishitani S. Evaluation of glycinebetaine accumulation for stress tolerance in transgenic rice plants. In: Proceedings of International Workshop on Breeding and Biotechnology for Environmental Stress in Rice, 1998: 63-68. Hokkaido Agricultural Experiment Station, Sapporo, Japan.
    Takahashi S, Murata N. Glycerate-3-phosphate, produced by CO2 fixation in the Calvin cycle, is critical for the synthesis of the D1 protein of photosystem II. Biochimica Biophysica Acta 2006; 1757: 198-205.
    Takahashi S, Murata N. How do environmental stresses accelerate photoinhibition? Trends in Plant Science 2008; 13: 178-82.
    Vierling E. The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 1991; 42: 579–620.
    Wahid A and Shabbir A. Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Regul 2005; 46:133-41.
    Waters ER, Lee GJ, Vierling E. Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 1996; 47: 325-38.
    Wehmeyer N, Hernandez LD, Finkelstein RR, Vierling E. Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol 1996; 112: 747-57.
    Wijngaard PWG, Sinnige1 MP, Roobeek I, Reumer A, Schoonheim PJ, Mol JNM, Wang M, De Boer AH. Abscisic acid and 14-3-3 proteins control K+ channel activity in barley embryonic root. Plant J 2005; 41: 43-55.
    Wimmer B, Lottspich F, Vander KleI, Veenhuis M, Gietl C. The glyoxysomal and plastid molecular chaperones (70-kDa heat shock protein) of watermelon on cotyledons ale encoded by a single gene. PNAS 1997, 94: 13624-9.
    Wyn Jones RG. Phytochemical aspects of osmotic adaptation. Recent adv phytochem 1984; 18 :55-78.
    Xiong LM, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress. Plant Cell 2002; 14: 165-83.
    Yamamoto Y, Aminaka R, Yoshioka M, Khatoon M, Komayama K, Takenaka D, Yamashita A, Nijo N, Inagawa K, Morita N, Sasaki T, Yamamoto Y. Quality control of photosystem II: impact of light and heat stresses. Photosynth Res 2008; 98: 589-608.
    Yamane Y, Kashino Y, Koike H, Satoh K. Effects of high temperatures on the photosynthetic systems in spinach: oxygen-evolving activities, fluorescence characteristics and the denaturation process. Photosynth Res 1998; 57: 51-9.
    Yang G, Rhodes D, Joly RJ. Effects of high temperature on membrane stability and chlorophyll fluorescence in glycinebetaine-deficient and glycinebetaine-containing maize lines. Aust J Plant Physiol 1996; 23: 437-43.
    Yang XH, Liang Z, Lu CM. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 2005b; 138: 2299-309.
    Yang XH, Liang Z, Wen XG, Lu CM. Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 2008; 66: 73–86.
    Yang XH, Lu CM. Effects of exogenous glycinebetaine on growth, CO2 assimilation, and photosystem II photochemistry of maize plants. Physiol Plantarum 2006; 127: 593-602.
    Yang XH, Lu CM. Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiol Plantarum 2005a; 124: 343-52.
    Yang XH, Wen XG, Gong HM, Lu QT, Yang ZP, Tang YL, Liang Z, Lu CM. Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 2007; 225: 719–33.
    Yordanov I, Dilova S, Petkova R, Pangelova T, Goltsev V, Süss KH. Mechanisms of the temperature damage and acclimation of the photosynthetic apparatus. Photobiochem Photobiophys 1986; 12: 147-55.
    Yoshioka M, Uchida S, Mori H, Komayama K, Ohira S, Morita N, Nakanishi T, Yamamoto Y. Quality Control of Photosystem II: cleavage of reaction center D1 protein in spinach thylakoid by FtsH protein under moderate heat stress. J Biol Chem 2006; 281: 21660-69.
    Zhang LX, Paakkarinen V, van Wijk KJ, Aro EM. Co-translational assembly of the D1 protein into photosystem II. J Biol Chem 1999; 274: 16062-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700