GIS电场及其逆问题数值计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着GIS(Gas Insulated Switchgear)小型化和三相共箱化的发展趋势,GIS内部电场分布变的越来越复杂,选择科学、有效的数值计算方法,对GIS的三维电场进行数值计算来指导绝缘设计是电气设备行业的迫切要求。通过电场的准确计算,有效地优化GIS绝缘结构,使整个场域的电场分布尽可能均匀,对于设计绝缘结构合理的GIS产品具有重要意义。
     本文基于有限元法,对GIS电场及其逆问题数值计算方法进行了研究。提出了采用MPCG(Modified Preconditioned Conjugate Gradient)算法求解大型有限元代数方程组的方法,设计了能快速寻址系数矩阵的存储方法,开发了简单易用的电场辅助计算软件,具有工程实际应用价值。最后,引入RBFEM(Reduced-basis FEM)求解GIS电场逆问题。
     论文采用有限元法,对三相共箱式GIS的三维电场进行计算,通过计算分析获得了GIS的电场分布规律,影响GIS内部绝缘和表面绝缘的主要因素,以及相关结构参数对电场分布的影响。在此基础上进行电场逆问题求解,实现了绝缘子表面和导体屏蔽均压罩的结构优化设计。从而为GIS的结构设计提供数据支持和理论依据。
     针对三维电场剖分后形成的系数矩阵阶数高达几十万阶的特点,论文提出采用MPCG算法求解大型有限元方程组,同时,为了节省程序占用的存储空间,加快存取运算速度,开展了稀疏矩阵存储技术的研究,设计了系数矩阵的快速寻址方法。并用于GIS三维电场有限元方程组的求解。利用该算法可以减少求解时间,具有和ICCG(Incompletely Cholesky Conjugate Gradient)算法相近的收敛速度,非常适合大型有限元方程组求解。
     论文基于APDL(ANSYS Parametric Design Language)语言,结合VC,设计并实现了用于GIS电场分布和电压分布的辅助计算软件。软件具有简便的图形用户界面,可以选择不同的工况测试模式,计算相应的电场和电压分布情况,是一种较实用的电场计算软件。
     针对随机优化法结合有限元法求解电场逆问题时,需要多次生成有限元网格和重复求解有限元方程导致计算量太大的问题。论文提出了采用基于近似分析的RBFEM快速求解GIS电场逆问题,该算法能够在一次有限元网格剖分的基础上,利用已形成的缩减基矩阵通过插值法来求得新的电位向量,通过降维求解的方式实现电场的快速优化。该方法极大地降低了计算量,提高了优化设计的效率,而且还具有好的精确度。
Along with the structural miniaturization and three-phase-in-one-tank of GIS, electric field distribution becomes more complex in GIS. It is an urgent demand to instruct the insulation design of electrical equipment by using reliable and effective numerical computational method and technology to calculate its three-dimensional electrical field. The electrical field intensity will be more evenly distributed in the whole domain and among phases in GIS through the accurate calculation of electrical field and effective optimization for GIS insulation structure, which is very important to design reasonable insulation structure for GIS.
     This thesis focuses working on the numerical computation of electric field and its inverse problem in GIS using the finite element method. We propose a MPCG algorithm to solve large algebraic equations and design a storage method for speeding up addressing coefficient matrix. A software is developed for assistant electrical field calculation which has practical engineering application value. Finally, RBFEM is applied to solve electric field inverse problem in GIS.
     Three-dimensional electric field of three-phase-in-one-tank GIS is calculated by FEM. The electric field distribution, the main factors affecting internal insulation and surface insulation of GIS and the effect of related structure parameters on electric field distribution are obtained by analysis of computation results. Based on these results, structure optimization for disk-type insulator is implemented by solving the related inverse problem.
     Since the order of coefficient matrix is up to hundreds of thousand after meshed, MPCG algorithm is adopted to solve the large equations. In order to reduce the computation cost and memory storage requirement, a novel mode is designed for coefficient matrix storage. With the algorithm and storage mode, calculation cost is cut down, while the convergence speed is kept close to the ICCG algorithm.
     An assistant software is developed to calculate electric field distribution and potential distribution for GIS using VC and ANSYS parametric design language. With this assistant calculation software, engineers or technicians with little FEM knowledge can also compute the three-dimensional electric field distribution and potential distribution for GIS conveniently. The software has compact user graphic interface and can select different working mode.
     When solving the inverse problem by combining FEM with random optimization method, there needs to mesh and calculate equations repeatedly, RBFEM is thus adopted to realize fast design optimization of electric field in GIS inverse problem. RBFEM calculate new potential vector by interpolation method based on generating reduced basis matrix with only one mesh. RBFEM provides fast calculation by decreasing matrix dimension and improve optimization efficiency greatly.
引文
[1]邱毓昌, GIS装置及其绝缘技术.北京:水利电力出版社, 1994.
    [2]金立军,刘卫东,钱家骊,高压开关设备智能化发展综述.电网技术, 2002(01).
    [3]汪沨,邱毓昌,气体绝缘开关装置(GIS)的近期发展动向.电网技术, 2003(02).
    [4]侯平印,我国高压开关市场现状及发展前景.电力设备, 2007(03).
    [5] Ikeda, H., T. Ueda, A. Kobayashi, et al., Development of large-capacity SF6 interruption chamber and its application to GIS. IEEE Transactions on Power Apparatus and Systems, 1984. PAS-103(10): 3038-3043.
    [6]李建基,高压及超高压SF_6断路器和GIS市场与技术进步.电力设备, 2007(11).
    [7]李建基,电力开关设备的发展与进步.农村电气化, 2007(08).
    [8]李建基,高压气体绝缘金属封闭开关设备的发展.农村电气化, 2007(11).
    [9]李建基,电力大发展为高压开关行业带来广阔市场.电器工业, 2007(11).
    [10]李建基,高压开关行业持续快速发展.江苏电器, 2007(06).
    [11]李建基,高压开关行业迎来高速发展期, in中国电力报. 2006.
    [12] Li, L.,W. Erzhi, A hybrid of finite analytic and multi-grid method for calculating electric field distribution. IEEE Transactions on Magnetics, 2006. 42(4): 551-554.
    [13] Li, L.,E. Wang, Application of the multiple grid method in electric field calculation of high-voltage interrupter. IEEE Transactions on Magnetics, 2004. 40(2): 699-702.
    [14] Onuki, T., S. Wakao,T. Hattori, Hybrid finite and boundary element method applied to nonlinear magnetic field analysis. IEEE Transactions on Magnetics, 1994. 30(5): 2908-2911.
    [15] Bo, Z., H. Jinliang, C. Xiang, et al., Electric field calculation for HV insulators on the head of transmission tower by coupling CSM with BEM. IEEE Transactions on Magnetics, 2006. 42(4): 543-546.
    [16] Matsuoka, F.,A. Kameari, Calculation of three dimensional eddy current by FEM-BEM coupling method. IEEE Transactions on Magnetics, 1988. 24(1): 182-185.
    [17] Salon, S.J.,J. D'Angelo, Applications of the hybrid finite element-boundary element method in electromagnetics. IEEE Transactions on Magnetics, 1988. 24(1): 80-85.
    [18] Cao, Y., X. Liu,E. Wang, Hybrid finite element-charge simulation method for SF6 tank type circuit breaker with double breaks analysis. IEEE Transactions on Magnetics, 2001. 37(5):3178-3180.
    [19] Chao, F.,S. Zhongxiang, A hybrid FD-MoM technique for predicting shielding effectiveness of metallic enclosures with apertures. IEEE Transactions on Electromagnetic Compatibility, 2005. 47(3): 456-462.
    [20]盛剑霓,电磁场数值分析.北京:科学出版社, 1984.
    [21]周克定,工程电磁场数值计算的理论方法及应用.北京:高等教育出版社, 1994.
    [22]倪光正,钱秀英,周佩白,电磁场的计算机辅助分析.西安:西安交通大学出版社, 1985.
    [23] K.J.宾斯,P.J.劳伦松,电场及磁场问题的分析和计算, ed.崔立君等译.北京:机械工业出版社, 1983.
    [24] Lindmayer, M.,H. Stammberger, Application of numerical field simulations for low-voltage circuit breakers. IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A,, 1995. 18(3): 708-717.
    [25] Elhirbawy, M.A., T.T. Nguyen, L. Jennings, et al. Calculation of electromagnetic fields established by power transmission line using finite difference techniques. in IEEE Conference on Electrical and Computer Engineering. Canadian 2002.
    [26] Fuchs, E.F.,G. Pohl, Computer Generated Polucentric Grid Design and a Novel Dynamic Acceleration of Convergence for the Iterative Solution of Magnetic Fields Based on the Finite Difference Method. IEEE Transactions on power apparatus and systems, 1981. PAS-100(8): 3911-3920.
    [27] Ghosh, T.K., R.G. Carter, V. Yadav, et al. An improved magnetic field simulator - MAGFLD. in Fifth IEEE International Vacuum Electronics Conference. 2004.
    [28] Singer, H., H. Steinbigler,P. Weiss, Charge simulation method for the calculation of high voltage fields. IEEE Transactions on Power Apparatus and Systems, 1974. PAS-93(5): 1660-1668.
    [29] Takuma, T., T. Kawamoto,H. Fujinami, Charge simulation method with complex fictitious charges for calculating capacitive-resistive fields. IEEE Transactions on Power Apparatus and Systems, 1981. PAS-100(11): 4665-4672.
    [30] Malik, N.H., Review of the charge simulation method and its applications. IEEE Transactions on Electrical Insulation, 1989. 24(1): 3-20.
    [31] Schmidt, S., G. Zech,W. Otto, Fast and precise computation of electrostatic fields with a charge simulation method using modern programming techniques. IEEE Transactions on Magnetics, 1996. 32(3-1): 1457-1460.
    [32] C.A.Brebbia,张治强等译,边界元法的工程应用.西安:陕西科学技术出版社, 1985.
    [33] R.F.Harrington, Field Comuputation by Moment Methods. New York: McGraw, 1968.
    [34] Gutfleisch, F., H. Singer, K. Forger, et al., Calculation of high-voltage fields by means of the boundary element method. IEEE Transactions on Power Delivery, 1994. 9(2): 743-749.
    [35] Buchau, A.,W.M. Rucker, Preconditioned fast adaptive multipole boundary-element method. IEEE Transactions on Magnetics, 2002. 38(2): 461-464.
    [36] Tsuboi, H.,M. Tanaka, Three-dimensional eddy current analysis by the boundary element method using vector potential. IEEE Transactions on Magnetics, 1990. 26(2): 454-457.
    [37] Koizumi, M., M. Onisawa,M. Utamura, Three-dimensional magnetic field analysis method using scalar potential formulated by boundary element method. IEEE Transactions on Magnetics, 1990. 26(2): 360-363.
    [38] Gutfleisch, F., H. Singer, K. Forger, et al., Calculation of high-voltage fields by means of the boundary element method. IEEE Transactions on Power Delivery 1994. 9(2): 743-749.
    [39] Silvester, P.,A. Konrad, Analysis of transformer leakage phenomena by high-order finite elements. IEEE Transactions on Power Apparatus and Systems, 1973. PAS-92(6): 1843-1855.
    [40] Silvester, P., High-order triangular finite elements for potential problems. International Journal for Engineering Science, 1969. 7(8): 849-61.
    [41] Konrad, A.,P. Silvester, Scalar finite- element program package for two- dimensional field problems. 1971. MTT-19(12): 952-4.
    [42]徐建源,任春为,司秉娥, et al., 40.5kV SF_6充气式开关柜三维电场分析.中国电机工程学报, 2008(15).
    [43]徐建源,路璐,林莘, 1100kV GIS隔离开关的电场数值计算与分析.高电压技术, 2008(10).
    [44]徐建源,司秉娥,林莘, et al.,特高压GIS中隔离开关的电场及参数计算.高电压技术, 2008(07).
    [45]高有华,王尔智,曹云东, 500kV GIS盆式绝缘子的暂态电场分析.电工技术学报, 2001(06).
    [46]王尔智,佟立柱, SF_6全封闭组合电器中断路器触头间电场分布的有限元分析.沈阳工业大学学报, 1993(01).
    [47]曹云东,刘志远,王尔智, et al., SF_6断路器断口附近三维电场的边界元分析.高电压技术, 1999(01).
    [48]曹云东,王尔智,刘晓明, SF_6断路器灭弧室内三维电场数值模拟.中国电机工程学报, 2001(01).
    [49]曹云东,王尔智,刘晓明, et al.,高压断路器三维电场数值仿真.沈阳工业大学学报, 2000(04).
    [50] Tani, K.,T. Yamada, H-version adaptive finite element method using edge element for 3D non-linear magnetostatic problems. IEEE Transactions on Magnetics, 1997. 33(2): 1756-1759.
    [51] Yongyi, Y., M.N. Wernick,J.G. Brankov, A fast approach for accurate content-adaptive mesh generation. IEEE Transactions on Image Processing, 2003. 12(8): 866-881.
    [52] Marmin, F., S. Clenet, F. Bouillault, et al., Calculation of complementary solutions in 2D finite element method application to error estimation. IEEE Transactions on Magnetics 2000. 36(4): 1583-1587.
    [53] Tang, Y.Q., Y.P. Liang, H.R. Wu, et al., An adaptive finite element computation of h-p version for magnetic field problems. IEEE Transactions on Magnetics 1994. 30(5): 3519-3522.
    [54] Yong Gyu, P., K. Hyeong-Seok,H. Song-Yop, An adaptive finite element method for magnetostatic force computations. Magnetics, IEEE Transactions on, 1990. 26(2): 1031-1034.
    [55] Raizer, A., G. Meunier,J.L. Coulomb, An approach for automatic adaptive mesh refinement in finite element computation of magnetic fields. IEEE Transactions on Magnetics 1989. 25(4): 2965-2967.
    [56] Kim, H.-s., S.-p. Hong, K. Choi, et al., A three dimensional adaptive finite element method for magnetostatic problems. IEEE Transactions on Magnetics, 1991. 27(5): 4081-4084.
    [57] Alotto, P., A. Castagnini, P. Girdinio, et al., Error estimation and adaptive meshing in 3D electrostatic and magnetostatic problems. IEEE Transactions on Magnetics 1998. 34(5): 3260-3263.
    [58] Janicke, L.,A. Kost, Error estimation and adaptive mesh generation in the 2D and 3D finite element method. IEEE Transactions on Magnetics, 1996. 32(3): 1334-1337.
    [59] Janicke, L., A. Kost,J.P.A. Bastos, Local error distribution in adaptively generated meshes. IEEE Transactions on Magnetics 2000. 36(4): 1627-1630.
    [60] Miwa, M., D. Dibben,T. Yamada, High accuracy torque calculation for a rotating machine using adaptive meshing. IEEE Transactions on Magnetics, 2004. 40(2): 1001-1004.
    [61] Yamazaki, K.,T. Saeki, Adaptive mesh generation within nonlinear iterative calculations for analyses of electric machines. IEEE Transactions on Magnetics, 2003. 39(3): 1654-1657.
    [62] Gavrilovic, M.M.,J.P. Webb, An error indicator for the calculation of global quantities by the p-adaptive finite element method. IEEE Transactions on Magnetics, 1997. 33(5): 4128-4130.
    [63] Marques, G., S. Clenet,F. Piriou, Error estimators in 3D linear magnetostatics. IEEETransactions on Magnetics, 2000. 36(4): 1588-1591.
    [64] Matsutomo, S., T. Miyamoto, K. Kaneda, et al., An error evaluation scheme based on rotation of magnetic field in adaptive finite element analysis. IEEE Transactions on Magnetics, 2006. 42(4): 567-570.
    [65] Remacle, J.F., P. Dular, F. Henrotte, et al., Error estimation and mesh optimisation using error in constitutive relation for electromagnetic field computation. IEEE Transactions on Magnetics, 1995. 31(6): 3587-3589.
    [66] Giannacopoulos, D.,S. McFee, Optimal discretization based adaptive finite element analysis for electromagnetics with vector tetrahedra. IEEE Transactions on Magnetics, 2001. 37(5): 3503-3506.
    [67] Koh, C.-S., K. Choi, S.-Y. Hahn, et al., An adaptive finite element scheme using multi-grid method for magnetostatic problems. IEEE Transactions on Magnetics, 1989. 25(4): 2959-2961.
    [68]林莘,刘志刚, ICCG算法在SF_6罐式高压断路器三维电场有限元计算中的应用.中国电机工程学报, 2001(02).
    [69]廖敏夫,段雄英,邹积岩, et al.,基于JPCG算法的真空灭弧室三维电场有限元计算.中国电机工程学报, 2004(04).
    [70] Wang, J., D. Xie, Y. Yao, et al., A modified solution for large sparse symmetric linear systems in electromagnetic field analysis. IEEE Transactions on Magnetics, 2001. 37(5): 3494-3497.
    [71]崔翔,一种新型的预处理共轭梯度算法.华北电力大学学报, 1989(02).
    [72]王新荣,陈永波,有限元法基础及ANSYS应用.北京:科学出版社, 2008.
    [73]孙明礼,胡仁喜,崔海蓉等, ANSYS 10.0电磁学有限元分析实例指导教程.北京:机械工业出版社, 2007.
    [74]刘志刚,林莘,耿英三, SF_6罐式高压断路器三维电场计算与分析.高电压技术, 2003(03).
    [75]莫维尼,有限元分析:ANSYS理论与应用.北京:电子工业出版社, 2008.
    [76]陈晓霞, ANSYS 7.0高级分析.北京:机械工业出版社, 2004.
    [77]博弈创作室, APDL参数化有限元分析技术及其应用实例.北京:中国水利水电出版社, 2004.
    [78]龚曙光,谢桂兰, ANSYS操作命令与参数化编程.北京:机械工业出版社, 2004.
    [79] Wang, Y., W. Yan,G. Zhang, Adaptive simulated annealing for the optimal design of electromagnetic devices. IEEE Transactions on Magnetics, 1996. 32(3): 1214-1217.
    [80]汪友华,颜威利,张冠生,何瑞华,胡妙松,自适应模拟退火法在电磁场逆问题中的应用.中国电机工程学报, 1995(04).
    [81]汪友华,陈敏,刘福贵, et al.,改进的遗传算法及其在SF_6灭弧室永磁场优化中的应用.中国电机工程学报, 2001(10).
    [82]曹云东,刘晓明,刘冬, et al.,动态神经网络法及在多变量电器优化设计中的研究.中国电机工程学报, 2006(08).
    [83]曹云东,王尔智,刘晓明, et al., Tabu算法的改进及其在压气式SF_6断路器中的应用.电工技术学报, 2000(04).
    [84] Yundong, C., L. Xiaoming, W. Erzhi, et al., Electric field optimization design of a vacuum interrupter based on the Tabu search algorithm. IEEE Transactions on Dielectrics and Electrical Insulation, 2002. 9(2): 169-172.
    [85]杨仕友,倪光正,李岩,唐任远,模拟退火算法的改进及其在电机电磁场逆问题数值计算中的应用.电工技术学报, 1998(02).
    [86] Tang, R., S. Yang, Y. Li, et al., Combined strategy of improved simulated annealing and genetic algorithm for inverse problem. IEEE Transactions on Magnetics, 1996. 32(3): 1326-1329.
    [87]吴清,沈雪勤,颜威利,小波神经网络在电磁场优化问题中的应用.中国电机工程学报, 1996(02).
    [88]张国强,张元录,崔翔华,高压套管均压球电极形状优化的研究.中国电机工程学报, 1999(11).
    [89]蔡宣三,最优化与最优控制.北京:清华大学出版社, 1982.
    [90] Preis, K., O. Biro, M. Friedrich, et al., Comparison of different optimization strategies in the design of electromagnetic devices. IEEE Transactions on Magnetics, 1991. 27(5): 4154-4157.
    [91]黄卡玛,赵翔,电磁场中的逆问题及应用.北京:科学出版社, 2005.
    [92] Park, I.h., B.t. Lee,S.y. Hahn, Sensitivity analysis based on analytic approach for shape optimization of electromagnetic devices: interface problem of iron and air. IEEE Transactions on Magnetics, 1991. 27(5): 4142-4145.
    [93] Ramirez, J.A., E.M. Freeman, C. Chat-uthai, et al., Sensitivity analysis for the automatic shape design of electromagnetic devices in 3D using FEM. IEEE Transactions on Magnetics, 1997. 33(2): 1856-1859.
    [94] Cui, X.,G. Zhang, Sensitivity analysis and automatic design of voltage ratio in an optical instrument voltage transformer. IEEE Transactions on Magnetics, 1999. 35(3): 1769-1772.
    [95] Jabbar, M.A.,A.B. Azeman, Fast optimization of electromagnetic-problems: the reduced-basis finite element approach. IEEE Transactions on Magnetics, 2004. 40(4): 2161-2163.
    [96]崔翔,张国强,电气设备电磁参数的灵敏度分析与自动设计.中国电机工程学报, 2000(11).
    [97]姚缨英,高昌燮,柳在燮, et al.,基于有限元分析计算设计灵敏度和网格更新的三维形状优化算法.中国电机工程学报, 2004(05).
    [98] Alotto, P., A. Bertoni, G. Molinari, et al., A combined approach for the stochastic optimisation of multiminima problems using adaptive fuzzy sets and radial basis functions. IEEE Transactions on Magnetics, 1998. 34(5): 2837-2840.
    [99] Alotto, P., A. Caiti, G. Molinari, et al., A multiquadrics-based algorithm for the acceleration of simulated annealing optimization procedures. IEEE Transactions on Magnetics, 1996. 32(3): 1198-1201.
    [100]杨庆新,安金龙,马振平, et al.,基于最小二乘支持向量机和自适应模拟退火算法的电磁场逆问题全局优化方法.电工技术学报, 2008(11).
    [101]徐建源,汪枫,何荣涛, et al., 110kV三相共箱式GIS内隔离开关部位电场及击穿特性的分析与研究.中国电机工程学报, 1999. 19(09): 31-35.
    [102]徐建源,汪枫,肖凤良,三相共箱GIS盆式绝缘子三维电场的计算分析.高电压技术, 2000. 26(01): 11-13.
    [103]徐建源,汪枫,肖凤良,三相共箱式GIS中电流互感器部位的三维电场计算及绝缘分析.高压电器, 2000(01): 11-15.
    [104]冯亚清,马志瀛,刘韬, et al.,真空断路器灭弧室外表面绝缘及其电场计算.高电压技术, 2003(03).
    [105]林清安编著, Pro/ENGINEER野火3.0中文版零件设计应用实例北京:电子工业出版社, 2007
    [106]黄恺,李雷,刘杰等编著, Pro/E参数化设计高级应用教程.北京:化学工业出版社, 2008
    [107]温建民,任倩,于广滨编著, Pro/E Wildfire 3.0三维设计基础与工程范例.北京:清华大学出版社, 2008
    [108]李兵,何正嘉,陈雪峰, ANSYS Workbench设计、仿真与优化.北京:清华大学出版社, 2008.
    [109]小飒工作室,最新经典ANSYS及Workbench教程.北京:电子工业出版社, 2004.
    [110] Gersem H. D,H. K., Convergence improvement of the conjugate gradient iterative method for finite element simulations. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2001. 20(1): 90-97.
    [111]刘建新,崔翔,邵汉光,对ICCG算法的一种改进.华北电力大学学报(自然科学版), 1994(02).
    [112]赵文强,盘(盆)式绝缘子的设计方法探讨.华通技术, 2005(03): 27-30.
    [113]谈克雄,薛家麒,高压静电场数值计算.北京:水利电力出版社, 1989.
    [114]马爱清,郑勇,江秀臣, et al., MPCG算法在GIS三相共罐式SF_6高压断路器电场计算中的应用.中国电机工程学报, 2007. 27(24): 5-10.
    [115]张铁,严家斌,数值分析.北京:冶金工业出版社, 2001.
    [116] Mlshra M., Lowther,D.A. Silvester, A preconditioned conjugate gradient frontal solver for three dimensional electromagnetic field problems. IEEE Transactions on Magnetics, 1984. 20(5): 1909-1911
    [117] David S.K, The incomplete cholesky conjugate gradient method for theiterative solution of systems of linear equations. Journal of Computational Physics., 1978. 26(26 ): :43-65.
    [118] Kim S.Y.,I.Y. T., Parrllel processing of3D rigid-viscoplastic finite element analysis using domain decomposition and modified block jacobi preconditioning technique. Journal of Materials Processing Technology, 2003. 2 (134): 254-264
    [119] Hsieh K.T., Parallelization of EMAP3D based on element-by-element jacobi preconditioned conjugate gradient method. IEEE Transactions on Magnetics, 2003. 39(1): 139-141
    [120] Meijerink J.A,V.d.v.H. A, An iterative solution method for linear system of which the coefficient matrix is a symmetric Matrix. Mathematics of Computation, 1977. 31(1): 148-162.
    [121]罗学琛, SF6气体绝缘全封闭组合电器(GIS).北京:中国电力出版社, 1999.
    [122]吴广宁,电气设备状态监测的理论与实践.北京:清华大学出版社, 2005.
    [123]马爱清,蔡川,江秀臣, et al., GIS用SF_6高压断路器电场与电压分布计算软件.高电压技术, 2007(06): 106-109.
    [124]郑莉,董渊, C++语言程序设计.北京:清华大学出版社, 2001.
    [125] David J. Kruglinski, Scot Wingo,George Shepherd, Programming Visual C++(Fifth Edition): Microsoft Press, 1998.
    [126]胡峪,刘静, Vc++高级编程技巧与示例.西安:西安电子科技大学出版社, 2001.
    [127]刘洁,张和平,王丽娟,基于Visual C++的ANSYS参数化设计.机电工程技术, 2003(05): 83-84.
    [128]唐武进,耿英三,陈德桂, et al.,基于三维有限元的直流接触器电磁系统特性计算.电气开关, 2004(02): 22-25.
    [129]司马文霞,杨庆,孙才新, et al.,基于有限元和神经网络方法对超高压合成绝缘子均压环结构优化的研究.中国电机工程学报, 2005(17).
    [130]杨仕友,倪光正,钱金根,电机电磁场逆问题数值计算的改进TABU算法.中国电机工程学报, 1998(02).
    [131] Shiyou, Y., J.M. Machado, N. Guangzheng, et al., A self-learning simulated annealing algorithm for global optimizations of electromagnetic devices. IEEE Transactions on Magnetics, 2000. 36(4): 1004-1008.
    [132]王凌,智能优化算法及其应用.北京:清华大学出版社, 2001.
    [133]李亚智,赵美英,万小朋,等,有限元法基础与程序设计.北京:科学出版社, 2004.
    [134] J. E. Akin,张纪刚,有限元法的应用与实现.北京:科学出版社, 1992.
    [135] NOOR, A.K.,P.J. M., Reduced basis technique for nonlinear analysis of structures AIAA, 1980. 18(4): 455-462.
    [136] Ito K.,R.S. S., A reduced-order method for simulation and control of fluid flows. Journal of Computational Physics, 1998. 143(2): 403-425.
    [137] Noor A. K.,P.J. M, Multiple-parameter reduced basis technique for bifurcation and post-buckling analysis of composite plates. International Journal for Numerical Methods in Engineering, 1983. 19: 1783-1803.
    [138]杜建国,林皋,基于比例边界有限元法的结构-地基动力相互作用时域算法的改进.水利学报, 2007(01).
    [139]李永红,侯淑娟,李光耀,基于缩减基法的结构优化设计.中国机械工程, 2008(23).
    [140]李永红,结构分析中的实时计算方法研究[学位论文].长沙:湖南大学, 2008.
    [141]李永红,李光耀,刘桂荣,缩减基法在汽车车架分析中应用.中国机械工程, 2007(02).
    [142]刘玉秋,聂武,修正缩减基法在船舶直接设计法中的应用.哈尔滨工程大学学报, 1997(04).
    [143]陈怀海,周传荣,模态缩减法在组合结构振动特性分析中的应用.工程力学, 1997(02).
    [144] Peterson, J., The Reduced Basis Method for Incompressible Viscous Flow Calculations. SIAM Journal on Scientific and Statistical Computing, 1989. 10(4): 777-786.
    [145] Maday Y,R.E. M, A reduced-basis element method. Journal of Scientific Computing, 2002. 17(1-4): 447-459.
    [146] Barrault M, M.Y., Nguyen N C,et al., An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique, 2004. 339(9): 667-672.
    [147] Balmes E., Parametric families of reduced finite element models:Theory and applications. Mechanical System and Signal Processing, 1996. 10(4): 381-394.
    [148] Thomas B. L., Reduced basis output bounds for linear elasticity:application to microtrussstructures[学位论文].Massachusetts Institute of Technology, 2001.
    [149] Phuong, H.D.B., Reduced basis approximation and application to fracture problems[学位论文]. Singapore:National University of Singapore, 2007.
    [150] Ciarlet, P.G., The Finite Element Method for Elliptic Problems: North-Holland, 1978
    [151] Saad, Y., Iterative Methods for Sparse Linear Systems, 2nd edition: SIAM 2003.
    [152] Veroy K,Patera A T, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations:rigorous reduced-basis a posteriori error bounds. International Journal for Numerical Methods in Fluids, 2005. 47(8-9): 773-788.
    [153] veroy K,Rovas D, A posteriori error estimation for reduced-basis approximation of parameterized elliptic coercive partial differential equations:"Convex inverse"bound conditioners. Control, Optimisation and Calculus of Variations, 2002. s(8): 1007-1028.
    [154]苏金明,刘宏,刘波, MATLAB高级编程.北京:电子工业出版社, 2008.
    [155]龚纯,王正林, MATLAB语言常用算法程序集.北京:电子工业出版社2008.
    [156]李维波, MATLAB在电气工程中的应用北京:中国电力出版社, 2007
    [157] Veroy K, Reduced-basis methods applied to problems in elasticity: analysis and applications[学位论文].Massachusetts Institute of Technology, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700