非共价作用下形成的聚两性电解质凝胶及超分子凝胶研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子键交联凝胶是一种新型的在非共价作用下形成的凝胶,它以聚合物链上的正负离子基团间的静电引力形成离子交联键。本文以丙烯酸(AA)和甲基丙烯酸二乙胺基乙酯(DEAM)形成的离子复合物和丙烯酰胺(AAm)为单体,在水或有机电解液中采用自由基聚合制备了一系列新型的离子键交联聚两性电解质凝胶(PADA凝胶)。
     在水中合成得到的PADA水凝胶的非接触直流电场的实验表明该离子键交联的PADA凝胶在电场下发生溶蚀现象。PADA凝胶的溶蚀速率与电场强度、溶液浓度、pH值、酸碱基团摩尔比、溶液离子价态等诸多因素有关,如溶蚀随电压的升高而增大,随盐溶液浓度的加大而增大。其溶蚀动力学研究表明PADA凝胶的溶蚀度随时间线性的增加,即溶蚀速率在整个实验时间内基本保持恒定。
     在含1mol/L的LiClO_4的碳酸丙烯酯(PC)溶液或体积比为3:1:1的PC:甲乙醚(DOL):二氧戊烷(DME)混和溶液(以下简称为PDD溶液)中制备的PADA有机凝胶电解质的热学性能测试表明该凝胶具有很好的热学稳定性,并且交流阻抗研究表明在-30℃到75℃温度范围内,两类PADA凝胶电解质的离子电导率大小与液体电解质的电导率很接近,电导率与温度的关系遵循阿累尼乌斯方程。在相同温度下,以粘度较小的PDD为溶剂制得的PADA凝胶电解质的电导率高于以PC为溶剂制得的PADA凝胶电解质,且电导率随温度的变化也较小。在PC和PDD溶剂中制备的两类PADA凝胶的电导率都随着正负离子单体比增大而增大。循环伏安法研究表明PADA凝胶电解质在-1V-4.5V间能保持稳定的电化学性能。
     在含1mol/L LiPF_6的乙烯碳酸酯(EC)、二甲基碳酸酯(DMC)和乙基甲基碳酸酯(EMC)(体积比为1:1:1)的混合有机溶剂中制备得到的PADA有机凝胶电解质的交流阻抗研究表明该凝胶的离子电导率与液体电解质的电导率很接近,其电导率与温度的关系遵循阿累尼乌斯方程。通过交流阻抗分析、循环伏安分析以及扫描电镜方法分析了由凝胶电解质所形成的SEI膜。研究表明PADA有机凝胶电解质能在最初的几次充放电循环后生成致密的SEI膜,但与溶液电解质形成的SEI膜在微观形态上有所不同,主要由一些较小的固体物堆积形成,表面不够平整,并在随后的循环中变得更致密。
     二(对甲基苄叉)山梨醇(MDBS)是一种能使众多有机溶液凝胶的凝胶因子。本文研究了不同浓度(2—7 wt%)的二(对甲基苄叉)山梨醇(MDBS)在碳酸丙烯酯(PC)中形成的有机凝胶体系在一系列尺度在20到80μm的微通道中的自组装行为,探讨了空间限制对有机凝胶因子自组装的影响和在受限空间中生成的有机凝胶的性质。光学显微镜、偏光显微镜、扫描电镜(SEM)和透射电镜(TEM)结果表明当凝胶因子MDBS浓度一定时,MDBS/PC凝胶的微观结构随着微通道宽度的增大而由纤维网络结构转变为球状结构;当微通道宽度一定时,凝胶的微观结构随着MDBS浓度的增大而由纤维网络结构转变为球状结构。对从微通道中取出的已完成自组装的MDBS/PC凝胶进行光学显微镜分析和和差示扫描量热分析(DSC)表明在受限空间中生成的凝胶的纤维网络结构在被从微通道中取出后仍能保持稳定。我们的研究表明可以通过改变凝胶因子的浓度和微通道的尺度来调控凝胶的微观结构,并进而改变凝胶的热学性能。
Ionically crosslinked gels are novel non-covalent bond gels.The electrostatic attraction of high density between negatively and positively charged groups on polymer chains makes the polymer chains capable to form stable junction zones which maintain the ordered structure inside the ionically crosslinked gels.An ionic complex of anionic and cationic monomers was obtained by protonation of(N,N-diethylamino)ethylmethacrylate (DEAM) with acrylic acid(AA).Free radical copolymerization of the ionic complex and acrylamide(AAm),yielded the ionically crosslinked polyampholytic gel electrolytes [poly(AAc-DEAM-AAm),designated as PADA]using water or organic solvents.
     The investigation indicated PADA hydrogels that were prepared in water exhibited peculiar erosion phenomenon under non-contact direct current electric fields.The erosion rate of PADA gels was related to the voltage of electric field,the concentration of salt solution,pH value of buffer solution,the molar ratio of anionic/cationic monomers,valence of ion and so on.For instance,the erosion rate increased with an increase of voltage or the concentration of salt solution.The erosion kinetics revealed that the erosion rate of PADA gels was almost invariable in experiments.
     The PADA organogel electrolytes that were prepared in two types of organic solvents (propylene carbonate(PC) and the mixture of PC,ethyl methyl ether(DME) and dioxolane (DOL)(3:1:1,v/v,designated as PDD)) containing a lithium salt(LiClO_4,1mol/L) exhibited good thermal stability.The impedance analysis at temperatures ranging from -30 to 75℃indicated that the ionic conductivities of the PADA gel electrolytes were rather close to those of liquid electrolytes.The temperature dependence of the ionic conductivities was found to be in accord with the Arrhenius equation.Moreover,the ionic conductivities of PADA gel electrolytes increased with an increase of the molar ratios of cationic/anionic monomers.The ionic conductivities of PADA gels prepared in PDD were higher than those of PADA gels prepared in PC only.The electrochemical windows of PADA gel electrolytes measured by cyclic voltammetry were in the range from -1 to 4.5V(vs.Li/Li~+).
     The impedance analysis of the PADA organogel electrolyte that was prepared in a solvent mixture of ethylene carbonate(EC),dimethyl carbonate(DMC) and ethyl methyl carbonate(EMC)(1:1:1,v/v) containing 1 mol/L of LiPF_6 indicated that the ionic conductivity of the polyampholytic gel electrolyte was rather close to that of solution electrolytes in the absence of a polymer at the same temperature.The temperature dependence of the conductivity was found to be well in accord with the Arrhenius behavior. The formation processes of the solid electrolyte interphase(SEI) formed in both gel and solution electrolytes during the cycles of charge-discharge were investigated by cyclic voltammetry,electrochemical impedance spectroscopy and field emission scanning electron microscopy.The results indicate that the SEI formed in the gel electrolyte showed a rough surface consisting of smaller solid depositions.
     1,3:2,4-di-p-methylbenzylidene sorbitol(MDBS) is a small organic molecule that is capable of inducing self-assembly in a wide variety of organic solvents and of forming organogels.In this paper,we present a novel approach to tune the network architectures of organogels by utilizing geometric confinement while varying the gelator concentration. Self-assembly of MDBS in propylene carbonate(PC) is investigated in a series of microchannels with widths varying from 20 to 80μm and the gelator concentration varying from 2 to 7 wt%.We demonstrate by optical microscopy,scanning electron microscopy (SEM),polarized microscopy and transmission electronmicroscopy(TEM) that a transition from fibrillar structure to sheaflike spherulite structure occurs when(a) the channel width is increased for fixed gelator concentrations and(b) gelator concentration is increased for fixed channel widths.A phase diagram is built based on these observations.The thermal properties of the organogel are measured by differential scanning calorimetry(DSC) to verify the structural difference obtained under confined and unconfined conditions and the structure stability.Our results provide a novel strategy to control the topological structure of self-assembled systems and to modify their thermal properties via geometric confinement.
引文
[1]Hermans P H,Kruyt H R edit.Colloid Science,Volume Ⅱ.Elsevier Publishing Company,Inc.,1949,483-651.
    [2]Kavanagh G M,Ross-Murphy S B,Rheological characterisation of polymer gels Progress Polymer Science,1998,23:533-562.
    [3]顾雪蓉 朱育平编.凝胶化学.北京:化学工业出版社,2005,1-24.
    [4]Katono H,Sanui K,Ogata N,Okano T,Sakurai Y.Drug Release OFF Behavior and Deswelling Kinetics of Thermo-Responsive IPNs Composed of Poly(acrylamide-co-butyl methacrylate) and Poly(acrylic acid).Polymer Journal,1991,23:1179-1189.
    [5]李建武编.生物化学.北京:北京大学出版社,1990,64.
    [6]Mehyar G F,Liu Z,Han J H.Dynamics of antimicrobial hydrogels in physiological saline.Carbohydrate Polymers,2008,74:92-98.
    [7]Pawde S M,Deshmukh K.Characterization of Polyvinyl Alcohol/Gelatin Blend Hydrogel Films for Biomedical Applications.Journal of Applied Polymer Science,2008,109:3431-3437.
    [8]Oliveira A A R,Ciminelli V,Dantas M S S,Mansur H S,Pereira M M.Acid character control of bioactive glass/polyvinyl alcohol hybrid foams produced by sol-gel.J.Sol-Gel Sci Technol,2008,47:335-346.
    [9]Kim J O,Park J K,Kim J H,Jin S G,Yong C S,Li D X,Choi J Y,Woo J S,Yoo B K,Lyoo W S,Kim J A,Choi H G.Development of polyvinyl alcohol-sodium alginate gel-matrix-based wound dressing system containing nitrofurazone.International Journal of Pharmaceutics,2008,359:79-86.
    [10]Raemdonck K,Thienen T G V,Vandenbroucke R E,Sanders N N,Demeester J,Smedt S C D.Dextran Microgels for Time-Controlled Delivery of siRNA.Advanced Functional Materials,2008,18:993-1001.
    [11]Kim D H,Rossi J J.Strategies for silencing human disease using RNA interference.Nature Reviews Genetics,2007,8:173-184.
    [12] Taylor M J, Tanna S, Sahota T S. UV Cross-Linked Dextran Methacrylate—Concanavalin A Methacrylamide Gel Materials for Self-Regulated Insulin Delivery Gel Materials for self-Regulated Insulin Delivery. Drug Development and Industrial Pharmacy, 2008, 34: 73-82.
    [13] Mathews D T, Birney Y A, Cahill P A, McGuinness G B. Mechanical and Morphological Characteristics of Poly(vinyl alcohol)/Chitosan Hydrogels. Journal of Applied Polymer Science, 2008,109: 1129-1137
    [14] Stenekes R J H, Talsma H, Hennink W E. Formation of dextran hydrogels by crystallization. Biomaterials, 2001, 22: 1891-1898.
    [15] Pastoriza A, Pacios I E, Pierol I F, Kinetics of solvent responsiveness in poly(N,N-dimethylacrylamide) hydrogels of different morphology. Polym International, 2005, 54:1205-1211.
    [16] Mathur A M, Hammonds K F, Klier J, et al. Equilibrium swelling of poly(meth-acrylic acid-g-ethylene glycol) hydrogels. J. Controlled Release, 1998, 54: 177-184.
    [17] Kim S J, Yoon S G,Lee,S M, Lee S H,Kim S I. Electrical Sensitivity Behavior of a Hydrogel Composed of Polymethacrylic Acid/Poly(vinyl alcohol). Journal of Applied Polymer Science, 2004, 91: 3613-3617.
    [18] Matsuda A, Sato J, Yasunaga H, Osada Y. Order-Disorder Transition of a Hydrogel Containing an n-Alkyl Acrylate. Macromolecules, 1994, 27: 7695 - 7698.
    [19] Zhang Y, Li M, Fang Q, Zhang Y X, Jiang M, Wu C. Effect of Incorporating a Trace Amount of Fluorocarbon into Poly(N-isopropylacrylamide) on Its Association in Water. Macromolecules, 1998, 31: 2527-2532.
    [20] Nowak A P, Breedveld V, Pakstis L, Ozbas B, Pine D J, Pochan D, Deming T J.Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature, 2002,417: 424 - 428.
    [21] Jeong B, Lee DS, Shon JL et al. Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers. Journal Polymer Science Part A, 1999,37: 751-760.
    [22] Jeong B, Bae YH, Kim SW, Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules, 1999, 32: 7064- 7069.
    [23]赵彦兵.离子交联聚两性电解质凝胶的溶胀-溶蚀行为研究:博士学位论文.武汉市:华中科技大学图书馆,2006
    [24]Li H,Luo R,Birgersson E,Lam K Y.Modeling of multiphase smart hydrogels responding to pH and electric voltage coupled stimuli.Journal of Applied Physics,2007,101:114905 1-7.
    [25]Tobin M C.Laser Raman Spectra of Polymethacrylic Acid.The Journal of Chemical Physics,1969,50:4551-4554.
    [26]金关泰编.高分子化学的理论和应用进展.北京:中国石化出版社,1995,429.
    [27]日本高分子学会高分子实验学编委会编,李福绵译.北京:科学出版社,1982,516.
    [28]Gu W Q,Lu L D,Chapman G B,Weiss R G.Polymerized gels and "reverse aerogels" from methyl methacrylate or styrene and tetraoctadecylammonium bromide as gelator.Journal of the Chemical Society Chemical Communications,1997,6:543-544.
    [29]Chen S.,Liu M,Jin S,Wang B.Preparation of ionic-crosslinked chitosan-based gel beads and effect of reaction conditions on drug release behaviors.International Journal of Pharmaceutics,2008,349:180-187.
    [30]Rayment P,Butler M F.Investigation of Ionically Crosslinked Chitosan and Chitosan-Bovine Serum Albumin Beads for Novel Gastrointestinal Functionality.Journal of Applied Polymer Science,2008,108:2876-2885.
    [31]Okazaki Y,Ishizuki K,Kawauchi S,Satoh M,Komiyama J.Ion-Specific Swelling and Deswelling Behaviors of Ampholytic Polymer Gels.Macromolecules,1996,29:8391-8397.
    [32]Wang L Y,Gu Y H,Su Z G,Ma G H.Preparation and improvement of release behavior of chitosan microspheres containing insulin.International Journal of Pharmaceutics,2006,311:187-195.
    [33]Watanabe T,Ohtsuka A,Murase N,et al.NMR studies on water and polymer diffusion in dextran gels.Influence of potassium ions on microstructure formation and gelation mechanism.Magnetic Resonance in Medicine,1996,35:697-705.
    [34]Hossain K S,Miyanaga K,Maeda H,et al.Sol-gel transition behavior of pure i-carrageenan in both salt-free and added salt states[J].Biomacromolecules,2001,2:442-449.
    [35]Ohlemacher A,Candau F,Munch JP,et al.Aqueous solution properties of polyampholytes:effect of the net charge distribution.Journal Polymer Science Part B,1996,34:2747-2757.
    [36]Bhardwaj Y K,Kumar V,Sabharwal S.Swelling behavior of radiation-polymerized polyampholytic two-component gels:dynamic and equilibrium swelling kinetics.Journal of Applied Polymer Science,2003,88:730-742.
    [37]Ilhmain F,Tanaka T.Volume transition in a gel driven by hydrogen-bonding.Nature,1991,349:400-401.
    [38]Baker J P,Stephens D R.Swelling properties of acrylamide-based ampholytic hydrogels-comparison of experiment with theory.Polymer,1995,36:1061-1069.
    [39]Kakinoki S,Kaetsu I,Nakayama M,et al.Temperature and pH responsiveness of poly(DMAA-co- unsaturated carboxylic acid) hydrogels synthesized by UV-irradiation.Radiation Physics Chemistry,2003,67:685-693
    [40]Srivastava D,Muthukumar M.Sequence dependence of conformations of polyampholytes.Macromolecules,1996,29:2324-2326.
    [41]Baker J P,Stephens D R.Swelling equilibria for acrylamide-based poly- ampholyte hydrogels.Macromolecules,1992,25:1955-1958.
    [42]Vedikhina L,Kurmaeva A,Tukhvatullin R,Barabanov W.Ionization Equilibrium in Salt-Containing Aqueous Solutions of Synthetic Poly- ampholytes.Journal Polymer Science Part B,2000,38:1824-1831.
    [43]Ezell R G,Charles L.McCormick Electrolyte- and pH-Responsive Polyampholytes with Potential as Viscosity-Control Agents in Enhanced Petroleum Recovery.Journal of Applied Polymer Science,2007,104:2812-2821.
    [44]Kwon I C,Bae Y H,Kim S W.Electrically erodible polymer gel for controlled release of drugs.Nature,1991,354:291-293
    [45]Morimoto N,Ohki T,Kurita K,Akiyoshi K.Thermo-Responsive Hydrogels with Nanodomains:Rapid Shrinking of a Nanogel-Crosslinking Hydrogel of Poly(N-isopropyl acrylamide.Macromolecular Rapid Communications,2008,29:672-676
    [46]Gutowska A,Bark J S,Kwon Y H,et al.Squeezing hydrogels for controlled oral drug delivery.Journal of Controlled Release,1997,48:141-148.
    [47]Jeong B,Bae Y H,Lee D S,et al.Biodegradable block copolymers as injectable drug-delivery systems.Nature,1997,388:860-862.
    [48]Terech P,Weiss R G.Low molecular mass gelators of organic liquids and the properties of their gels.Chemical Reviews,1997,97:3133-3159.
    [49]左志军.齐聚物凝胶因子的合成及其 分子凝胶的表征和性能:硕士学位论文.武汉市:华中科技大学图书馆,2005
    [50]黎坚.可聚合凝胶因子的合成及其性能的研究:硕士学位论文.武汉市:华中科技大学图书馆,2002
    [51]Terech P.,Weiss R G..Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels.Chemical Reviews,1997,97:3133-3159.
    [52]侯万国,孙德军,张春光编著。应用胶体化学.第一版.北京:科学出版社,1998:35-38
    [53]Li Y,Liu K,Liu J,Peng J,Feng X,Fang Y.Amino Acid Derivatives of Cholesterol as "Latent" Organogelators with Hydrogen Chloride as a Protonation Reagent.Langmuir,2006,22,7016-7020.
    [54]Terech P,Friol S.Rheometry of an androstanol steroid derivative paramagnetic organogel.Methodology for a comparison with a fatty acid organogel.Tetrahedron,2007,63:7366-7374
    [55]Boner,C.J.Manufacture and Application of Lubricating Greases.New York:Reinhold Publishing Corp.,1960
    [56]Van E J,Kellogg R M,Feringa B L.Di-urea Compounds as Gelators for Organic Solvents.Tetradron Letter,1997,38:281-284
    [57]Brotin T,Utermohlen,R,Fages F,et al.A Novel Small Molecular Luminescent Gelling Agent for Alcohols.Journal of the Chemical Society,Chemical Communications,1991,6:416-418
    [58]Desvergne J P,Fages F,Bouas-Laurent H,Marsua P.Tunable Photoresponsive Supramolecular Systems.Pure and applied chemistry,1992,9:1231 - 1238.
    [59]Klyne,W.The Chemistry of Steroids.New York:Willey,1996.
    [60]Abdallah D J,Weiss R G.The Quest for the Simplest Possible Organogelators and Some Properties of their Organogels.Journal of the Brazil Chemical Society,2000,11:209-218.
    [61]Lin Y C,Weiss R G.A Novel Gelator of Organic Liquids and the Properties of Its Gels.Macromolecules,1987,20:414-417
    [62]Kuroiwa K,Shibata T,Takuda A,Nemoto N,Kimizuka N.Heat-Set Gel-like Networks of Lipophilic Co(Ⅱ) Triazole Complexes in Organic Media and Their Thermochromic Structural Transtions.Journal of the American Chemical Society;2004,126:2016-2021.
    [63]Rango C,Charpin P,Navaza J,Keller N,Nicolis I,Villain F,Coleman A W.β-Cyclodextrin/Pyridine gel systems.The Crystal Structure of a First β-Cyclodextrin-Pyridine-Water Compound.Journal of the American Chemical Society,1992,114:5475-5476.
    [64]Inoue K,Ono Y,Kanekiyo Y,Hanabusa K,Shinkai S.Preparation of New Robust Organic Gels by in situ Cross-link of a Bis(diacetylene) Gelator.Chemistry Letters,1999,329:429-430.
    [65]付新建.超分子有机凝胶和水凝胶的制备及其性能研究:博士学位论文.武汉市:华中科技大学图书馆,2007
    [66]Voet D,Voet J G.Biochemistry.2nd ed,John Wiley & Sons:New YorK,1990.
    [67]Wang G,Hamilton A D.Low molecular weight organogelators for water.Chemical Communications,2003,310-311.
    [68]Shimizu T,Masuda M.Stereochemical effect of even-odd connecting links on supramolecular assemblies made of 1-glucosamide bolaamphiphiles.Journal of the American Chemical Society,1997,119:2812-2818.
    [69]Franceschi S,de Viguerie N,Riviere M,Lattes A.Synthesis and aggregation of two-headed surfactants bearing amino acid moieties.New Journal of Chemistry,1999,23:447-452.
    [70]Menger F M,Keiper J S.Gemini Surfactants.Angewandte Chemie International Edition English,2000,39:1906-1920.
    [71]Kobayashi H,Friggeri A,Koumoto K,Amaike M,Shinkai S,Reinhoudt D N. Molecular design of 'super'hydrogelators:Understanding the gelation process of azobenzene-based sugar derivatives in water.Organic Letters,2002,4:1423-1426.
    [72]Kiyonaka S,Shinkai S,Hamachi I.Combinatorial library of low-weight organo- and hydrogelators based on glycosylated amino acid derivatives by solid-phase synthesis.Chemistry- A European Journal,2003,9:976-983.
    [73]孟亚斌.在溶液场中凝胶因子聚集组装的分子凝胶研究:硕士学位论文.武汉市:华中科技大学图书馆,2004.
    [74]Wang R Y,Liu X Y,Narayanan J,Xiong J Y,Li J L.Architecture of Fiber Network:From Understanding to Engineering of Molecular Gels.Journal of Physical Chemistry B,2006,110,25797-25802.
    [75]Wang R,Liu X Y,Xiong J,Li J.Real-Time Observation of Fiber Network Formation in Molecular Organogel:Supersaturation-Dependent Microstructure and Its Related Rheological Property.Journal of Physical Chemistry B,2006,110,7275-7280.
    [76]Moriyama M,Mizoshita N,Yokota T,Kishimoto K,Kato T.Photoresponsive anisotropic soft solids:Liquid-crystalline physical gels based on a chiral photochromic gelator.Advanced Materials,2003,15:1335-1338.
    [77]Kato T,Kutsuna T,Yabuuchi K,Mizoshita N.Anisotropic Self-Aggregation of an Anthracene Derivative:Formation of Liquid-Crystalline Physical Gels in Oriented States.Langmuir,2002,18:7086-7088.
    [78]Xiong Y,Liu Q,Wang H,Yang Y.Ambient-Force Induced Self-Assembly of a Dialkylurea Gelator in Organic Solvents,Journal of Colloid and Interface Science,2008,318:496-500.
    [79]Aoki K,Nakagawa M,Ichimura K.Self-Assembly of Amphoteric Azopyridine Carboxylic Acids:Organized Structures and Macroscopic Organized Morphology Influenced by Heat,pH Change,and Light.Journal of the American Chemical Society,2000,122:10997-11004
    [80]Atencial J,Beebel D J.Controlled microfluidic interfaces.Nature,2005,437:648-655.
    [81]Joanicot M,Ajdari A.Applied physics - Droplet Control for Microfluidics.Science,2005,309:887-888.
    [82]Benjamin C S.Microfluidics:Liquid-liquid flows and biological applications:doctoral thesis.St.Louis,Washington University,2006.
    [83]Xia Y,Whitesides G M.Soft Lithography.Angewandte Chemie International Edition,1998,37:550-575.
    [84]穆金霞,殷学锋.微通道反应器在合成反应中的应用.化学进展,2008,20:60-75.
    [85]Dittrich P S,Manz A.Lab-on-a-chip:microfluidics in drug discovery.Nature Reviews Drug Discovery,2006,5:210-218.
    [86]Jahnisch K,Hessel V,Lowe H,Baerns M.Chemistry in Microstructured Reactors.Angewandte Chemie International Edition,2004,43:406-446.
    [87]Kolb G,Hessel V.Micro-structured reactors for gas phase reactions:a review.Chemical Engineering Journal,2004,98:1-38.
    [88]Mitchell M C,Spikmans V,Mello A J.Microchip-based synthesis and analysis:Control of multicomponent reaction products and intermediates.The Analyst,2001,126:24-27.
    [89]Hisamoto H,Saito T,Tokeshi M,et al.Fast and high conversion phase-transfer synthesis exploiting the liquid-liquid interface formed in a microchannel chip.Chemical Communications,2001,2662-2663.
    [90]Xu J H,Li S W,Tan J,Wang Y J,Luo G S.Controllable Preparation of Monodisperse O/W and W/O Emulsions in the Same Microfluidic Device.Langmuir,2006,22:7943-7946.
    [91]Xu S,Nie Z,Seo M,Lewis P,Howard E K,Stone A,Garstecki P,Weibel D B,Gitlin I,Whitesides G M.Generation of Monodisperse Particles by Using Microfluidics:Control over Size,Shape,and Composition.Angewandte Chemie International Edition,2005,44,724 -728.
    [92]Hamlington B D,Steinhaus B,Feng J J,Link D,Shelley M J,Shen A Q.Liquid crystal droplet production in a microfluidic device.Liquid Crystals,2007,34:861-870.
    [93]任静,哈鸿飞.聚两性电解质及其水凝胶的研究进展.高分子通报,2000,3:8-15
    [94]Valencia J,Piérola I F.Equilibrium swelling properties of poly (N-vinylimidazole-co-sodium styrenesulfonate) hydrogels. European Polymer Journal, 2001, 37: 2345-2352.
    [95] OgawaY, OgawaK, Kokufuta E. Swelling-shrinking behavior of a polyampholytegel composed of positively charged networks with immobilized polyanions.Langmuir, 2004, 20: 2546-2552.
    [96] Kudaibergenov S E, Sigitov V B. Swelling, Shrinking, Deformation, and Oscillation of Polyampholyte Gels Based on Vinyl 2-Aminoethyl Ether and Sodium Acrylate.Langmuir, 1999, 15:4230-4235.
    [97] Ogawa K, Nakayama A, Kokufuta E. Preparation and Characterization of Thermosensitive Polyampholyte Nanogels. Langmuir, 2003, 19: 3178-3184.
    [98] Takeoka Y, Berker A N, Du R, Enoki T, Grosberg A, Kardar M, Oya T, Tanaka K,Wang G, Yu X, Tanaka T. First order phase transition and evidence for frustrations in polyampholytic gels. Physical Review Letters, 1999, 82: 4863-4865.
    [99] Demosthenous E, Hadjiyannakou S C, Vamvakaki M, Patrickios C S. Synthesis and Characterization of Polyampholytic Model Networks: Effects of Polymer Composition and Architecture. Macromolecules, 2002, 35: 2252-2260.
    [100] Bossard F, Sfika V, Tsitsilianis C. Rheological Properties of Physical Gel Formed by Triblock Polyampholyte in Salt-Free Aqueous Solutions. Macromolecules, 2004, 37:3899-3904.
    [101] Hansson P, Schneider S, Lindman B. Phase Separation in Polyelectrolyte Gels Interacting with Surfactants of Opposite Charge. Journal of Physical Chemistry B,2002, 106: 9777-9793.
    [102] Rouzina I, Bloomfield V A. Macroion Attraction Due to Electrostatic Correlation between Screening Counterions. 1. Mobile Surface-Adsorbed Ions and Diffuse Ion Cloud. Journal of Physical Chemistry, 1996,100: 9977-9989.
    [103] Ray J, Manning G S. An attractive force between two rodlike polyions mediated by the sharing of condensed counterions. Langmuir,1994,10: 2450-2461.
    [104] Okazaki Y, Ishizuki K, Kawauchi S, Satoh M, Komiyama J. Ion-Specific Swelling and Deswelling Behaviors of Ampholytic Polymer Gels. Macromolecules, 1996, 29:8391-8397.
    [105]Kang S K,Jhon M S.Ionic mobility and contact ion pairing study by sodium-23,chlorine-35,and potassium-39,nuclear magnetic resonance in a poly[methacrylic acid-co-(N,N-dimethylamino)ethyl methacrylate]hydrogel.Macromolecules,1993,26:171-176.
    [106]殷以华.用作口服结肠定位释药传递的凝胶性能的研究:博士学位论文.武汉市:华中科技大学图书馆,2001
    [107]孟凡昌,潘祖亭,杨代菱.分析化学第4版.北京:高等教育出版社,2001,320-321.
    [108]Lee S Y,Meyer W H,Wegner G.Phase behavior of gel-type polymer electrolytes and its influence on electrochemical properties.Chem Phys Chem.,2005,6:49-53.
    [109]Basumallick I,Roy P,Chatterjee A,Bhattacharya A,Chatterjee S,Ghosh S.Organic polymer gel electrolyte for Li-ion batteries.Journal of Power Sources,2006,162:797-799.
    [110]Wang X J,Kang J J,Wu Y P,Fang S B.Novel composite polymer electrolytes based on poly(ether-urethane) network polymer and modified montmorillonite.Electrochemistry Communications,2003,5:1025-1029.
    [111]Plewa A,Chyli'nski F,Kalita M,Bukat M,Parzuchowski P,Borkowska R,Siekierski M,Zukowska G Z,Wieczorek W,Influence of macromolecular additives on transport properties of lithium organic electrolytes.Journal of Power Sources,2006,159:431-437.
    [112]Amaral F A,Dalmolin C,Canobre S C,Bocchi N,Rocha-Filho R C,Biaggio S R.Electrochemical and physical properties of poly(acrylonitrile)/poly(vinyl acetate)-based gel electrolytes for lithium ion batteries.Journal of Power Sources,2007,164:379-385.
    [113]Zhang S S,Xu K,Jow T R.Li-ion cell with poly(acrylonitrile-methyl methacrylate)-based gel polymer electrolyte.Solid State lonics,2003,158:375-380.
    [114]Reiter J,Vondr'ak J,Miˇcka Z.The electrochemical redox processes in PMMA gel electrolytes-behaviour of transition metal complexes.Electrochimica Acta,2005,50:4469-4476.
    [115]Kim H S,Shin J H,Moon S I,Yun M S.Electrochemical properties of poly(tetra ethylene glycol diacrylate)-based gel electrolytes for lithium-ion polymer batteries.Journal of Power Sources, 2003, 119-121: 482-486.
    [116] Aoki T, Ohta T, Fujinami T. Lithium ion conductivity of gel polymer electrolytes containing insoluble lithium tetrakis(pentafluorobenzenethiolato) borate. Journal of Power Sources, 2006, 156: 589-593.
    [117] Wang Y, Travas-Sejdic J, Steiner R. Polymer gel electrolyte supported with microporous polyolefin membranes for lithium ion polymer battery. Solid State Ionics, 2002, 148: 443-449.
    [118] Ryu H S, Ahn H J, Kim K W, Ahn J H, Lee J Y. Discharge process of Li/PVdF/S cells at room temperature. Journal of Power Sources, 2006, 153: 360-364.
    [119] Kim K S, Park S Y, Choi S, Lee H. Ionic liquid-polymer gel electrolytes based on morpholinium salt and PVdF(HFP) copolymer. Journal of Power Sources. 2006, 155:385-390.
    [120] Lee Y, Ko D, Lee J, Park J. Highly ion-conductive solid polymer electrolytes based on polyethylene non-woven matrix. Electrochimica Acta, 2006, 52: 1582-1587.
    [121] Liang Y, Wang C, Chen C. The conductivity and characterization of the plasticized polymer electrolyte based on the P(AN-co-GMA-IDA) copolymer with chelating group (II): The effect of free ion in the plasticized polymer electrolyte.Electrochimica Acta, 2006, 52, 527-537.
    [122] Zhao Y, Chen W, Xia J, Liu W, Yang Y, Xu H, Yang X. Erosion behavior of ionically crosslinked polyampholyte gels under DC electric fields. Macromolecular Chemistry and Physics, 2006,207: 1674-1679.
    [123] Liu D F, Luo R, Nie J, Guan W C. Characterizations of a branched ester-type lithium imide in methoxy ether-substituted poly(organophosphazenes)-based solid polymer electrolytes. Materials Science and Engineering B, 2005,119: 99-104.
    [124] Katayama N, Kawamura T, Baba Y, Yamaki J. Thermal stability of propylene carbonate and ethylene carbonate-propylene carbonate-based electrolytes for use in Li cells. Journal of Power Sources, 2002, 109: 321-326.
    [125] Wu P W, Holm S R, Duong A T, Dunn B, Kaner R B. A Sol-Gel Solid Electrolyte with High Lithium Ion Conductivity. Chemistry of Materials, 1997,9: 1004-1011.
    [126] Kumar G, Munichandraiah N. A gel polymer electrolyte of magnesium triflate. Solid State Ionics, 2000,128: 203-210.
    [127] Krok F, Dygas J R, Misztal-Faraj B, Florjan Z, Bzducha W. Impedance and polarisation studies of new lithium polyelectrolyte gels. Journal of Power Sources,1999,81/82:766-771.
    [128] Yue Z, McEwen I J, Cowie J M G Novel gel polymer electrolytes based on a cellulose ester with PEO side chains. Solid State Ionics, 2003, 156: 155-162.
    [129] Capiglia C, Saito Y, Yamamoto H, Kageyama H, Mustarelli P. Transport properties and microstructure of gel polymer electrolytes. Electrochimica Acta, 2000, 45:1341-1345.
    [130] Magistris A, Quartarone E, Mustarelli P, Saito Y, Kataoka H. PVDF-based porous polymer electrolytes for lithium batteries. Solid State Ionics, 2002, 152/153: 347-354.
    [131] Brouillette D, Perron G, Desnoyers J E. Effect of viscosity and volume on the specific conductivity of lithium salts in solvent mixtures. Electrochimica Acta, 1999,44: 4721-4742.
    [132] Abraham K M, Jiang Z, Carroll B. Highly Conductive PEO-like Polymer Electrolytes. Chemistry of Materials, 1997,9: 1978-1988.
    [133] Liu D F, Nie J, Guan W C, Duan H Q, Zhuo L M. Characterizations of a branched ester-type lithium imide in poly(ethylene oxide)-based polymer electrolytes. Solid State Ionics, 2004, 167: 131-136.
    [134] Yuan C C, Yuan C, Zhang X, Wu Q, Gao B. Effect of temperature on the hybrid supercapacitor based on NiO and activated carbon with alkaline polymer gel electrolyte. Solid State Ionics, 2006,177: 1237-1242.
    [135] Wang Y, Balbuena P B. Theoretical Insights into the Reductive Decompositions of Propylene Carbonate and Vinylene Carbonate: Density Functional Theory Studies.Journal of Physical Chemistry B, 2002, 106: 4486-4495.
    [136] Kim J S, Park Y T. Characteristics of surface films formed at a mesocarbon microbead electrode in a Li-ion battery. Journal of Power Sources, 2000, 91:172-176.
    [137] Stjerndahl M, Bryngelsson H, Gustafsson T, Vaughey J T, Thackeray M, Edstr¨om K.Surface chemistry of intermetallic AlSb-anodes for Li-ion batteries. Electrochimica Acta, 2007, 52: 4947-4955.
    [138] Wang Y, Balbuena P B. Associations of Lithium Alkyl Dicarbonates through O…Li…O Interactions. Journal of Physical Chemistry A, 2002, 106: 9582-9594.
    [139] Borodin 0, Smith G D, Fan P. Molecular Dynamics Simulations of Lithium Alkyl Carbonates. Journal of Physical Chemistry B, 2006,110: 22773-22779.
    [140] Leroy S, Martinez H, Dedryve're R, Lemordant D, Gonbeau D. Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study. Applied Surface Science, 2007, 253: 4895-4905.
    [141] Naji A, Ghanbaja J, Willmann P, Billaud D. TEM characterization of the passivating layer formed during the reduction of graphite electrodes in selected electrolytes.Journal of Power Sources, 1999, 81-82: 207-211.
    [142] Li Y N, Yang J, Jiang Z. Intercalation of lithium ions into bulk and powder highly oriented pyrolytic graphite. Journal of Physics and Chemistry of Solids, 2006, 67:882-886.
    [143] Fransson L, Eriksson T, Edstrom K, Gustafsson T, Thomas J O. Influence of carbon black and binder on Li-ion batteries. Journal of Power Sources, 2001,101: 1-9.
    [144] Lee H, Choi S, Kim H J, Choi Y, Yoon S, Cho J J. SEI layer-forming additives for LiNi_(0.5)Mn_(1.5)O_4/graphite 5 V Li-ion batteries. Electrochemistry Communications,2007,9:801-806.
    [145] Schranzhofer H, Bugajski J, Santner H J, Korepp C, M¨oller K C, Besenhard J O,Winter M, Sitte W. Electrochemical impedance spectroscopy study of the SEI formation on graphite and metal electrodes. Journal of Power Sources, 2006, 153:391-395.
    [146] Zheng H, Jiang K, Abe T, Ogumi Z. Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes.Carbon, 2006,44: 203-210.
    [147] Zhang S S, Xu K, Jow T R. EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochimica Acta, 2006, 51: 1636-1640.
    [148] Tasaki K. Solvent Decompositions and Physical Properties of Decomposition Compounds in Li-Ion Battery Electrolytes Studied by DFT Calculations and Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2005, 109:2920-2933.
    [149] Lee S B, Pyun S. The effect of electrolyte temperature on the passivity of solid electrolyte interphase formed on a graphite electrode. Carbon, 2002,40: 2333-2339.
    [150] Kang Y, Cho N, Noh K A, Kim J, Lee C. Improvement on cycling efficiency of lithium by PEO-based surfactants in cross-linked gel polymer electrolyte. Journal of Power Sources, 2005,146: 171-175.
    [151] Chen W, Tang H, Ou Z, Wang H, Yang Y. Electrochemical behavior of ionically crosslinked polyampholytic gel electrolytes. Electrochimica Acta, 2007, 53:2065-2070.
    [152] Yang C R, Wang Y Y, Wan C C. Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte. Journal of Power Sources, 1998, 72: 66-70.
    [153] Zhang S S. Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC_2F_2-based electrolyte. Journal of Power Sources, 2007, 163:713-718.
    [154] Zhang S S, Jow T R, Amine K, Henriksen G L. LiPF_6-EC-EMC electrolyte for Li-ion battery. Journal of Power Sources, 2002,107: 18-23.
    [155] Huang X, Raghavan S R, Terech P, Weiss R G Distinct Kinetic Pathways Generate Organogel Networks with Contrasting Fractality and Thixotropic Properties. Journal of the American Chemical Society, 2006, 128: 15341-15352.
    [156] Friggeri A, Gronwald O, Bommel K. J. C. van, Shinkai S, Reinhoudt D N.Charge-Transfer Phenomena in Novel, Dual-Component, Sugar-Based Organogels.Journal of the American Chemical Society, 2002, 124: 10754-10758.
    [157] Wilder E A, Hall C K, Spontak R J. Physical organogels composed of amphiphilic block copolymers and l,3:2,4-dibenzylidene-D-sorbitol. Journal of Colloid and Interface Science, 2003, 267: 509-518.
    [158] Mercurio D J, Spontak R J. Morphological Characteristics of 1,3:2,4-Dibenzylidene Sorbitol/Poly(propylene glycol) Organogels. Journal of Physical Chemistry B, 2001,105: 2091-2098.
    [159] Li J L, Liu X Y, Strom C S, Xiong J Y. Engineering of small molecule organogels by design of the nanometer structure of fiber networks. Advanced Materials, 2006, 18:2574-2578.
    [160] Abdallah J D, Weiss R G. n-Alkanes Gel n-Alkanes (and Many Other Organic Liquids). Langmuir, 2000,16: 352-355.
    [161] Vemula P K, Li J, John G Enzyme Catalysis: Tool to Make and Break Amygdalin Hydrogelators from Renewable Resources: A Delivery Model for Hydrophobic Drugs. Journal of the American Chemical Society, 2006,128: 8932-8938.
    [ 162] Kang L, Liu X Y, Sawant P D, Ho P C, Chan Y W, Chan S Y. SMGA gels for the skin permeation of haloperidol. Journal of Controlled Release, 2005, 106: 88-98.
    [163] Bommel K J C, Stuart M C A, Feringa B L, Esch J. Two-stage enzyme mediated drug release from LMWG hydrogels. Organic and Biomolecular Chemistry Articles, 2005,3: 2917-2920.
    [164] Meng Y, Yang Y. Gelation of the organic liquid electrolytes and the conductivities as gel electrolytes. Electrochemistry Communications, 2007, 9: 1428-1433.
    [165] Wang Q; Zakeeruddin S M, Exnar I, Gr¨atzel M. 3-Methoxypropionitrile-Based Novel Electrolytes for High-Power Li-Ion Batteries with Nanocrystalline Li4Ti5O12 Anode. Journal of the Electrochemical Society, 2004, 151: A1598-A1603.
    [166] Kang M G, Kim K M, Ryu K S, Chang S H, Park N G, Hong J S, Kim K J.Dye-Sensitized TiO2 Solar Cells Using Polymer Gel Electrolytes Based on PVdF-HFP. Journal of the Electrochemical Society. 2004, 151: E257-E260.
    [167] Camerel F, Donnio B, Bourgone C, Schmutz M, Guillon D, Davidson P, Ziessel R.Tuning the thermotropic and lyotropic properties of liquid-crystalline terpyridine ligands. Chemistry-A European Journal, 2006,12: 4261-4274.
    [168] Ceylan D, Okay O. Macroporous Polyisobutylene Gels: A Novel Tough Organogel with Superfast Responsivity. Macromolecules, 2007,40: 8742-8749.
    [169] Yang Y, Suzuki M, Owa S, Shirai H, Hanabusa K. Control of Mesoporous Silica Nanostructures and Pore-Architectures Using a Thickener and a Gelator. Journal of the American Chemical Society, 2007, 129: 581-587.
    [170] Huang X, Weiss R G Silica Structures Templated on Fibers of Tetraalkylphosphonium Salt Gelators in Organogels. Langmuir, 2006, 22: 8542-8552.
    [171] George M, Funkhouser G P, Terech P, Weiss R G Organogels with Fe(III) Complexes of Phosphorus-Containing Amphiphiles as Two-Component Isothermal Gelators.Langmuir, 2006,22: 7885-7893.
    [172] Lescanne M, Colin A, Monval 0 M, Heuz K, Fages F, Pozzo J L. Flow-Induced Alignment of Fiberlike Supramolecular Self-Assemblies during Organogel Formation with Various Low Molecular Mass Organogelator-Solvent Systems.Langmuir, 2002,18: 7151-7153.
    [173] Karinaga R, Jeong Y, Shinkai S, Kaneko K, Sakurai K. Inclusion of DNA into Organic Gelator Fibers Made of Amphipathic Molecules and Its Controlled Release.Langmuir, 2005,21: 9398-9401.
    [174] Nieman B, Commeinhes X, Babcock N S, Frola I, Forgett R, Sutton M. An x-ray confinement cell for studies of complex fluids under shear and confinement. Review of Scientific Instruments, 2004, 75: 936-941.
    [175] Kumacheva E, Golding R K, Allard M, Sargent E H. Colloid crystal growth on mesoscopically patterned surfaces: Effect of confinement. Advanced Materials, 2002,14:221-224.
    [176] Zhang H, Tumarkin E, Peerani R, Nie Z, Sullan R M A, Walker G C, Kumacheva E.Microfluidic Production of Biopolymer Microcapsules with Controlled Morphology.Journal of the American Chemical Society., 2006, 128: 12205-12210.
    [177] Heijna M C R, Theelen M J, Enckevort W J P van, Vlieg E. Spherulitic Growth of Hen Egg-White Lysozyme Crystals. Journal of Physical Chemistry B, 2007, 111:1567-1573.
    [178] Hurle D T J edit. Handbook of Crystal Growth. Elsevier Amsterdam, 1993,1169-1216.
    [179] George M, Weiss R G Molecular Organogels. Soft Matter Comprised of Low-Molecular-Mass Organic Gelators and Organic Liquids. Accounts of Chemical Research, 2006, 39,489-497.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700