基于胆固醇衍生物的新型凝胶乳液的创制及其在低密度聚合物材料制备中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凝胶乳液(也称高内相乳液)是在某种稳定剂存在下由分散相(内相)与连续相(外相)构成的凝胶状(Gel-like)体系。其中,分散相和连续相是两种互不相溶的溶剂。在多数情况下水为一相,不相溶的有机溶剂为另外一相。根据定义,只有分散相的体积分数大于或等于74%时(此比例对应于单分散无形变球体最密堆积时的临界体积比)所形成的凝胶状分散体系才称之为凝胶乳液。凝胶乳液被广泛应用于食品、化妆品、医药、化工产业及作为模板制备具有特殊结构或功能的材料等方面。其中,利用凝胶乳液作为模板,制备具有特殊结构或功能的材料是最重要也最受关注的关于凝胶乳液应用。以高内相乳液体系作为模板是将含有一种或多种可聚合单体的连续相引发聚合后,除去体系分散相,获得一系列多孔材料,这类材料被称为聚高内相乳液(polyHIPE),在分离介质、催化剂担载、固相有机合成、生物组织工程及可药物控释放等方面有着广泛应用。
     本学位论文综合评述了凝胶乳液及其应用,并在实验室之前的工作基础上,合成了五种双胆固醇衍生物,研究了它们与不同的高分子单体和水形成凝胶乳液的能力,考察了以凝胶乳液为模板,引发聚合其连续相,制备低密度聚苯乙烯的方法。具体来讲,主要包括以下两个方面:
     第一部分:以五种双胆固醇衍生物小分子胶凝剂作为稳定剂,三种高分子单体作为连续相,水作为分散相进行凝胶乳液实验。实验表明,在化合物用量为高分子单体的5%(w/v)时,化合物1和2可以作为稳定剂,在简单振荡下,即可以使苯乙烯及甲基丙烯酸叔丁酯分别与水形成凝胶乳液且其最高分散相体积分数至少为92%;光学显微镜测试及激光共聚焦测试均表明所形成的凝胶乳液为典型的泡沫结构(图1);而化合物3、4、5均不能使三种高分子单体和水共混形成凝胶乳液,但化合物5可以将三种高分子单体在水中选择性胶凝。不同于传统的凝胶乳液体系所使用的表面活性剂,胆固醇衍生物在高分子单体内形成“微凝胶”区域,将分散相液滴包裹,使体系整体失去流动性形成凝胶乳液。其中,由于随着化合连接臂的增长,其分子间作用力增大,化合物5可以将三种高分子单体在水中选择性胶凝,形成物理凝胶。根据文献调研,这是第一例利用胆固醇衍生物将可聚合高分子单体进行胶凝形成凝胶乳液的报道,与已有凝胶乳液体系相比,本文中的凝胶乳液制备简单,仅需振荡即可以实现,且体系并不需要再添加其它物质(如CaCl2·2H2O)来防止“奥斯瓦尔德”效应(乳液中,较小颗粒被较大颗粒湮灭的现象)。
     第二部分:以不同分散相体积分数的凝胶乳液作为模板,将连续相苯乙烯引发聚合,制备得到聚苯乙烯材料。实验证明,胆固醇衍生物稳定剂的加入对苯乙烯的聚合并没有影响,且聚合结束后通过索氏提取去除材料中残留的稳定剂,室温下即可对材料进行干燥,没有造成材料的塌陷(图2)。由此可见,以胆固醇衍生物作为稳定剂不仅可以成功制备凝胶乳液且该类凝胶乳液可作为模板合成具有特殊结构的聚合物材料,而且材料纯化方法简单,常规实验条件即可以实现。并且,通过给凝胶乳液中添加致孔剂,制备得到了孔结构不同的聚苯乙烯材料,研究了致孔剂浓度对材料结构及密度等性质的影响,初步获得了制备并调节多孔低密度聚苯乙烯材料及其结构的实验条件。
Gel emulsion (also referred as High Internal Phase Emulsion) consisting of water, stabilizer (or emulsifier) and oil is a gel-like disperse system with its internal-phase volume fraction exceeding 0.74, a data for the most compact arrangement of uniform, spherical droplets. Stabilizers used in preparations of gel emulsions do include surfactants and solid particles of sizes between a few nanometers to micrometers mostly. Conventionally, gel emulsions are commonly stabilized by large amounts of surfactants, about 5-50 wt%and particle-stabilized emulsions commonly phase-invert between volume fractions of 0.65 to 0.70. Gel emulsion is widely used in practice in food, cosmetics, medicine, chemical industry and as a template for the preparation of materials with special structure or functions and so on. Among them, the use of gel emulsions as templates to prepare materials with special structure or function is of the most importance, which has attracted much attention during the last few decades. High internal phase emulsion used as templates for the fabrication of highly porous materials contains one or more monomers as its continuous phase which has been polymerized in the system. And after the removal of dispersed phase, such materials, commonly known as poly(merized)HIPEs are obtained, which have proven to be useful in a variety of applications, including filtration membranes for molten metal and hot gases, catalyst carriers, scaffolds for solid phase organic synthesis, tissue engineering and so on.
     As a continuation of the works conducted in our group earlier, we have prepared stable W/O gel emulsions stabilized by cholesterol-based organogelators with water as dispersed phase and styrene as continuous phase at room temperature. Further investigation, including the preparation methods of low-density polystyrene and adjustment to its structures has been carried out. Specifically, it is composed of following two parts:
     PartⅠ:Gel emulsion experiments were conducted with five cholesterol-based organogelators, which have been specially prepared in the present work, as stabilizers, three kinds of monomer as the continuous phase, water as the dispersed phase. The results show that compounds 1 and 2 can stabilize styrene and tertiary butyl methacrylate to form gel emulsions with water, respectively, in a simple surge, with the concentrations of compounds being 5 wt%considering to the continuous phase. The highest volume fraction of the dispersed phase is 92%, at least. The optical microscopy and confocal images show that the microstructure of gel emulsions is a typical foam structure (Figure 1). Compounds 3,4 and 5 cannot stabilize three monomers and water to form a gel emulsion, but compounds 5 can gel monomers in the water, selectively. Unlike traditional gel emulsion stabilized by surfactant, cholesterol derivatives can make the monomer form "microgel" region in which dispersed droplets are packaged and get immobility. The intermolecular forces increase with the length of spacer'increasing, so compound 5 can make three monomers form physical gels in the water, selectively. According to the literature, this is the first case of using cholesterol derivatives as stabilizers to carry out gel emulsions with polymers. This kind of gel emulsion can be achieved simply and does not need to add other substances such as CaCl2·2H2O to prevent the "Ostwald" effect (the smaller particles are inclined to be particle annihilation by the larger phenomenon in emulsion), being compared with traditional gel emulsions.
     PartⅡ:Different dispersed phase volume fractions of gel emulsion with styrene as continuous phase were prepared and polymerized to obtain polystyrene. Implementation results show that the addition of cholesterol derivatives does not affect the polymerization of styrene. The removal of stabilizers by Soxhlet extraction and the dryness of materials at room temperature did not cause material collapse (Figure 2). Thus, the cholesterol derivatives, not only as a stabilizer gel emulsion can be successfully prepared but gel emulsions prepared can be used as template to synthesis polymer materials with special structure. The purification of the materials is simple. Furthermore, by adding porogen into the gel emulsion, polystyrenes with different pore structure were prepared and the effect of porogen concentration to the pore structure and density of materials were investigated, accessing to the experimental conditions of the preparation and adjustment of porous low-density polystyrene.
引文
[1]K. J. Lissant. The geometry of high-internal-phase-ratio emulsions[J]. J. Colloid Interface Sci.,1966,22:462-468.
    [2]C. Solans, J. G. Domminguez, J. L. Parra, J. Heuser, S. E. Friberg. Gelled emulsions with a high water content[J]. Colloid Polym. Sci.,1988,266: 570-574.
    [3]R. Pons, J. C. Ravey, S. Sauvage, M. J. Stebe, P. Erra, C. Solans. Stability and rheological properties of gel emulsions[J]. Colloid surf. A,1993,76:171-177.
    [4]V. Rajagopalan, C. Solans, H. Kunieda. ESR study on the stability of W/O gel-emulsions[J]. Colloid Polym. Sci.,1994,272:1166-1173.
    [5]H. M. Princen, A. D. Kiss. Osmotic pressure of foams and highly concentrated emulsions.2. Determination from the variation in volume fraction with height in an equilibrated column[J]. Langmuir,1987,3:36-41.
    [6]J. Bibette, T. G. Mason, H. Gang, D. A. Weitz, P. Poulin. Structure of adhesive emulsions[J]. Langmuir,1993,9:3352-3356.
    [7]L. Ramos, D. A. Weitz. Patterned colloidal coating using adhesive emulsions[J]. Langmuir,2001,17:2275-2277.
    [8]R. Butler, C. M. Dvies, A. I. Cooper. Emulsion templating using high internal phase supercritical fluid emulsions[J]. Adv. Mater.,2001,13:1459-1463.
    [9]A. I. Cooper. Porous materials and supercritical fluids[J]. Adv. Mater.,2003,15: 1049-1059.
    [10]C. Palocci, A. Barbetta, A. L. Grotta, M. Dentini. Porous biomaterials obtained using supercritical CO2-water emulsions [J]. Langmuir,2007,23:8243-8251.
    [11]R. Bulter, I. Hopkinson, A. I. Cooper. Synthesis of porous emulsion-templated polymers using high internal phase CO2-in-water emulsions [J]. J. Am. Chem. Soc.,2003,125:14473-14481.
    [12]C. Solans, R. Pons, H. Kunieda. Modern aspects of emulsion science[M]. Cambridge:Royal Society of Chemistry,1998.
    [13]D. Khatua, J. Dey. Spontaneous formation of gel emulsions in organic solvents and commercial fuels induced by a novel class of amino acid derivatized surfactants[J]. Langmuir,2005,21:109-114.
    [14]G. Caldero, M. J. Garcia-Celma, C. Solans, R. Pons. Effect of pH on mandelic acid diffusion in water in oil highly concentrated emulsions (gel-emulsions) [J]. Langmuir,2000,16:1668-1674.
    [15]S. Buhattacharya, Y. Krishnan-Ghosh. First report of phase selective gelation of oil from oil/water mixtures. Possible implications toward containing oil spills[J]. Chem. Commun.,2001,185-186.
    [16]J. Esquena, G. R. Sankar, C. Solans. Highly concentrated W/O emulsions prepared by the PIT method as templates for solid foams[J]. Langmuir,2003,19: 2983-2988.
    [17]K. Shinoda, H. Saito. The effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and nonionic surfactant[J]. J. Colloid Interface Sci.,1968,26:70-74.
    [18]J. X. Peng, H. Y. Xia, K. Q. Liu, D. Gao, M. N. Yang, N. Yan, Y. Fang. Water-in-oil gel emulsions from a cholesterol derivative:Structure and unusual properties [J]. J. Colloid Interface Sci.,2009,336:780-785.
    [19]G. Caldero, M. J. Garcia-Celma, C. Solans, M. J. Stebe, J. C. Ravey, S. Rocca, R. Pons. Diffusion from hydrogenated and fluorinated gel-emulsion mixtures[J]. Langmuir,1998,14:1580-1585.
    [20]S. Rocca, M. J. Stebe. Mixed concentrated water/oil emulsions (fluorinated/ hydrogenated):formation, properties and structural studies[J]. J. Phys. Chem. B, 2000,104:10490-10497.
    [21]R. Pons, I. Llamas, G. Caldero, L. Perez, M. J. Garcia-Celma, N. Azemar, I. Carrera, C. Solans. Formation and stability of highly concentrated emulsions (gel emulsions):influence of aromatic aliphatic hydrocarbon intractions[J]. Prog. Colloid Polym. Sci.,1997,104:244-151.
    [22]J. Mougel, O. Alvarez, C. Baravian, F. Caton, P. Marchal, M. J. Stebe, L Choplin. Aging of an unstable of W/O gel emulsion with a nonionic surfactant [J]. Rheol. Acta.,2006,45:555-560.
    [23]Y. Hemar, D. S. Home. Dynamic rheological properties of highly concentrated protein-stabilized emulsions[J]. Langmuir,2000,16:3050-3057.
    [24]H. Kunieda, C. Solans, N. Shida, J. L.Parra. The formation of gel-emulsions in a water/nonionic surfactant/oil system[J]. Colloid Surf. A,1987,24:225-237.
    [25]C. Solans, N. Azermar, J. L. Parra. High-internal-phase-volume emulsions in water/nonionic surfactant/hydrocarbon systems[J]. Prog. Colloid Polym. Sci., 1988,76:224-227.
    [26]R. E. Ford, C. G. L. Furmidge Studies at phase interfaces Ⅱ. The stabilization of water-in-oil emulsions using oil-soluble emulsifiers [J]. J. Colloid Interface Sci., 1966,22:331-341.
    [27]H. Kunieda, D. F. Evans, C. Solans. The structure of gel-emulsions in water/nonionic surfactant/oil system[J]. Colloid surf. A,1990,47:35-43.
    [28]R. Pons, P. Erra, C. Solans. Viscoelastic properties of gel-emulsions:their relationship with structure and equilibrium properties[J]. J. Phys. Chem.,1993, 97:12320-12324.
    [29]J. M. Williams. Toroidal microstructures from water-in-oil emulsions[J]. Langmuir,1988,4:44-49.
    [30]J. M. Williams, D. A. Wrobleski. Spatial distribution of the phases in water-in-oil emulsions. Open and closed microcellular foams from cross-linked polystyrene[J]. Langmuir,1988,4:656-662.
    [31]B. P. Binks. Marcoporous silica from solid-stabilized emulsion templates[J]. Adv. Mater.,2002,14:1824-1827.
    [32]B.P. Binks. Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica[J]. Langnuir,2000,16:2539-2547.
    [33]B.P. Binks. Particles as surfactants-similarities and differences [J]. Curr. Opin. Colloid Interface Sci.,2002.21-41.
    [34]A. Menner, V. Ikem, M. Salgueiro, M.Shaffer, A. Bismarck. High internal phase emulsion templates solely stabilised by functionalised titania nanoparticles[J]. Chem. Commun.,2007,4274-4276.
    [35]V. O. Ikem, A. Menner, A. Bismarck. High internal phase emulsions stabilized solely by functionalized silica particles[J]. Angew. Chem. Int. Ed.,2008,47: 8277-8279.
    [36]V. O. Ikem, A. Menner, A. Bismarck. High-porosity macroporous polymers sythesized from titania-particle-stabilized medium and high internal phase emulsions[J]. Langmuir,2010,26:8836-8841.
    [37]A. Menner, R. Verdejo, M. Shaffer, A. Bismarck. Particle-stabilized surfactant-free medium internal phase emulsions as templates for porous nanocomposite materials:poly-Pick ering-Foams[J]. Langmuir,2007,23: 2398-2403.
    [38]Z. Ao, Z. Yang, J. Wang, G. Zhang, T. Ngai. Emulsion-templated liquid core-polymer shell microcapsule formation[J]. Langmuir,2009,25:2572-2574.
    [39]Z. Li, T. Ming, J. Wang, T. Ngai. High internal phase emulsions stabilized solely by microgel particles[J]. Angew. Chem.,2009,121:8642-8645.
    [40]G. Sun, Z. Li, T. Ngai. Inversion of particle-stabilized emulsions to form high-internal-phase emulsions[J]. Angew. Chem.,2010,122:2209-2212.
    [41]N. Fa, V. G. Babak, M. J. Stebe. The release of caffeine from hydrogenated and fluorinated gel emulsions and cubic phase[J]. Colloids Surf. A,2004,243: 117-125.
    [42]V. G. Babak, M. J. Stebe, N. Fa. Physico-chemical model for molecular diffusion from highly concentrated emulsions[J]. Mendeleev Commun.,2003, 13:254-256.
    [43]S. Rocca, S. Muller, M. J. Stebe. Release of a model molecule from highly concentrated fluorinated reverse emulsions influence of composition variables and temperature[J]. J. Controlled Release,1999,61:251-265.
    [44]G. Caldero, M. J. Garcia-Celma, C. Solans, R. Pons. Effect of pH on mandelic acid diffusion in water in oil highly concentrated emulsions (gel-emulsions) [J]. Langmuir,2000,16:1668-1674.
    [45]J. Normatov, M. S. Silverstein. Interconnected silsesquioxane-organic networks in porous nanocomposites synthesized within high internal phase emulsions[J]. Chem. Mater.,2008,20:1571-1577.
    [46]J. Normatov, M. S. Silverstein. Highly porous elastomer-silesesquioxane nanocomposites synthesized within high internal phase emulsions[J]. J. Polym. Sci. A,2008,46:2357-2366.
    [47]J. Normatov, M. S. Silverstein. Porous interpenetrating network hybrids synthesized within high internal phase emulsions[J]. Polymer,2007,48: 6648-6655.
    [48]J. Esquena, GSR. R. Sankar, C. Solans. Highly concentrated W/O emulsions prepared by the PIT method as templates for solid foams[J]. Langmuir,2003,19: 2983-2988.
    [49]J. Bibette. Depletion interactions and fractionated crystallization for polydisperse emulsions purification[J]. J. Colloid Interface Sci.,1991,147: 474-478.
    [50]D. Barby, Z. Haq. Eurpoean Patent 0060138,1982.
    [51]J. M. Williams. Toroidal microstructures from water-in-oil emulsions[J]. Langmuir,1988,4:44-49
    [52]J. M. Williams, D. A. Wrobleski. Spatial distribution of the phases in water-in-oil emulsions. Open and closed microcellular foams from cross-linked polystyrene[J]. Langmuir,1988,4:656-662.
    [53]N. R. Cameron, D. C. Sherington. Highly internal phase emulsions (HIPEs) structure, properties and use in polymer preparation [J]. Adv. Polym. Sci.,1996, 126:163-214.
    [54]N. R. Cameron, D. C. Sherington, L. Albiston, D. P. Gregory. Study of the formation of the open-cellular morphology of poly (styrene/divinylbenzene) polyHIPE materials by Cryo-SEM[J]. Colloid Polym. Sci.,1996,274:592-595.
    [55]J. Esquena, GSR. R. Sankar, C. Solans. Highly concentrated W/O emulsions prepared by the PIT method as templates for solid foams[J]. Langmuir,2003,19: 2983-2988.
    [56]A. Menner, R. Powell, A. Bismarck. Open porous polymer foams via inverse emulsion polymerization:should the definition of high internal phase (ratio) emulsions be extended? [J]. Macromolecules,2006,39:2034-2035.
    [57]A. Menner, M. Salguriro, M. S. P. Shaffer, A. Bismarck. Nanocomposite foams obtained by polymerization of high internal phase emulsions[J]. J. Polym. Sci., 2008,46:5708-5714.
    [58]A. Imhof, D. J. Pine. Ordered macroporous materials by emulsion templating[J]. Nature,1997,389:948-951.
    [59]V. N. Manoharan, A. Imhof, J. D. Thome, D. J. Pine. Photonic crystals from emulsions templateds[J]. Adv. Mater.,2001,13:447-450.
    [60]J. Bibette. Depletion interactions and fractionated crystallization for polydisperse emulsions purification[J]. J. Colloid Interface Sci.,1991,147: 474-478.
    [61]G. R. Yi, S. M. Yang. Microstructures of porous silica prepared in aqueous and nonaqueous emulsion templates[J]. Chem. Mater.,1999,11:2322-2325.
    [62]B. P. Binks. Marcoporous silica from solid-stabilized emulsion templates[J]. Adv. Mater.,2002,14:1824-1827.
    [63]H. Maekawa, J. Esquena, S. Bishop, C. Solans, B. F. Chmelka. Meso/macroporous inorganic oxide monoliths from polymer foams [J]. Adv. Mater.,2003,15,591-596.
    [64]S. Alvarez, J. Esqena, C. Solans, A. B. Fuertes. Meso/macroporous carbon momoliths from polymeric foams[J]. Advanced Engineering Materials,2004,6: 897-899.
    [65]F. Carn, A. Colin, M. F. Achard, H. Deleuze, E. Sellier, M. Birot, R. Backov. Inorganic monoliths hierarchically textured via concentrated direct emulsion and micellar templates[J]. J. Mater. Chem.,2004,14:1370-1376.
    [66]R. Butler, C. M. Davies, A. I. Cooper. Emulsion templating using high internal phase supercritical fluid emulsions[J]. Adv. Mater.,2001,13:1456-1463.
    [67]H. Zhang, A. I. Cooper. Compressed fluid sedimentation polymerization[J]. Macromolecules,2003,36:5061-5064.
    [68]R. Butler, I. Hopkinson, A. I. Cooper. Synthesis of porous emulsion-templated polymers using high internal phase CO2-in-water emulsions[J]. J. Am. Chem. Soc.,2003,125:14473-14481.
    [69]J. Lee, B. Tan, A. I. Cooper. CO2-in-Water Emulsion-templated poly (vinyl alcohol) hydrogels using poly (vinyl acetatc)-based surfactants[J]. Macromolecules,2007,40:1955-1961.
    [70]H. Zhang, A. I. Cooper. Compressed fluid sedimentation polymerization[J]. Macromolecules,2003,36:5061-5064.
    [71]N. Fa, V. G. Babak, M. J. Stebe. The release of caffeine from hydrogenated and fluorinated gel emulsions and cubic phase[J]. Colloids Surf. A,2004,243: 117-125.
    [72]V. G. Babak, M. J. Stebe, N. Fa. Physico-chemical model for molecular diffusion from highly concentrated emulsions[J]. Mendeleev Commun.,2003, 13:254-256.
    [73]S. Rocca, S. Muller, M. J. Stebe. Release of a model molecule from highly concentrated fluorinated reverse emulsions influence of composition variables and temperature[J]. J. Controlled Release,1999,61:251-265.
    [74]G. Caldero, M. J. Garcia-Celma, C. Solans, R. Pons. Effect of pH on mandelic acid diffusion in water in oil highly concentrated emulsions (gel-emulsions) [J]. Langmuir,2000,16:1668-1674.
    [75]R. Pal. Rheology of high internal phase ratio emulsions[J]. Food Hydrocolloids, 2006,20:997-1005.
    [1]K. J. Lissant. The geometry of high-internal-phase-ratio emulsions[J]. J. Colloid Interface Sci.,1966,22:462-468.
    [2]C. Solans, J. G. Domminguez, J. L. Parra, J. Heuser, S. E. Friberg. Gelled emulsions with a high water content[J]. Colloid Polym. Sci.,1988,266: 570-574.
    [3]R. Pons, J. C. Ravey, S. Sauvage, M. J. Stebe, P. Erra, C. Solans. Stability and rheological properties of gel emulsions[J]. Colloids surface, A,1993,76:171-177.
    [4]V. Rajagopalan, C. Solans, H. Kunieda. ESR study on the stability of W/O gel-emulsions[J]. Colloid Polym. Sci.,1994,272:1166-1173.
    [5]H. M. Princen, A. D. Kiss. Osmotic pressure of foams and highly concentrated emulsions.2. Determination from the variation in volume fraction with height in an equilibrated column[J]. Langmuir,1987,3:36-41.
    [6]J. Bibette, T. G. Mason, H. Gang, D. A. Weitz, P. Poulin. Structure of adhesive emulsions [J]. Langmuir,1993,9:3352-3356.
    [7]D. Barby, Z. Haq. Eurpoean Patent 0060138,1982.
    [8]J. M. Williams. Toroidal microstructures from water-in-oil emulsions[J]. Langmuir,1988,4:44-49.
    [9]J. M. Williams, D. A. Wrobleski. Spatial distribution of the phases in water-in-oil emulsions. Open and closed microcellular foams from cross-linked polystyrene[J]. Langmuir,1988,4:656-662.
    [10]N. R. Cameron, D. C. Sherington. Highly internal phase emulsions (HIPEs) structure, properties and use in polymer preparation[J]. Adv. Polym. Sci.,1996, 126:163-214.
    [11]N. R. Cameron, D. C. Sherington, L. Albiston, D. P. Gregory. Study of the formation of the open-cellular morphology of poly (styrene/divinylbenzene) polyHIPE materials by Cryo-SEM[J]. Colloid Polym. Sci.,1996,274:592-595.
    [12]H. Maekawa, J. Esquena, S. Bishop, C. Solans, B. F. Chmelka. Meso/macroporous inorganic oxide monoliths from polymer foams[J]. Adv. Mater.,2003,15:591-596.
    [13]S. Alvarez, J. Esqena, C. Solans, A. B. Fuertes. Meso/macroporous carbon momoliths from polymeric foams[J]. Advanced Engineering Materials,2004,6: 897-899.
    [14]R. Butler, C. M. Davies, A. I. Cooper. Emulsion templating using high internal phase supercritical fluid emulsions[J]. Adv. Mater.,2001,13:1456-1463.
    [15]J. X. Peng, H. Y. Xia, K. Q. Liu, D. Gao, M. N. Yang, N. Yan, Y. Fang. Water-in-oil gel emulsions from a cholesterol derivative:Structure and unusual properties [J]. J. Colloid. Intere. Sci.,2009,336:780-785.
    [16]H. Zhang, A. I. Cooper. Compressed fluid sedimentation polymerization[J]. Macromolecules,2003,36:5061-5064.
    [17]V. G. Babak, M. J. Stebe, N. Fa. Physico-chemical model for molecular diffusion from highly concentrated emulsions[J]. Mendeleev Commun.,2003,13: 254-256.
    [18]S. Rocca, S. Muller, M. J. Stebe. Release of a model molecule from highly concentrated fluorinated reverse emulsions influence of composition variables and temperature[J]. J. Controlled Release,1999,61:251-265.
    [19]G. Caldero, M. J. Garcia-Celma, C. Solans, R. Pons. Effect of pH on mandelic acid diffusion in water in oil highly concentrated emulsions (gel-emulsions) [J]. Langmuir,2000,16:1668-1674.
    [20]R. Pal. Rheology of high internal phase ratio emulsions[J]. Food Hydrocolloids, 2006,20:997-1005.
    [21]P. Terech, R. G. Weiss. Low molecular mass gelators of organic liquid and the properties of their gels[J]. Chem. Rev.,1997,97:3133-3159.
    [22]Gronwald, E. Snip, S. Shinkai. Gelators for organic liquids based on self-assembly:a new facet of supramolecular and combinatorial chemistry[J]. Curr. Opin. Colloid Interface Sci.,2002,7:148-156.
    [23]R. G. Weiss, P. Terech. Molecular gels:materials with self-assembled fibrillar networks[M]. Netherlands:Springer,2006.
    [24]D. Khatua, J. Dey. Spontaneous formation of gel emulsion in organic solvents and commercial fuels induced by a novel class of amino acid derivatized surfactants[J]. Langmuir,2005,21:109-114.
    [25]P. C. Xue, R. Lu, D. M. Li, M. Jin, C. H. Tan, C. Y. Bao, Z. M. Wang, Y. Y. Zhao. Novel CuS nanofibers using organogel as a template:controlled by binding sites[J]. Langmuir,2001,20:11234-11239.
    [26]Y. G. Yang, M. Suzuki, H. Shirai, A. Kuroseb, K. Hanabusa. Nanofiberization of inner helical mesoporous silica using chiral gelator as template under a shear flow[J]. Chem. Commun.,2005,2032-2034.
    [27]P. D. Sawant, X. Y. Liu. Formation and novel thermomechanical processing of biocompatible soft materials[J]. Chem. Mater.,2002,14:3793-3788.
    [28]T. C. Dowling, M. A. Arjomand, E. T. Lin, L. V. Allen, M. Mcpherson. Relative bioavailability of ketoprofen 20% in a poloxamer-lecithin organogel[J]. Am. J. Health-Syst. Pharm.,2004,61:2541-2544.
    [29]L. Kang, X. Y. Liu, P. D. Sawant, P. C. Ho, Y. W. Chan, S. Y. Chan. SMGA gels for the skin permeation of haloperidol[J]. J. Controlled Release,2005,106: 88-98.
    [30]J. L. Li, X. Y. Liu, C. S. Strom, J. Y. Xiong. Engineering of small molecule organogels by design of the nanometer structure of fiber networks [J]. Adv. Mater.,2006,18:2574-2578.
    [31]A. R. Hirst, D. K. Smith. Two-component gel-phase materials-highly tunable self-assembling systems[J]. Chem. Eur. J.,2005,11:5496-5508.
    [32]W. G. Weng, J. B. Beck, A. M. Jamieson, S. J. Rowan. Understanding mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels[J]. J. Am. Chem. Soc.,2006,128:11663-11672.
    [33]O. Gronwald, S. Shinkai. Sugar-integrated gelators of organic solvents[J]. Chem. Eur. J.,2001,7:4328-4334.
    [34]P. Terech. Magnetic orientational effects during the aggregation kinetics of a steroid/cyclohexane gelling system[J]. J. Phys. Chem.,1988,92:4269-4272.
    [35]H. M. Willemen, T. Vermonden, A. T. M. Marcelis, E. J. R. SudhOlter. Alkyl derivatives of cholic acid as organogelators:one-component and two-component gels[J]. Langmuir,2002,18:7102-7106.
    [36]M. Zinic, F. Vogtle, F. Fages. Cholesterol-based gelators[J]. Top. Curr. Chem., 2005,256:39-76.
    [37]P. Terech, N. M. Sangeetha, U. Maitra. Molecular hydrogels from bile acid analogs with neutral side chains:gelation versus crystallization[J]. J. Phys. Chem. B,2006,110:15224-15233.
    [38]Y. Lin, B. Kachar, R. G. Weiss. Liquid-crystalline solvents as mechanistic probes. Part 37. Novel family of gelators of organic fluids and the structure of their gels[J]. J. Am. Chem. Soc,1989,111:5542-5551.
    [39]X. Huang, P. Terech, S. R. Raghavan, R. G. Weiss. Kinetics of 5a-cholestan-3β-yln-(2-naphthyl) carbamate/n-alkane organogel formation and its influence[J]. J. Am. Chem. Soc.,2005,127:4336-4344.
    [1]L. Ramos, D. A. Weitz. Patterned colloidal coating using adhesive emulsions[J]. Langmuir,2001,17:2275-2277.
    [2]R. Butler, C. M. Dvies, A. I. Cooper. Emulsion templating using high internal phase supercritical fluid emulsions[J]. Adv. Mater.,2001,13:1459-1463.
    [3]A. I. Cooper. Porous materials and supercritical fluids[J]. Adv. Mater.,2003,15: 1049-1059.
    [4]C. Palocci, A. Barbetta, A. L. Grotta, M. Dentini. Porous biomaterials obtained using supercritical CO2-water emulsions[J]. Langmuir,2007,23:8243-8251.
    [5]R. Bulter, I. Hopkinson, A. I. Cooper. Synthesis of porous emulsion-templated polymers using high internal phase CO2-in-water emulsions[J]. J. Am. Chem. Soc,2003,125:14473-14481.
    [6]C. Solans, R. Pons, H. Kunieda. Modern aspects of emulsion science[M]. Cambridge:Royal Society of Chemistry,1998.
    [7]D. Khatua, J. Dey. Spontaneous formation of gel emulsions in organic solvents and commercial fuels induced by a novel class of amino acid derivatized surfactants[J]. Langmuir,2005,21:109-114.
    [8]G. Caldero, M. J. Garcia-Celma, C. Solans, R. Pons. Effect of pH on mandelic acid diffusion in water in oil highly concentrated emulsions (gel-emulsions) [J]. Langmuir,2000,16:1668-1674.
    [9]J. M. Williams. Toroidal microstructures from water-in-oil emulsions[J]. Langmuir,1988,4:44-49.
    [10]J. M. Williams, D. A. Wrobleski. Spatial distribution of the phases in water-in-oil emulsions[J]. Langmuir,1988,4:656-662.
    [11]P. Krajnc, J. F. Brown, N. R. Cameron. Monolithic scavenger resins by amine functionalizations of poly (4-vinylbenzyl chloride-co-divinylbenzene) polyHIPE materials[J]. Org. Lett.,2002,15:2497-2500.
    [12]M. Ottens, G. Leene, A. Beenackers, N. R. Cameron, D. C. Sherrington. polyHIPE:a new polymeric support for heterogeneous catalytic reactions: kinetics of hydration of cyclohexene in two- and three-phase systems over a strongly acidic sulfonated polyHIPE[J]. Ind. Eng. Chem. Res.,2000,39: 259-266.
    [13]H. Deleuze, B. Maillard, O. M. Monvalb. Development of a new ultraporous polymer as support in organic synthesis[J]. Bioorg Chem. Lett.,2002,12: 1877-1880.
    [14]R. Abreu, M. G. Roman, H. Kunieda. Rheology and dynamics of micellar cubic phases and related emulsion[J]. Langmuir,2004,20:5235-5240.
    [15]R. Pal. Rheology of high internal phase ratio emulsions[J]. Food Hydrocolloids, 2006,20:997-1005.
    [16]Z. Bhumgara. PolyHIPE foam materials as filtration media[J]. Polymeric Foam Filter Media,1995,245-251.
    [17]N. R. Cameron. Emulsion templating as a route to well-defined porous polymers[J]. Polymer,2005,46:1439-1449.
    [18]A. Barbetta, R. J. Carnachan, K. H. Smith, C. T. Zhao, N. R. Cameron, R. Kataky, M. Hayman, S. A. Przyborski, M. Swan. Porous polymers by emulsion templating [J]. Macromol. Symp.,2005,226:203-211.
    [19]M. R. Powell, A. Bismarck. Open porous polymer foams via inverse emulsion polymerization:should the definition of high internal phase (Ratio) emulsions be extended? [J]. Macromolecules,2006,39:2034-2035.
    [20]H. Maekawa, J. Esquena, S. Bishop, C. Solans, B. F. Chmelka. Meso/ macroporous inorganic oxide monoliths from polymer foams[J]. Adv. Mater., 2003,15:591-596.
    [21]L. Espelt, P. Clapes, J. Esquena, A. Manich, C. Solans. Enzymatic carbon-carbon bond formation in water-in-oil highly concentrated emulsions (gel-emulsions) [J]. Langmuir,2003,19:1337-1346.
    [22]G. Caldero, M. J. Garcla-Celma, C. Solans, R. Pons. Effect of pH on mandelic acid diffusion in water in oil highly concentrated emulsions (gel-emulsions) [J]. Langmuir,2000,16:1668-1674.
    [23]J. Lee, B. Tan, A. I. Cooper. CO2-in-Water Emulsion-templated poly (vinyl alcohol) hydrogels using poly (vinyl acetate)-based surfactants[J]. Macromolecules,2007,40:1955-1961.
    [24]H. Zhang, A. I. Cooper. Compressed fluid sedimentation polymerization[J]. Macromolecules,2003,36:5061-5064.
    [25]H. Zhang, G. C. Hardy, M. J. Rosseinsky, A. I. Cooper. Uniform emulsion-templated silica beads with high pore volume hierarchical porosity [J]. Adv. Mater.,2003,15:78-81.
    [26]R. Butler, I. Hopkinson, A. I. Cooper. Synthesis of porous emulsion-templated polymers using high internal phase CO2-in-water emulsions[J]. J. Am. Chem. Soc.,2003,125:14473-14481.
    [27]B. P. Binks. Marcoporous silica from solid-stabilized emulsion templates[J]. Adv. Mater.,2002,14:1824-1827.
    [28]B.P. Binks. Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica[J]. Langmuir,2000,16:2539-2547.
    [29]B.P. Binks. Particles as surfactants-similarities and differences[J]. Curr. Opin. Colloid Interface Sci.,2002,21-41.
    [30]Z. Ao, Z. Yang, J. Wang, G. Zhang, T. Ngai. Emulsion-templated liquid core-polymer shell microcapsule formation[J]. Langmuir,2009,25:2572-2574.
    [31]Z. Li, T. Ming, J. Wang, T. Ngai. High internal phase emulsions stabilized solely by microgel particles[J]. Angew. Chem.,2009,121:8642-8645.
    [32]G. Sun, Z. Li, T. Ngai. Inversion of particle-stabilized emulsions to form high-internal-phase emulsions[J]. Angew. Chem.,2010,122:2209-2212.
    [33]A. Menner, V. Ikem, M. Salgueiro, M.Shaffer, A. Bismarck. High internal phase emulsion templates solely stabilised by functionalised titania nanoparticles[J]. Chem. Commun.,2007,4274-4276.
    [34]V. O. Ikem, A. Menner, A. Bismarck. High internal phase emulsions stabilized solely by functionalized silica particles [J]. Angew. Chem. Int. Ed.,2008,47: 8277-8279.
    [35]V. O. Ikem, A. Menner, A. Bismarck. High-porosity macroporous polymers sythesized from titania-particle-stabilized medium and high internal phase emulsions[J]. Langmuir,2010,26:8836-8841.
    [36]A. Menner, R. Verdejo, M. Shaffer, A. Bismarck. Particle-stabilized surfactant-free medium internal phase emulsions as templates for porous nanocomposite materials:poly-pickering-foams[J]. Langmuir,2007,23: 2398-2403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700