超分子凝胶体系内小分子的传质与扩散研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由小分子凝胶因子通过分子间氢键、π-π堆砌及其它非共价键作用自组装而形成的超分子有机凝胶受到了人们广泛的关注。作为一种主体材料,有机凝胶可以包裹各种客体分子。研究这些客体分子在有机凝胶体系中的传质行为,不仅在主客体分子化学,而且在诸如凝胶电解质、药物控制释放等应用领域,都是一项有重要意义的工作。
     本文用4,4'-二(硬脂酰胺基)二苯甲烷(BSAPM)在有机溶剂中形成的超分子有机凝胶为主体材料,在研究客体分子对凝胶性能影响的同时,用不同的方法研究了一些客体分子的扩散释放行为和机理。以小分子凝胶因子为凝胶剂制备了一种新型微乳凝胶,研究了水杨酸钠在这种微乳凝胶中的释放行为。另外还考察了受限于多壁碳纳米管内纳米空间内一种二脲型凝胶因子的聚集组装行为。
     本论文包括以下主要内容:
     1)采用BSAPM为凝胶因子制备了含有小分子水杨酸和若丹明B的1,1,2-三氯乙烷(TCE)超分子有机凝胶。TEM表征了有机凝胶的微观结构,用落球法考察了水杨酸和若丹明B对超分子有机凝胶的相转变温度(T_(GS))影响。用紫外-可见光度法研究了超分子凝胶中两种客体小分子在静态下的扩散释放。结果表明其释放率随凝胶剂浓度的增加而降低。客体小分子的体积大小对其释放有明显的影响,分子体积较大的若丹明B的释放率低于分子体积较小的水杨酸。另外,若丹明B的扩散系数也低于水杨酸,且随凝胶剂浓度的增加,这种趋势更为明显。两种客体分子的累积释放率与时间的平方根成良好的线性关系,符合Higuchi方程,属扩散控制的Fickian释放机理。
     2)用循环伏安法研究了BSAPM/碳酸丙烯酯超有机凝胶体系中二茂铁的电化学活性和传质行为。结果表明有机凝胶中二茂铁具有氧化还原活性。有机凝胶中二茂铁电化学氧化反应所表现出的伏安曲线与相应的液体电解质的一样。两种不同体系中,二茂铁的氧化还原反应都是一个受扩散控制的单电子转移的准可逆过程。凝胶中二茂铁和二茂铁离子的扩散系数随凝胶因子浓度的增加而下降,随温度的增加而增加。扩散系数与温度的关系符合经典的Arrhenius方程,而且两个不同体系中扩散活化能相同。
     3)用小分子凝胶因子Bis18-L-Phe使由十四酸异丙酯、Tween 80、1,2-丙二醇和水构成的微乳凝胶化,所得的凝胶微乳具有良好的热可逆性。凝胶微乳的相转变温度(T_(GS))与凝胶因子的浓度和微乳的组成有关。用POM和FTIR研究了凝胶微乳的形成机理。偏光显微镜照片表明整个微乳的连续相中形成了相互缠绕的线状聚集体。而FTIR表明分子间的氢键作用是凝胶形成的原因。
     4)以水溶性的水杨酸钠为模型分子研究了它在凝胶微乳中的释放行为。结果表明水杨酸钠表现出持续释放行为,其释放速率随Bis18-L-Phe含量的增加而降低,随水杨酸钠含量增加而增加,而随IPM的增加而下降。凝胶中水杨酸钠的释放行为符合一级动力学。这些结果表明凝胶微乳可用作于药物释放载体。
     5)将二脲型凝胶剂MBAU-18通过加热、超声的作用灌注到多壁碳纳米管内,利用DSC研究MBAU-18在受限空间内形成的聚集体的热力学性质,发现其相变温度高于本体空间内形成聚集体的相变温度,利用XRD结合分子模拟软件探讨了在受限空间内凝胶剂可能采取的聚集方式。
Supramolecular organogels formed by the self-assembly of gelator through intermolecular hydrogen bonding,π-πstacking and other non-covalent bond interations have been receiving considerable attention.As a stable host matrix,some guest molecules such as organic dyes and drugs can be entrapped in organogels by simply adding them to the sol prior to its gelation.Therefore,a better understanding of the mass transfer behavior of guest molecules in organogel is required not only for the development of fundamental research on host/guest interaction,but also for potential applications such as drug delivery and gel electrolytes.
     In this dissertation,when supramolecular organogels of a bis-(4-stearoylaminophenyl) methane(BSAPM) in some solvents or electrolyte solution in propylene carbonate were used as host,the diffusional release or the electrooxidation reaction of guests was investigated by different methods.A novel organogel based on the gelation of aqueous microemulsion was prepared by using low molecular weight gelator N-stearine-N'-stearyl-L-phenylalanine(Bis18-L-Phe).Sodium salicylate was entrapped within the gelled microemulsion and used as model drug.The in vitro sodium salicylate release behavior in gelled microemulsion was investigated by using UV-Vis spectroscopy. In addition,we reported herein self-assembly of supramolecular organogel when confined within the multiwalled carbon nanotubes,the thermodynamic properties and the possible mechanism of self-assembly were studied.
     This paper are consisted of several sections as the following:
     1) BSAPM as a gelator was used for preparation of 1,1,2-trichloroethane(TCE) supramolecular organogels.The existence of salicylic acid and Rhodamine B as the guest molecules slightly led to the decrease of gel-sol phase transition temperatures(T_(GS)) of the organogels.The diffusion and release of the guest molecules in the organogels were investigated by using UV-Vis spectroscopy.The results indicated that release ratios of the guest molecules decreased with the increase of the gelator concentration.Wherein,the release ratios of Rhodamine B were less than that of salicylic acid,which could be attributed to the larger molecular size of Rhodamine B.In addition,the diffusion coefficients of Rhodamine B were also less than that of salicylic acid.This trend was more clearly with the increase of BSAPM concentration.The investigation indicated that the diffusion and release behavior of the guest molecules in the self-assembled organogel followed the Higuchi equation and diffusion-controlled mechanism of Fickian model.
     2) Supramolecular organogel was formed by self-assembly of BSAPM in propylene carbonate containing LiClO_4.The electrochemical behavior and diffusion of ferrocene (Fc) and ferricenium(Fc~+) entrapped within the organogel was investigated by cyclic voltammetry.The Fc molecules still show redox activity within the organogels in comparison with corresponding solutions of propylene carbonate containing LiClO_4.The shape of the cyclic voltammograms of the Fc electrooxidation in organogel was similar to that in corresponding solutions.The results indicated that redox reactions of Fc/Fc~+ were a quasi-reversible process of diffusion-controlled single electron transfer in organogels.The diffusion coefficients of Fc and Fc~+ in organogels decreased with an increase of the concentration of gelator BSAPM,but increased with an increase of temperature.The temperature dependence of the diffusion coefficient in organogels followed classical Arrhenius equation.The activation energy in organogels was found of no difference from that in corresponding solutions.
     3) Low molecular weight organogelator,N-stearine-N'-stearyl-L-phenylalanine (Bis18-L-Phe) is able to gelatinize the microemulsion consist of isopropyl myristate (IPM),Tween 80,propylene glycol(PG) and water in a very low concentration.The resulting gelled microemulsions showed good thermo-reversibility.The phase transition temperature(T_(GS)) of gelled microemulsion increased with an increase of Bis18-L-Phe and the ratio of SC to IPM.The mechanism of formation of the gelled microemulsions was studied by POM and FTIR.POM image showed elongated and strandlike aggregates dispersed throughout the continuous phase to form a coherent network.FTIR spectroscopy indicated that intermolecular hydrogen bonding may be responsible for the gel formation.
     4) Water-soluble sodium salicylate was used as a model drug and its release from the gelled microemulsions was studied.The results showed that the release of drug exhibited a sustained release behavior and the release rate reduced with increasing the proportion of Bis18-L-Phe.Moreover,the release rate of drug increased as the content of drug increased and decreased with an increase in the proportion of IPM.The release behavior of drug followed first-order release kinetics.These results indicated that the gelled microemulsion was potentially useful in drug delivery systems
     5) A bisurea gelators 1-methyl-2,4-bis(N'-octadecylureido)benzene(MBUB-18) was affused into the the multiwalled carbon nanotubes(MWCNTs) by heating and ultrasonication to investigate the gelation of chlorobenzene confined within the MWCNTs.Based on an analysis of the DSC and XRD data for the gels confined within the MWCNTs and formed in the bulk space,we argued that the self-assembled of supramolecular organogel in an unusual manner when confined within MWCNTs in comparison with that in bulk space.The results not only provide a good addition to the development of new types of CNT-based composites,but they also are helpful for the understanding of the mechanism of natural self-assembling processes and the related phenomena within nano-scale environments.
引文
[1]杨亚江,崔文瑾.能使有机溶剂凝胶化的凝胶因子研究进展.有机化学,2001,21(9):632-639.
    [2]Terech P.,Weiss R.G.Low molecular mass gelators of organic liquids and the properties of their gels.Chem.Rev.,1997,97:3133-3159.
    [3]Abdallah D.J.,Weiss R.G.Organogels and low molecular mass organic gelators.Adv.Mater.,2000,12:237-247
    [4]Sangeeth N.M.,Maitra U.Supramolecular gels:Functions and uses,Chem.Soc.Rev.,2005,34:821-836.
    [5]Menger F.M.Supramolecular chemistry and self-assembly.PNAS,2002,99(8):4818-4822.
    [6]Abdallah D.J.,Weiss R.G.n-Alkanes gel n-alkanes(and many other organic liquids).Langmuir,2000,16:352-355.
    [7]Hirst A.R.,Smith D.K.Dendritic gelators.Top Curr.Chem.,2005 256:237-273.
    [8]van Esch J.H.,Feringa B.L.New functional materials based on self-Assembling organogels:from serendipity towards design.Angew.Chem.Int.Ed.,2000,39:2263-2266.
    [9]Boner C.J.,Manufacture and application of lubricating greases,New York,Reinhold Publishing Corp.,1960.
    [10]Terech P.Small-angle-scattering study of 12-hydroystearic physical organogels and lubricating greases.Colloid Polym.Sci,1991,269:490-500.
    [11]Huang X.,Weiss R.G.,Molecular organogels of the sodium salt of (R)-12-hydroxystearic acid and their templated syntheses of inorganic oxides,Tetrahedron 2007,63:7375-7385.
    [12] Bujanowski V. J., Katsoulis D. E., Ziemelis M. J. Gelation of silicone fluids using cholesteryl esters as gelators. J. Mater. Chem. 1994,4:1181~1187.
    [13] Lin Y., Weiss R. G. A novel gelator of organic liquids and the properties of its gels. Macromolecules. 1987, 20: 414~417.
    [14] Lin Y., Kachar B., Weiss R. G. Novel family of gelators of organic fluids and the structure of their gels. J. Am. Chem. Soc., 1989, 111: 5542~5551.
    [15] Murata K., Aoki M., Suzuki T., et al. Thermal and light control of the sol-gel phase transition in cholesterol-based organic gels. novel helical aggregation modes as detected by circular dichroism and electron microscopic observation. J.Am. Chem. Soc., 1994,116: 6664~6676.
    [16] Zinic M., V(o|¨)gtle F., Fages F. Cholesterol-based gelators, Top Curr. Chem. 2005,256: 39-76.
    
    [17] Jung J. H., Shinkai S., Shimizu T. Nanometer-level sol-gel transcription of cholesterol assemblies into monodisperse inner helical hollows of the silica.Chem. Mater., 2003,15:2141~2145.
    
    [18] Xue P., Lu R., Li D., et al. Rearrangement of the aggregation of the gelator during sol-gel transcription of a dimeric cholesterol-based viologen derivative into fibrous silica. Chem. Mater, 2004,16:3702~3707.
    [19] Peng J., Liu K., Liu J., et al. New dicholesteryl-based gelators: chirality and spacer length effect. Langmuir, 2008,24:2992~3000.
    
    [20] Pozzo J.-L., Clavier G.M., Colonies M., Bouas-Laurent H. Different synthetic routes towards efficient organogelators: 2,3-substituted anthracenes. Tetrahedron,1997, 53: 6377~6390.
    
    [21] Placin F., Colomès M., Desvergne J.-P. A new example of small molecular non-hydrogen bonding gelators for organic solvents. Tetrahedron Lett., 1997, 38:2665~2668.
    [22] Terech P., Meerschaut D., Desvergne J.-P., et al. 2,3-di-n-decyloxy-6,7-dichloroanthracene(Cl2DDOA),a new low-molecular-mass fluorescent organogelator:physical properties and structures.J.Colloid Interface Sci.,2003,261:441-450.
    [23]Reichwagen J.,Hopf H.,Guerzo A.Del,et al.Synthesis of 2,3-substituted tetracenes and evaluation of their self-assembling properties in organic solvents.Org.Lett.,2005,7:971-974.
    [24]高鹏,刘立柱,詹传郎等.N-硬脂酰-L-谷氨酸及其乙酯衍生物的合成与成胶性质研究.化学学报,2004,62(9):895-900.
    [25]Suzuki M.,Sato T.,Kurose A.,Shirai H.,Hanabusa K.New low-molecular weight gelators based on L-valine and L-isoleucine with various terminal groups.Tetrahedron Lett.,2005,46:2741-2745.
    [26]Suzuki M.,Nakajima Y.,Yumoto M.Effects of hydrogen bonding and van der waals interactions on organogelation using designed low-molecular-weight gelator and gel formation at room temperature.Langmuir,2003,19:8622-8626.
    [27]Suzuki M.,Yumoto M.,Kimura M.,et al.New low-molecular-mass gelators based on L-lysine:amphiphilic gelators and water-soluble organogelators.Helvetica Chemical Acta,2004,87:1-7.
    [28]Matteucci M.,Bhalay G.,Bradley M.A combinatorial approach to the synthesis of cystine based organogelators.J.Peptide Sci.,2004,10:318-325.
    [29]Pal A.,Ghosh Y.K.,Bhattachary S.Molecular mechanism of physical gelation of hydrocarbons by fatty acid amides of natural amino acids.Tetrahedron,2007,63:7334-7348.
    [30]Bhattacharya S.,Pal A.Physical gelation of binary mixtures of hydrocarbons mediated by n-lauroyl-L-alanine and characterization of their thermal and mechanical properties.J.Phys.Chem.B,2008,112:4918-4927.
    [31]Das A.K.,Banerjee A.Self-assembling synthetic oligopeptide-based gelators.Macromol.Symp.,2006,241:14-22.
    [32] Das A. K., Bose P. P., Drew M. G. B., Banerjee A. The role of protecting groups in the formation of organogels through a nano-fibrillar network formed by self-assembling terminally protected tripeptides. Tetrahedron, 2007, 63:7432~7442
    
    [33] Escuder B., Miravet J. F. Silk-inspired low-molecular-weight organogelator. Langmuir, 2006, 22: 7793~7797.
    
    [34] Yoza K., Amanokura N., Ono Y., et. al. Sugar-integrated gelators of organic solvents-their remarkable diversity in gelation ability and aggregate structure.Chem. Eur. J., 1999, 5: 2722~2729.
    [35] Gronwald O., Shinkai S. Sugar-integrated gelators of organic solvents. Chem. Eur. J., 2001,7:4328~4334.
    
    [36] Roman L., Shinkai S., Masato I., et al. An attempt to predict the gelation ability of hydrogen-bond-based gelators utilizing a glycoside library. Tetrahedron,2000, 56:9595~9599.
    
    [37] Gronwald O., Sakurai K., Luboradzki R, Kimura T., Shinkai S. Further evidence for the gelation ability-sturcutre correlation in sugar-based gelators. Cabrohydr.Res., 2001,331: 307~318.
    
    [38] Luboradzki R., Gronwald O., Ikeda A., Shinkai S. Sugar-integrated 'supergelators' which can form organogels with 0.03-0.05% [g ml~(-1)]. Chem. Lett.,2000,10:1148~1149.
    
    [39] Luboradzki R., Pakulskib Z. Novel class of saccharide-based organogelators: glucofuranose derivatives as one of the smallest and highly efficient gelators.Tetrahedron, 2004, 60: 4613~4616.
    
    [40] Luboradzki R., Pakulskib Z., Sartowska B. Glucofuranose derivatives as a library for designing and investigating low molecular mass organogelators. Tetrahedron,2005,61:10122~10128.
    [41] Yamamoto S., Ohashi Y., Tsutsumi H., et al. The aggragated higher-structure of 1,3:2,4-di-O-benzylidene-D-sorbitol in organic gels,Bull.Chem.Soc.Jpn.,1995,68:146-151.
    [42]Wilder E.A.,Spontak R.J.,Hall C.K.The molecular structure and intermolecular interactions of 1,3:2,4-di-O-benzylidene-D-sorbitol molecular.Physics.,2003,101(19):3017-3027.
    [43]Yamasaki S.,Tsutsumi H.,The dependence of the polarity of solvents on 1,3:2,4-di-O-benzylidene-D-sorbitol gel.Bull.Chem.Soc.Jpn.,1995,68:123-127.
    [44]王宏,汪芳芳,唐海涛,张金叶,杨亚江.亚苄基山梨醇衍生物在有机溶剂中的自组装及凝胶化研究.化学学报,2007,65(11):1057-1063.
    [45]van Esch J.,Schoonbeek F.S.,de Loos M.,et al.Cyclic bis-urea compounds as gelators for organic solvents.Chem.Eur.J.,1999,5:937-950.
    [46]Schoonbeek F.S.,van Esch J.H.,Kellogg R.M.,Feringa B.L.,Geminal bis-ureas as gelators for organic solvents:gelation properties and structural studies in solution and in the gel state.Chem.Eur.J.,2000,6:2633-2643.
    [47]George M.,Tan G.,John V.T.,Weiss R.G.Urea and thiourea derivatives as low molecular-mass organogelators.Chem.Eur.J.,2005,11:3243-3254.
    [48]Gottarelli G.,Spada G.P..The stepwise supramolecular organisation of guanosine derivatives.The Chemical Record,2004,4:39-49.
    [49]Yoshikawa I.,Yanagi S.,YamajY.i,Araki K.Nucleoside-based organogelators:gelation by the G-G base pair formation of alkylsilylated guanosine derivatives.Tetrahedron,2007,63:7474-7481.
    [50]Yun Y.J.,Park S.M.,Kim B.H.,Novel thymidine-based organogelators and their gelation behaviours.Chem.Commun.,2003,254-255.
    [51]Moreau L.,Barthélémy P.,EI Maataoui M.,Grinstaff M.W.Supramolecular assemblies of nucleoside phosphocholine amphiphiles.J Am.Chem.Soc.,2004,126:7533-7539.
    [52] Snip E., Shinkai S., Reinhoudt D. N. Organogels of a nucleobase-bearing gelator and the remarkable effects of nucleoside derivatives and a porphyrin derivative on the gel stability. Tetrahedron Lett., 2001,42:2153~2156.
    
    [53] Snip E., Koumoto K., Shinkai S. Gel formation properties of a uracil-appended cholesterol gelator and cooperative effects of the complementary nucleobases.Tetrahedron, 2002, 58: 8863~8873.
    
    [54] Bühler G., Feiters M. C., Nolte R. J. M., D(o|¨)tz K. H. A metal-carbene carbohydrate amphiphile as a low-molecular-mass organometallic gelator. Angew.Chem., Int. Ed., 2003,42:2494~2497.
    
    [55] Tu T., Assenmacher W., Peterlik H., et al. An air-stable organometallic low-molecular-mass gelator: synthesis, aggregation, and catalytic application of a palladium pincer complex. Angew. Chem. Int. Ed., 2007,46: 6368 ~6371.
    [56] Shirakawa M., Fujita N., Tani T., et al., Organogels of 8-quinolinol/metal(Ⅱ)-chelate derivatives that show electron- and light-emitting properties. Chem. Eur. J., 2007,13: 4155~4162.
    
    [57] Sahoo P., Kumar D. K., Trivedi D. R., Dastidar P. An easy access to an organometallic low molecular weight gelator: a crystal engineering approach.Tetrahedron Lett., 2008,49:3052~3055.
    
    [58] Oda R., Huc I., Candau S. J. Gemini surfactants as new low molecular weight gelators of organic solvents and water. Angew. Chem., Int. Ed., 1998, 37:2689~2691.
    [59] George M., Weiss R. G., Chemically reversible organogels: aliphatic amines as "latent" gelators with carbon dioxide. J. Am.Chem. Soc., 2001, 123:10393~10394.
    [60] George M., Weiss R. G., Primary alkyl amines as latent gelators and their organogel adducts with neutral triatomic molecules. Langmuir, 2003, 19:1017~1025.
    [61] Abdallah D. J., Weiss R.G., The influence of the cationic center, anion, and chain length of tetra-n-alkylammonium and -phosphonium salt gelators on the properties of their thermally reversible organogels. Chem. Mater., 2000, 12:406~413.
    [62] Dastidar P., Okabe S., Nakano K., et al. Facile syntheses of a class of supramolecular gelator following a combinatorial library approach: Dynamic light scattering and small-angle neutron scattering studies. Chem. Mater., 2005,17: 741~748.
    [63] Ballabh A., Trivedi D. R., Dastidar P. Structural studies of a new low molecular mass organic gelator for organic liquids based on simple salt, Chem. Mater., 2003,15: 2136~2140.
    [64] Darshak R. Trivedi D. R., Dastidar P. Instant gelation of various organic fluids including petrol at room temperature by a new class of supramolecular gelators.Chem. Mater., 2006, 18: 1470~1478.
    [65] Moniruzzaman M., Sundararajan P. R. Low molecular weight organogels based on long-chain carbamates. Langmuir, 2005,21: 3802~3807.
    [66] Tan C., Su L., Lu R. A family of low-molecular-weight organogelators based on long chain substituted benzoic acid hydrazides. J. Mol. Liquids, 2006, 124:32~36.
    [67] Singh M., Tan G., Agarwal V., et al. Structural evolution of a two-component organogel. Langmuir, 2004,20: 7392~7398.
    [68] Tan G., John V. T., McPherson G. L. Nucleation and growth characteristics of a binary low-mass organogel. Langmuir, 2006,22:7416~7420.
    [69] De Loos M., van Esch J., Stokroos I., Kellogg R. M., Feringa B. L. Remarkable stabilization of self-assembled organogels by polymerization. J. Am. Chem. Soc.,1992,119:12675~12676.
    [70] Inoue K., Ono Y., Kanekiyo Y., Hanabusa K., Shinkai S. Preparation of new robust organic gels by in situ cross-link of a bis(diacetylene) gelator. Chem.Lett., 1999, 329: 429~430.
    
    [71] Masuda M., Hanada T., Yase K., Shimizu T. Polymerizaton of bolaform butadiyne L-glucosamide in self-assembled nanoscale-fiber morphology.Macromol., 1998, 31: 9403~9405.
    
    [72] Murata K., Aoki M., Nishi T., Ikeda A., Shinkai S. New cholesterol-based gelators with light- and metal- responsive functions. J. Chem. Soc., Chem.Commun., 1991,1715~1718.
    
    [73] Ayabe M., Kishida T., Fujita N., Sada K., Shinkai S. Binary organogelators which show light and temperature responsiveness. Org. Biomol. Chem. Commu.,2003,1:2744~2747.
    
    [74] de Jong J. J. D., Lueas L. N., Kellogg R. M., van Eseh J. H., Feringa B. L. Reversible optical transcription of supramoleeular chirality into molecular chirality. Science, 2004, 304(5668):278~281.
    [75] de Jong J. J. D., Feringa B. L., Van Eseh J. H. Light-driven dynamic pattern formation. Angew. Chem. Int. Ed., 2005,44:2373~2376.
    
    [76] de Jong J. J. D., Tiemersma-Wegman T. D., van Eseh J. H., Feringa B. L. Dynamic chiral seleetion and amplification using photorcsponsive organogelators. J Am. Chem. Soc., 2005,127: 13804~13805.
    [77] Pozzo J.-L., Clavier G. M., Desvergne J.-P. Rational design of new acid-sensitive organogelators. J. Mater. Chem., 1998, 8: 2575~2577.
    [78] Ahmed S. A., Sallenave X., Fages F., et al. Multiaddressable self-assembling organogelators based on 2H-chromene and N-acyl-l,ω-amino acid units.Langmuir, 2002,18:7096~7101.
    
    [79] Kawano S.-i., Fujita N., Shinkai S. A coordination gelator that shows a reversible chromatic change and sol-gel phase-transition behavior upon oxidative/reductive stimuli. J. Am. Chem. Soc., 2004,126:8592~8593.
    [80] Li Y., Wang T., Liu M. Ultrasound induced formation of organogel from a glutamic Dendron. Tetrahedron, 2007, 63:7468~7473.
    [81] Akiyama T, Imazeki S. Base promoted preparation of alkenylsilanols from allylsilanes. Chem. Lett., 1997,10: 1077~1078.
    [82] Jung H. J., Hideki K., Kjeld J. C., et al. Creation of novel helical ribbon and double-layered nanotube TiO_2 structures using an organogel template. Chem.Mater., 2002,14:1445~1447.
    [83] Kobayashi S, Hanabusa K, Hamasaki N, et al. Preparation of TiO_2 hollow-fibers using supramolecular assemblies. Chem. Mater., 2000,12: 1523~1525.
    [84] Jung JH, Ono Y, Hanabusa K, et al. Creation of both right-handed and left-handed silica structures by sol-gel transcription of organogel fibers comprised of chiral diaminocyclohexane derivatives. J. Am. Chem. Soc., 2000,122: 5008~5009.
    [85] Adachi M, Harada T, Harada M. Formation processes of silica nanotubes through a surfactant-assisted templating mechanism in laurylamine hydrochloride/tetraethoxysilane system. Langmuir, 2000,16: 2376~2384.
    [86] Adachi M., Harada T., Harada M. Formation of huge length silica nanotubes by a templating mechanism in the laurylamine/tetraethoxysilane system. Langmuir,1999, 15:7097~7100.
    [87] Jung J. H., Ono Y., Shinkai S. Sol-gel polycondensation of tetraethoxysilane in a cholesterol-based organogel system results in chiral spiral silica. Angew.Chem. Int. Ed., 2000, 39:1862~1865.
    [88] Jung J. H, Ono Y., Shinkai S. Novel preparation method for multi-layered,tubular silica using an azacrown-appended cholesterol as template and metal-deposition into the interlayer space. J. Chem. Soc., Perkin. Trans., 1999,2(7): 1289~1291
    [89] Ono Y., Nakashima K., Sano M., et al. Organic gels are useful as a template for the preparation of hollow fiber silica.Chem.Commun.,1998,14:1477-1478
    [90]Ono Y.,Nakashima K.,Shinkai S.,et al.Template effect of cholesterol-based organogels on sol-gel polymerization creates novel silica with a helical structure.Chem.Lett.,1999,10:1119-1120.
    [91]Ono Y.,Nakashima K.,Sano M.,et al.Organogels are useful as a template for the preparation of novel helical silica fibers.J.Mater.Chem.,2001,11:2412-2419.
    [92]Zhan C.L.,Wang J.B.,Yuan J.,et al.Synthesis of right- and left-handed silver nanohelices with a racemic gelator.Langmuir,2003,19:9440-9445.
    [93]Xue P.C.,Lu R.,Huang Y.,et al.Novel pearl-necklace porous CdS nanofiber templated by organogel.Langmuir,2004,20:6470-6475.
    [94]谭昌会,苏丽红,卢然,薛鹏冲,包春燕,刘新立,赵英英.水凝胶体系中CuS纳米纤维的模板合成.吉林大学学报(理学版),2006,44:126-129.
    [95]薛鹏冲,卢然,金明,张铁锐,苏丽红,赵英英.手性模板合成CdS纳米棒.高等学校化学学报,2003,24:1172-1174.
    [96]Hanabusa K.,Hiratsuka K.,Kimura M.,Shirai H.Easy preparation and useful character of organogel electrolytes based on low molecular weight gelator.Chem.Mater.,1999,11:649-655.
    [97]Placin F.,Desvergne J.-P.,Lassègues J.-C.Organogel electrolytes based on a low molecular weight gelator:2,3-bis(n-decyloxy)anthracene.Chem.Mater.,2001,13:117-121.
    [98]孟亚斌,杨亚江.碳酸丙烯酯分子凝胶电解质的电化学行为.分析化学,2004,32(8):998-1001.
    [99]孟亚斌,杨亚江.分子凝胶电解质的电导率研究.化学学报,2004,62(16):1509-1513.
    [100]Meng Y.,Yang Y.Gelation of the organic liquid electrolytes and the conductivities as gel electrolytes.Electrochem.Commun.,2007,9:142-1433.
    [101]W.Kubo,K.Murakoshi,T.Kitamura,et al.Quasi-solid-state dye-sensitized TiO_2 solar cells:Effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine.J.Phys.Chem.B,2001,105:12809-12815.
    [102]Kimizuka N.,Nakashima T.Spontaneous self-assembly of glycolipid bilayer membranes in sugar-philic ionic liquids and formation of ionogels.Langmuir,2001,17:6759-6761.
    [103]Ikeda A.,Sonoda K.,Ayabe M.,et al.Gelation of ionic liquids with a low molecular-weight gelator showing T_(gel) above 100 ℃.Chem.Lett.,2001,1154-1155
    [104]Hanabusa K.,Fukui H.,Suzuki M.,Shirai H.,Specialist gelator for ionic liquids.Langmuir,2005,21:10383-10390.
    [105]Kubo W.,Kambe S.,Nakade S.et al.Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes.J.Phys.Chem.B,2003,107:4374-4381.
    [106]Murdan S.,van den Bergh B.,Gregoriadis G.,et al.,Water-in-sorbitan monostearate organogels(water-in-oil gels).J.Pharm.Sci.,1999,88:615-619.
    [107]Murdan S.,Gregoriadis G.,Florence A.T.,Interaction of a nonionic surfactantbased organogel with aqueous media.Int.J.Pharm.,1999,180:211-214.
    [108]Murdan S.,Gregoriadis G.,Florence A.T.,Novel sorbitan monostearate organogels.J.Pharm.Sci.,1999,88:608-614.
    [109]Murdan S.,Gregoriadis G.,Florence A.T.,Sorbitan monostearate/polysorbate 20organogels containing niosomes:a delivery vehicle for antigens? Eur.J.Pharm.Sci.,1999,8:177-186.
    [110]Jibry N.,Murdan S.In vivo investigation,in mice and man,into the irritation potential of novel amphiphilogels being studied as transdermal drug carriers. Eur. J. Pharm. Biopharm., 2004,58:107~119.
    
    [111] Penzes T., Csoka I., Eros I. Rheological analysis of the structural properties effecting the percutanneous absorption and stability in pharmaceutical organogels. Rheol. Acta, 2004,43: 457~463.
    
    [112] Penzes T., Blazso G., Aigner Z., et al. Topical absorption of piroxicam from organogels - in vitro and in vivo correlations. Int. J. Pharm., 2005,298: 47~54.
    [113] Kang L., Liu X.Y., Sawant P. D., et al. SMGA gels for the skin permeation of haloperidol. J. Control. Release, 2005,106: 88~98.
    [114] Lim P.F., Liu X.Y, Kang L., et al. Limonene GP1/PG organogel as a vehicle in transdermal delivery of haloperidol. Int. J. Pharm., 2006,311:157~164.
    [115] Gao Z.H., Crowley W.R., Shukla A.J., et al. Controlled release of contraceptive steroids from biodegradable and injectable gel formulations-in vivo evaluation.Pharm. Res., 1995, 12: 864~868.
    
    [116] Couffin-Hoarau A. C., Motulsky A., Delmas P., Leroux J.C. In situ-forming pharmaceutical organogels based on the self-assembly of L-alanine derivatives.Pharm. Res., 2004,21:454~457.
    
    [117] Plourde F., Motulsky A., Couffin-Hoarau A.C., et al. First report on the efficacy of L-alanine-based in situ-forming implants for the long-term parenteral delivery of drugs. J. Control. Release, 2005,108:433~441.
    [118] Vinitiloiu A., Lafleur M., Bastiat G., et al. In situ-forming oleogel implant for sustained release of rivastigmine. Pharm. Res., 2008,25: 845~852.
    [119] Murdan S., Andrysek T., Son D. Novel gels and their dispersions - oral drug delivery systems for ciclosporin. Int. J. Pharm., 2005, 300: 113~124.
    [120] Hafkamp R. J. H., Kokke B. P. A., Danke I. M., et al. Organogel formation and molecular imprinting by functionalized gluconamides and their metal complexes.Chem. Commun., 1997,545~546.
    [121] Gu W. Q., Lu L. D., Chapman G. B., Weiss R.. G. Polymerized gels and 'reverse aerogels' from methyl methacrylate or styrene and tetraoctadecyl ammonium bromide as gelator. Chem. Commun., 1997, 543~544.
    [122] Tan G, Singh M, He J, John VT, McPherso GL. Use of a self-assembling organogel as a reverse template in the preparation of imprinted porous polymer films. Langmuir, 2005,21: 9322~9326.
    
    [123] Fu X., Yang Y., Wang N., Wang H., Yang Y. A novel chiral separation material: polymerized organogel formed by chiral gelators for the separation of D- and L-phenylalanine. J. Mol. Recognit., 2007,20:238~244.
    [124] Trivedi D. R., Ballabh A., Dastidar, P. An easy to prepare organic salt as a low molecular mass organic gelator capable of selective gelation of oil from oil/water mixtures. Chem. Mater., 2003,15:3971~3973.
    [125] Alfrey J. T., Gurnee E. F., Lloyd W.G. Diffusion in glassy polymers. J. Polym. Sci.: Part C: Polymer Symposia, 1966,12: 249~261.
    [126] Grinsted R.A., Clark L., Koenig J.L. Study of cyclic sorption-desorption into poly (methyl methacrylate) rods using NMR imaging. Macromolecules, 1992; 25:1235~1241.
    [127] Djelveh G., Gros J. B., Bories B. An improvement of the cell diffusion method for the rapid determination of diffusion constants in gels or foods. J. Food Sci.,1989,54(1), 166~169.
    [128] Grassi M., Colombo I., Lapasin R. Experimental determination of the theophylline diffusion coefficient in swollen sodium-alginate membranes. J.Control. Release, 2001, 76: 93~105.
    [129] Lakatos I., Lakatos-Szabó J., Diffusion of H~+, H_2O and D_2O in polymer/silicate gels. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 246: 9~19.
    [130] Scally S., Davison W., Zhang H. Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films. Anal. Chim.Acta, 2006, 558: 222~229.
    [131] Suzuki Y., Nishio I. Quasielastic light scatering study of the movement of particle in gels: Topological structure of pores in gels. Phys. Rev. B, 1992, 45: 4614~4619.
    [132] Routh A.F., Zimmerman W. B. The diffusion coefficient of a swollen microgel particle. J. Colloid Interface Sci., 2003,261: 547~551.
    [133] High M. S., Painter P. C., Coleman M.M. Polymer-polymer mutual diffusion using transmission FTIR spectroscopy. Macromolecules, 1992, 25: 797~801.
    [134] Sahlain J. J., Peppas N. A. An investigation of polymer diffusion in hydrogel laminates using near-field FTIR microscopy. Macromolecules, 1996, 29:7124~7129.
    [135] Boven G., Brinkhuis R. H. G., Vorenkamp E. J., Schouten A. J. Interdiffusion of thin polymer layers studied by external reflection infrared spectroscopy.Macromolecules, 1991,24: 967~969.
    [136] Elabd Y. A. Baschetti M. G. Barbari, T. A. Time-resolved fourier transform infrared/attenuated total reflection spectroscopy for the measurement of molecular diffusion in polymers. J. Polym. Sci., Part B: Polym. Phys., 2003, 41:2794~2807.
    [137] Guo J., Barbari T. A. A dual mode, local equilibrium relaxation model for small molecule diffusion in a glassy polymer. Macromolecules, 2008,41: 238~245.
    [138] Hahn E. L. Spin echoes. Phys. Rev., 1950, 80: 580~594.
    
    [139] Balcom B. J., Fisher A. E., Carpenter A., Hall L. D. Diffusion in aqueous gels. Mutual diffusion coefficients measured by one-dimensional nuclear magnetic resonance imaging. J. Am. Chem. Soc., 1993,115:3300~3305.
    
    [140] Ghi G. Y., Hill D. J. T., Maillet D., Whittaker D. J. N.m.r. imaging of the diffusion of water into poly (tetrahydrofurfuryl methacrylate-co-hydroxyethyl methacrylate). Polymer, 1997, 38: 3985~3989.
    [141] Bailie W. E., Malveau C., Zhu X. X., Marchessault R.H. NMR imaging of high-amylose starch tablets. 1. Swelling and water uptake. Biomacromolecules,2002,3:214~218.
    [142] Kwak S., Lafleur M. Self-diffusion of macromolecules and macroassemblies in curdlan gels as examined by PFG-SE NMR technique. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2003,221: 231~242.
    [143] Mouro C. R., Zykwinska A., Durand S., Doublier J.-L., Buléon A. NMR investigations of the 4-ethyl guaicol self-diffusion in iota (ι)-carrageenan gels.Carbohydrate Polymers, 2004, 57: 459~468.
    [144] Colsenet R., Soderman O., Mariette F. Diffusion of polyethyleneglycols in casein solutions and gels as studied by pulsed field gradient NMR. Magnetic Resonance Imaging, 2005,23:347~348.
    [145] Elson E. L., Magde D. Fluorescence correlation spectroscopy. I . conceptual basis and theory. Biopolymers, 1974,13: 1~27.
    [146] Krichevsky O., Bonnet G. Fluorescence correlation spectroscopy: the technique and its applications. Rep. Prog. Phys., 2002, 65: 251~297.
    [147] Lead J. R.,Starchev K., Wilkinson K.J. Diffusion coefficients of humic substances in agarose gel and in water. Environ. Sci. Technol., 2003, 37:482~487.
    [148] McCain K. S., Schluesche P., Harris J. M. Poly(amidoamine) dendrimers as nanoscale diffusion probes in sol-gel films investigated by total internal reflection fluorescence spectroscopy. Anal. Chem., 2004,76:939~946.
    [149] Perry P. A., Fitzgerald M. A., Gilbert R. G. Fluorescence recovery after photobleaching as a probe of diffusion in starch systems. Biomacromolecules,2006, 7: 521~530.
    [150] Braeckmans K., Peeters L., Sanders N. N., De Smedt S. C, Demeester J. Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope. Biophys. J., 2003, 85: 2240~2252.
    [151] Sun J., Lyles B. F., Yu K. H., et al. Diffusion of dextran probes in a self-assembled fibrous gel composed of two-dimensional arborols. J. Phys. Chem. B., 2008, 112:29~35.
    
    [152] Mancenido F. A., Braeckmans K., De Smedt S. C., et al. Characterization of diffusion of macromolecules in konjac glucomannan solutions and gels by fluorescence recovery after photobleaching technique. Int. J. Pharm., 2006, 316:37~46.
    [153] Bard A J., Faulkner L.R. Electrochemical methods: fundamental and applications, 2 nd Edition. John Wiley, New York, 2001.
    
    [154] Ciszkowska M., Guillaume M. D.Transport of ions and molecules in biopolymeric gels: Electroanalytical studies, J. Phys. Chem. A, 1999, 103:607~613.
    
    [155] Collinson M. M., Rausch C. G., Voigt A. Electroactivity of redox Probes encapsulated within sol-gel-derived silicate films. Langmuir, 1997, 13:7245~7251.
    [156] Kanungo M., Collinson M. M. Controlling diffusion in sol-gel derived monoliths. Langmuir 2005,21: 827~829
    [157] Weng L., Liang S., Zhang L., et al. Transport of glucose and poly(ethylene glycol)s in agarose gels studied by the refractive index method. Macromolecules,2005, 38: 5236~5242.
    [158] Weng L., Lu Y., Shi L., et al. In situ investigation of drug diffusion in hydrogels by the refractive index method. Anal. Chem., 2004,76: 2807~2812.
    [159] Wang A. W., Costello B. J., White R. M. An ultrasonic flexural plate-wave sensor for measurement of diffusion in gels. Anal. Chem., 1993, 65: 1639~1642.
    [160] Valente A. J. M., Burrows H. D., Miguel M. G., Lobo V. M. M. Diffusion coefficients of sodium dodecyl sulfate in water swollen cross-linked polyacrylamide membranes. Eur. Polym. J., 2002, 38:2187~2196.
    [161]Vrtis J.K.,Farris R.J.Mass diffusion coefficients of polymer films using real-time holographic interferometry.J.Appl.Polym.Sci.1996,59:1849-1855.
    [162]Roger P.,Mattisson C.,Axelsson A.,Zacchi G.Use of holographic laser interferometry to study the diffusion of polymers in gels.Biotech.Bioengin.,2000,69:654-663.
    [163]Galindo F.,Burguete M.I.,Gavara R.,Luis S.V.Fluorescence quenching in organogel as a reaction medium.J.Photochem.Photobio.A:Chemistry,2006,178:57-61.
    [164]Karinaga R.,Jeong Y.,Shinkai S.,Kaneko K.,Sakurai K.Inclusion of DNA into Organic Gelator Fibers Made of Amphipathic Molecules and Its Controlled Release.Langmuir,2005,21:9398-9401.
    [165]Friggeri A.,Feringa B.L.,Van Esch J.Entrapment and release of quinoline derivatives using a hydrogel of a low molecular weight gelator.J.Control.Release 2004,97:241-248.
    [166]崔文瑾,殷以华,王理,杨亚江.凝胶因子的合成及在有机溶剂中的聚集现象.华中科技大学学报,2001,29(8):96-98.
    [167]单德才,谭畅,杨亚江.4,4′2二(硬脂酰胺基)二苯甲烷在乙烯基类单体中的分子组装及其结构形态研究.高分子学报,2006,2:303-307.
    [168]Chang X.,Wang L.,Yang Y.,Yang X.,Xu H.Bis-(4-stearoylaminophenyl)methane assembles in organic solvents and used as templates for preparation of SiO_2 nanowires.Mater.Chem.Phys.,2006,99:61-65.
    [169]Liu X.Y.Gelation with small molecules:from formation mechanism to nanostructure architecture.Top.Curr.Chem.2005,256:1-37.
    [170]Peschka R.,Dennehy C.,Szoka F.C.A simple in vitro model to study the release kinetics of liposome encapsulated material.J.Control.Release,1998,56:41-51.
    [171] Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension. J. Pharm. Sci., 1961, 50: 874~875.
    
    [172] Favre E. Girard S. Release kinetics of low molecular weight solutes from mixed cellulose ethers hydrogels: a critical experimental study. Eur. Polym. J., 2001,37: 1527~1532.
    [173] Cleary J., Bromberg L. E., Magner E. Diffusion and release of solutes in pluronic-g-poly(acrylicacid) hydrogels. Langmuir, 2003,19: 9162~9172.
    [174] Morikita T., Yamamoto T. Electrochemical determination of diffusion coefficient of π-conjugated polymers containing ferrocene unit. J. Organomet.Chem., 2001, 637-639: 809~812.
    
    [175] Mahajan R. K., Kaur N., Bakshi M. S. Cyclic voltammetry investigation of the mixed micelles of conventional surfactants with L64 and F127. Colloids Surfaces A: Physicochem. Eng. Aspects, 2006,276: 221~227.
    
    [176] Eisele S., Schwarz M., Speiser B., Tittel C. Diffusion coefficient of ferrocene in 1-butyl-3 methylimidazolium tetrafluoroborate - concentration dependence and solvent purity. Electrochim. Acta, 2006, 51: 5304~5306.
    
    [177] Matsumoto H., Yanagida M., Tanimoto K., Nomura M., Kitagawa Y., Miyazaki Y. Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis(trifluoromethylsulfonyl)imide. Chem.Lett., 2000,29: 922~923.
    
    [178] Opallo M., Kukulka J. Electrochemical redox reaction in a silica sol-gel glass with embedded organic electrolyte. Electrochem. Commun.. 2000, 2, 394~398.
    [179] Opallo M., Walkiewicz J. K. The electrochemical redox reactions in silica sol-gel glass monoliths and films with embedded organic electrolyte,Electrochim. Acta, 2001, 46: 4235~4242.
    
    [180] Reiter J., Vondrák J., Micka Z. The electrochemical redox processes in PMMA gel electrolytes-behaviour of transition metal complexes, Electrochim. Acta, 2005, 50: 4469~4476.
    [181] Masara L., Zhu X. X. Physical models of diffusion for polymer solutions, gels and solids. Prog. Polym. Sci., 1999,24: 731~775.
    [182] Song J. Y., Wang Y. Y., Wan C. C. Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources 1999, 77: 183~197.
    [183] Matsumiya M., Terazono M., Tokuraku K. Temperature dependence of kinetics and diffusion coefficients for ferrocene/ferricenium in ammonium-imide ionic liquids. Electrochim. Acta, 2006, 51: 1178~1183.
    [184] Kostela J., Elmgren M., Kadi M., Almgren M. Redox activity and diffusion of hydrophilic, hydrophobic, and amphiphilic redox active molecules in a bicontinuous cubic phase. J. Phys. Chem. B, 2005,109: 5073~5078.
    [185] Hultgren V. M., Mariotti A. W. A., Bond A. M., et al. Reference potential calibration and voltammetry atmacrodisk electrodes of metallocene derivatives in the ionic liquid [bmim] [PF6]. Anal. Chem., 2002, 74: 3152~3156.
    [186] Danielsson I., Lindman B. The definition of microemulsion. Colloids Surf.,1981,3:391~392.
    [187] Lawrence M. J., Rees G. D. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev., 2000,45: 89~121.
    [188] Kogan A., Garti N. Microemulsions as transdermal drug delivery vehicles. Adv. Colloid Interface Sci., 2006, 123-126: 369~385.
    [189] Gutfelt S., Kizling J., Holmberg K. Microemulsions as reaction medium for surfactant synthesis. Colloids Surf. A: Physicochem. Eng. Aspects, 1997, 128:265~271.
    [190] Buhler E., Appell J., Porte G. Loose complexation of weakly charged microemulsion droplets and a polyelectrolyte, J. Phys. Chem. B, 2006, 110:6415~6422.
    [191] Hentze H. P., Antonietti M. Template synthesis of porous organic polymers. Curr. Opin. Solid State Materials Sci., 2001,5: 343~353.
    
    [192] Atkinson P.J., Robinson B.H., Howe A.M., Heenan R.K. Structure and stability of microemulsion-based organogels, J. Chem. Soc. Faraday Trans., 1991, 87:3389~3397.
    [193] Kantaria S., Rees G. D., Lawrence M. J. Formulation of electrically conducting microemulsion-based organogels. Int. J. Pharm., 2003,250: 65~83.
    [194] Stamatis H., Xenakis A. Biocatalysis using microemulsion-based polymer gels containing lipase. J. Molecular Catalysis B: Enzymatic, 1999, 6: 399~406.
    [195] Holtze C., Landfester K., Antonietti M. A novel route to multiphase polymer systems containing nano-droplets: radical polymerization of vinylic monomers in gelled water-in-oil miniemulsions. Macromol. Mater. Eng., 2005, 290:1025~1028.
    
    [196] Stubenrauch C., Tessendorf,R. Strey R., Lynch I., Dawson K.A. Gelled polymerizable microemulsions. 1. Phase behavior. Langmuir, 2007, 23:7730~7737.
    [197] Chen H., Mou D., Du D., et al. Hydrogel-thickened microemulsion for topical administration of drug molecule at an extremely low concentration. Int. J.Pharm., 2007, 341: 78~84.
    [198] Motulsky A., Lafleur M., Couffin-Hoarau A.-C., et al. Characterization and biocompatibility of organogels based on L-alanine for parenteral drug delivery implants. Biomaterials, 2005,26: 6242~6253.
    [199] Zhu G., Dordick J. S. Solvent effect on organogel formation by low molecular weight molecules, Chem. Mater., 2006,18: 5988~5995.
    [200] Li J.L., Liu X.Y., Strom C.S., Xiong J.Y. Engineering of small molecule organogels by design of the nanometer structure of fiber networks. Adv. Mater.,2006,18:2574~2578.
    [201] Goc J. T., Bielejewski M., Luboradzki R., et al., Thermal properties of the gel made by low molecular weight gelator 1,2-O-(1-ethylpropylidene)-a-D-glucofuranose with toluene and molecular dynamics of solvent. Langmuir, 2008,24:534~540.
    [202] Yamada N., Imai T., Koyama E. Lyotropic aggregate of tripeptide derivatives within organic solvents: relationship between interpeptide hydrogen bonding and packing arrangements of components. Langmuir, 2001,17: 961~963.
    [203] Langer R. Polymer-controlled drug delivery systems. Acc. Cem. Res., 1993, 26(10): 547~562.
    [204] Jones M. N. Carbohydrate-mediated liposomal targeting and drug-delivery. Adv.Drug. Deliver. Rev., 1994,13 (3): 215~249.
    [205] D'Cruz O.J., Uckun F.M. Gel-microemulsions as vaginal spermicides and intravaginal drug delivery vehicles. Contraception, 2001, 64: 113~123.
    [206] Kantaria S., Rees G.D., Lawrence M. J. Gelatin-stabilized microemulsion-based organogels: rheology and application in iontophoretic transdermal drug delivery.J. Control. Release, 1999, 60: 355~365.
    [207] H. Liu, Y. Wwang, F. Han, H. Yao, S. Li. Gelatin-stabilised microemulsion-based organogels facilitates percutaneous penetration of cyclosporin A in vitro and dermal pharmacokinetics in vivo. J. Pharm. Sci.,2007, 96 (11): 3000~3009.
    [208] Gulsen D., Chauhan A. Dispersion of microemulsion drops in HEMA hydrogel:a potential ophthalmic drug delivery vehicle. Int. J. Pharm., 2005, 292: 95~117.
    [209] Kairuz A.J., Allemandi D., Manzo R. Mechanism of lidocaine release from carbomer- lidocaine hydrogels. J. Pharm. Sci., 2002, 91 (1): 267~272.
    [210] Ritger P. L., Peppas N. A. A simple equation for description of solute release. I. Fickian and non-Fickian release from nonswellable sevices in the form of slabs,spheres, cylinders or discs. J. Control. Release, 1987, 5: 23~36.
    [211] Reifenrath W. G., Robinson P. B., Bolton V. D., Aliff R. E . Percutaneous penetration of mosquito repellents in the hairless dog: effect of dose on percentage penetration. Food Cosmet. Toxicol., 1981,19: 195~199.
    [212] Smith B. W., Monthioux M., Luzzi D. E. Encapsulated C60 in carbon nanotubes. Nature 1998. 396: 323~324.
    [213] Khlobystov A., Britz D. A., Andrew G., Briggs D. Molecules in Carbon Nanotubes. Acc. Chem. Res., 2005, 38: 901~909.
    [214] Tasis D., Tagmatarchis N., Bianco A., Prato M. Chemistry of carbon nanotubes.Chem. Rev., 2006,106: 1105~1136.
    [215] Seifu D., Hijji Y., Hirsch G., Kama S. P. Chemical method of filling carbon nanotubes with magnetic material. J. Magnetism Magnetic Materials, 2008, 320:312~315.
    
    [216] Palen E. B., Mendoza E., Bachmatiuk A., et al. Iron filled single-wall carbon nanotubes - A novel ferromagnetic medium, Chem. Phy. Lett., 2006,421:129~133.
    [217] Chen G., Qiua J., Qiua H. Filling double-walled carbon nanotubes with AgCl nanowires. Scripta Materialia, 2008, 58: 457~460.
    [218] Guan L., Shi Z., Li M., Gu Z. Ferrocene-filled single-walled carbon nanotubes Carbon, 2005,43: 2780~2785.
    [219] Kim B. M., Qian S., Bau H. H. Filling Carbon nanotubes with particles. Nano Lett., 2005, 5: 873~878.
    
    [220] Chen S., Wu G., Sha M., Huang S. Transition of ionic liquid [bmim][PF6] from liquid to high-melting-point crystal when confined in multiwalled carbon nanotubes. J. Am. Chem. Soc., 2007,129:2416~2417.
    [221] Bazilevsky A. V., Sun K., Yarin A. L., Megaridis C. M. Selective intercalation of polymers in carbon nanotubes. Langmuir, 2007,23: 7451~7455.
    [222] Byl O., Liu J.-C., Wang Y., et al. Unusual hydrogen bonding in water-filled carbon nanotubes. J. Am. Chem. Soc., 2006,128:12090~12097.
    [223] Shklyarevskiy I. O., Jonkheijm P., Christianen P. C. M., et al. Magnetic alignment of self-assembed anthracene organogel fibers. Langmuir, 2005, 21:2108~2212.
    [224] Lescanne M., Colin A., Mondain-Monval O., Heuze K., Fages F., Pozzo J.-L.Flow-induced alignment of fiberlike supramolecular self-assemblies during organogel formation with various low molecular mass organogelator-solvent systems. Langmuir, 2002; 18: 7151~7153.
    [225] Y. Xiong, Q. Liu, Z. Li, H. Wang, Y. Yang. Self-assembly of a dialkylurea gelator in organic solvents in the presence of centrifugal and shearing forces. J.Colloid Interf. Sci., 2008,318: 496~500.
    [226] Sloan J., Kirkland A. I. Hutchinson J. L. Green M. L. H. Structural characterization of atomically regulated nanocrystals formed within single-walled carbon nanotubes using electron microscopy. Acc. Chem. Res.,2002, 35: 1054~1062.
    [227] Chen S., Wu G., Chen D. An easy approach to hydroxyethylated SWNTs and the high thermal stability of the inner grafted hydroxyethyl groups. Nanotechnology, 2006,17: 2368~2372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700