分子印迹技术结合化学发光成像和荧光光纤传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子印迹属超分子化学中的主客体化学范畴,是源于高分子化学、生物化学、材料科学等学科的一门交叉学科。分子印迹聚合物即是这样一种合成的人工受体:它具有形状与底物分子相匹配的空腔,而且有着特定排列的功能基团可以与底物分子产生识别作用。与常规和传统的分离和分析介质相比,基于分子识别的分子印迹聚合物的突出特点是对被分离物或分析物具有高度的选择性。同时分子印迹聚合物的物理化学稳定性好,能够耐受高温、高压、酸碱、有机溶剂等,具有构效预定性、特异识别性和广泛实用性三大特点。因而,在化学催化、材料科学、色谱分离、仿生传感等方面得到了日益广泛的应用。
     最常用的分子印迹聚合物的制备方法是,将模板分子、交联剂致孔剂和引发剂的混合溶液在容器中通过光照射或者加热进行引发,制备得到块状的分子印迹聚合物,经过研磨、过筛和洗涤等步骤得到一定尺寸的分子印迹聚合物的粉末颗粒,然后进行聚合物的吸附性能或者识别性能评价。这种方法制备得到的分子印迹聚合物的缺点是:其一,在研磨的过程中很多识别位点受到了损坏,不能发挥分子识别和吸附的作用;其二,许多识别位点被深深地包埋在聚合物颗粒的内部,从而造成对模板分子的洗脱难度比较大,即便是洗脱出来,在识别过程中难于高效发挥作用。而直接合成分子印迹聚合物微球,不但可以避免繁杂的后处理过程,获得粒径均一的产品,聚合物产率高,而且印迹孔穴暴露在微球表面的几率大,是一类有广阔发展前景的分子印迹材料。目前制备分子印迹聚合物微球的方法主要有:悬浮聚合法、多步溶胀悬浮聚合法、乳液聚合法、种子悬浮聚合法等。这些聚合法虽然印迹效果很好,但其制备过程非常繁琐,制备周期较长,且所得到的聚合物微球的粒径大都在微米级。而沉淀聚合是合成分子印迹聚合物微球的一种简单易行的方法,该方法一步即可完成,且不需在反应体系中加入任何稳定剂,获得的聚合物微球表面洁净,可避免由稳定剂或表面活性剂对模板分子的非选择性吸附。合成的微粒可以达到亚微米级。
     本论文的研究工作主要由两部分组成,第一部分为分子印迹-化学发光成像研究。化学发光成像分析是一种高通量的,可以快速检测多个样品的分析方法。在这一部分的工作中,采用沉淀聚合法合成了单分散性较好的,单一的亚微米级的几种物质的聚合物微球,并结合化学发光成像分析,建立了几种物质的高选择性、快速的检测方法,特别是应用于手性分子的快速识别和检测,取得了成功。第二部分为分子印迹-荧光光纤传感器研究。在分子印迹技术中,如何有效的洗脱模板分子是一个难题,传统的方法尽管进行了多次充分的洗涤,仍然有很大一部分模板分子留存在聚合物的空穴中,传感器的可逆性和重现性较差。本论文这一部分的工作,是用氧化反应破坏模板分子的结构,使其易于洗脱,并用于96孔板上,将其作为一次性传感器的识别元件,避免了多次测量之间的清洗困难,结合荧光光纤技术检测了复杂样品中的模板分子。具体内容如下:
     第一部分分子印迹-化学发光成像研究
     第1章分子印迹技术的研究进展
     本章对分子印迹技术的研究进展进行了论述,内容主要包括分子印迹的发展概况、基本原理、合成方法及其应用。
     第2章化学发光成像分析
     本章对化学发光成像分析的研究进展进行了综述,内容主要包括化学发光成像分析的发展概况、应用以及发展前景。
     第3章沉淀聚合法制备分子印迹聚合物结合化学发光成像分析测定反式白藜芦醇
     以反式白藜芦醇为模板分子,用沉淀印迹微球技术合成了粒径均一的亚微米级微球。采用SEM表征印迹微球的行貌。详细探讨了该印迹微球合成条件。该研究解决了传统的印迹聚合物呈块状的缺点,无需研磨,可以直接制备呈规则微球型的聚合物颗粒。该方法既避免了块状聚合物所需要研磨带来的结合位点的破坏以及原料利用率低等缺点,相比其他微球聚合技术又具有合成过程简单的优点,且合成的微粒直径可以达到亚微米级。结合化学发光成像分析,建立了测定葡萄酒以及虎杖提取物中白藜芦醇含量的新方法。具体过程是以聚乙烯醇(PVA)为固定剂固定分子印迹聚合物微球到96微孔板上,选择性吸附溶液中的反式白藜芦醇,以CCD摄像机记录化学发光成像信号。该方法简单、快速且具有高的选择性。
     第4章分子印迹-化学发光成像分离分析丹酰化-苯丙氨酸手性异构体的研究
     在分子印迹的手性分离应用中,大部分都是结合色谱或毛细管电泳分离方法,而色谱或毛细管电泳方法不仅仪器昂贵,且费时、费试剂。分子印迹用于传感器又有响应时间过长,分子印迹的洗脱困难等缺点。本文建立了一种MIP-化学发光成像手性识别检测丹酰化-苯丙氨酸异构体的新方法。采用微阵列检测,不仅节省时间且没有多次洗脱模板分子的困扰。印迹聚合物微球用沉淀聚合的方法制成,并将其固定于96微孔板上,用一台商品化的带有低温冷却装置的CCD成像系统检测化学发光信号。在最佳实验条件下,L-和D-型异构体的检出限分别为0.025μmol/L和0.075μmol/L(3σ)。将本方法用于L-,D-型混合样品的分析,测定结果与毛细管电泳法做了对照,结果相吻合。
     第5章分子印迹-化学发光成像分析检测人尿液中的双嘧达莫
     建立了一种选择性好的高通量检测双嘧达莫的方法。该方法结合分子印迹技术和化学发光成像技术的优点,即以具有专一性识别特性的分子印迹聚合物为识别元件,固定到96微孔板上,选择性吸附被测物后,加入化学发光试剂,以高通量的成像分析其化学发光信号。在最佳条件下,双嘧达莫的先行范围为0.02~10μg/mL。检出限为0.006μg/mL。成功的用于人尿液中双嘧达莫的分析。拓宽了化学发光成像和分子印迹技术的应用领域。本方法的最大优点就是能在30 min之内同时检测96个样品。
     第6章化学发光成像结合分子印迹技术测定废水中的罗丹明B
     本文采用一种灵敏、简单的方法实现对罗丹明B的选择性检测。采用沉淀聚合法首次成功地制备了粒径均一的罗丹明B印迹聚合物微球,优化了聚合条件。并将洗脱了模板分子的聚合物固定于96微孔板上,用一台商品化的带有低温冷却装置的CCD成像系统检测化学发光信号。在最佳实验条件下,罗丹明B在0.002~10μg/mL浓度范围内线性关系良好(r=0.9994)。沉淀既避免了块状聚合物所需要研磨带来的结合位点的破坏以及原料利用率低等缺点,相比其他微球聚合技术又具有合成过程简单的优点,且合成的微粒直径可以达到亚微米级。化学发光成像分析是一种高通量的检测手段,可以实现多个样品的同时检测。
     第7章化学发光成像结合分子印迹技术测定环境水中的荧蒽
     荧蒽属于多环芳烃(PAHs)中的一种。多环芳烃是一类广泛分布于天然环境中的有毒有机污染物,难于生物降解。是最早被发现的环境致癌物,因为PAHs在水中的低溶解度和疏水性测定水中的PAHs难度尤其大,本实验结合高灵敏度的化学发光成像方法和高选择性的分子印迹技术,富集检测环境水中的荧蒽,结果显示即便是没有任何官能团的分子也可以用分子印迹作为这一类物质的识别手段。
     第二部分分子印迹-荧光光纤研究
     第1章光纤分析
     本章对光纤分析的研究进展进行了综述,内容主要包括光纤传感器的发展概况、光纤传感原理、光纤化学传感器试剂相的固定方法和光纤化学传感器研究发展趋势。
     第2章分子印迹-荧光光纤传感器检测6-巯基嘌呤
     采用沉淀聚合合成粒径均一的亚微米级6-巯基嘌呤分子印迹聚合物微球。以聚乙烯醇固定合成的分子印迹聚合物微球到96孔板上,结合荧光光纤技术成功制备印迹传感器的微阵列。荧光分析法具有灵敏、快速、简便等优点,本文采用氧化的方法把原本微弱荧光的6-巯基嘌呤转变成强荧光的物质,大大提高了灵敏度。分子印迹聚合物作为选择性识别元件,可以提高方法的选择性。且本方法采用微阵列的方式,相比其它的传感器,被测物分子不用不断的从换能器上洗脱,简化了实验过程,节省了实验时间,已成功地用于人血清中6-巯基嘌呤的检测。
     第3章分子印迹荧光荧光光纤传感器分析检测卡马西平
     研究了一种结合分子印迹技术和荧光分析技术相结合的光纤微阵列传感器并将其用于血样中卡马西平的测定。利用沉淀聚合方法,以及基丙烯酸为功能单体,TRIM为交联剂合成亚微米级分子印迹聚合物微球,其对卡马西平存在特异性吸附。通过聚乙烯醇包埋聚合物微球到96孔板上,采用氧化荧光光纤传感的方法测定卡马西平的含量。虽然已经有许多分子印迹作为识别元件的传感器,但是分子印迹作为识别元件的最大的困扰之一就是洗脱困难,重现性差。本方法采用微阵列的方式,相比其它的传感器,被测物分子不用不断的从换能器上洗脱。同时分子印迹聚合物作为识别元件,极大地提高了荧光分析方法的选择性和灵敏度。
     第4章分子印迹荧光荧光光纤传感器分析测定叶酸含量
     合成了叶酸的分子印迹聚合物,并将其固定到96孔板上,构建了微阵列光纤荧光传感器。基于分子印迹微球的传感器响应时间快,尤其是采用微阵列的方式,相比其它的传感器,被测物分子不用不断的从换能器上洗脱。同时分子印迹聚合物作为识别元件,极大地提高了荧光分析方法的选择性和灵敏度,使该方法可直接用于测定奶粉中的叶酸含量。
Molecular imprinting belongs to the category of host-guest chemistry in super-molecule chemistry. It is an interdiscipline subject, which origins from macromelocular chemistry, biochemistry, material chemistry, etc. Molecular imprinted polymers (MIPs) are such a synthetically man-made receptor: it owns the cavities which match up substrate molecules in space and can recognize the substrate molecules through the ordered functional groups. Compared with the routine and traditional medium used for separation and analysis, the outstanding character of MIPs based on molecular recognition is its excellent selectivity to the substrates. Further more, MIPs are highly stable and able to bear high temperature, high pressure, acid or alkaline condition, and organic solution. Due to their predetermination, specific recognition and practicability, MIPs have been largely put into use in catalysis, material chemistry, separation and biomimic sensor.
     A typical imprinting system consists of a print molecule, at least one type of functional monomer and crosslinker, and a porogenic solvent. To induce radical polymerization an appropriate initiator is included as well. In their most common format, MIPs are prepared in the form of a macroporous monolith that is then ground and sieved to appropriate particle sizes. The grinding and sieving process is time-consuming and yields only moderate amounts of 'useful' product. The MIP particles are also irregularly shaped and are not ideal. Although suspension polymerization and seed polymerization can provide spherical, molecularly imprinted polymer beads, they require either use of special dispersing phases/surfactants, or complicated swelling processes. Precipitation polymerization was a more general and simple imprinting method applicable to a wide range of print molecules giving uniform MIP spheres.
     The research work of the dissertation is made up of two sections of development of MIP-chemiluminence (CL) imaging assay, MIP-fluorescence optical fiber sensor assay. In the first part, imprinted uniform microspheres were synthesized by precipitation polymerization against several templates. The simple and specific methods have been developed coupled of chemiluminescence (CL) imaging assay. In the second part, fiber optic fluorescence sensors have been developed by combinding MIP and fiber optic fluorescence technology. Although MIP has many advantages, a number of problems still exist. One of the main disadvantages is the difficulty in removing the entire template analyte molecule, even after extensive washing. In this part, we are aiming to resolve the problems through oxidizing the template to a compound that can be detected with higher sensitivity. The oxidization reaction could change the template molecular structure and made the compound washed off easily. As a result the cavities can be released and retain their memory for the target analyte. Details are presented in this thesis as follows:
     Part One MIP-CL imaging assay
     Chapter 1 The development of the molecular imprinted technology
     This review summarizes recent research efforts on the development of molecularly templated (sometimes called molecularly imprinted) polymers. It's contained the progress of MIPs in recent years, the principle of imprinting procedure, the method of synthesiz and MIPs' applications.
     Chapter 2 CL imageing assay
     The development, applicationd and the trend of the CL imageing method were reviewed in this chapter.
     Chapter 3 Molecular imprinted polymer-based chemiluminescence imaging for the detection of trans-resveratrol
     Imprinted uniform microspheres were synthesized by precipitation polymerization against trans-resveratrol. The conditions of polymerization were carefully studied. Microtiter plates (96 wells) were coated with polymer microspheres imprinted with trans-resveratrol, which were fixed in place using poly(vinyl alcohol) (PVA) as glue. The amount of polymer-bound trans-resveratrol was quantified using imidazole (IMZ)-catalyzed peroxyoxalate chemiluminescence (PO-CL) reaction. The light produced was then measured with a high-resolution CCD camera. These results showed that the MIP-based CL imaging can become a useful analytical tool for quick simultaneous detection of trans-resveratrol in a large number of real samples.
     Chapter 4 Molecularly imprinted polymer based on chemiluminescence imaging for the chiral recognition of Dns-phenylalanine
     A new molecularly imprinted polymer (MIP)-chemiluminescence (CL) imaging detection approach towards chiral recognition of Dns-phenylalanne (Phe) is presented. The polymer microspheres were synthesized using precipitation polymerization with Dns-L-Phe as template. Polymer microspheres were immobilized in microtiter plates (96 wells). The analyte was selectively adsorbed on the MIP microspheres. After washing, the bound fraction was quantified based on peroxyoxalate chemiluminescence (PO-CL) analysis. In the presence of Dns-Phe, bis(2, 4, 6-trichlorophenyl)oxalate (TCPO) reacted with hydrogen peroxide (H_2O_2) to emit chemiluminescence. The signal was detected and quantified with a highly sensitive cooled charge-coupled device (CCD). Influencing factors were investigated and optimized in detail. Control experiments using capillary electrophoresis showed that there was no significant difference between the proposed method and the control method at a confidence level of 95%. The method can perform 96 independent measurements simultaneously in 30 min and the limits of detection (LODs) for Dns-LPhe and Dns-D-Phe were 0.025μmol/L and 0.075μmol/L (3σ), respectively. The relative standard deviation (RSD) for 11 parallel measurements of Dns-L-Phe (0.78μmol/L) was 8%. The results show that MIP-based CL imaging can become a useful analytical technology for quick chiral recognition.
     Chapter 5 Chemiluminescence imaging assay dipyridamole based on molecular imprinted polymer as recognition material
     A simple, sensitive and specific method has been developed for high throughput detection of dipyridamole. The proposed method is based on chemiluminescence (CL) imaging assay combined molecularly imprinted polymer (MIP) recognition. Polymer as the artificial biomimetic recognition element for dipyridamole was coated in 96- microtiter well plates with poly(vinyl alcohol) (PVA) as glue. The amount of polymer-bound dipyridamolewas determination based on dipyridamole peroxyoxalate chemiluminescence (PO-CL) reaction. The emitting light was measured with a high-resolution charge couple device (CCD) camera. Influencing factors were investigated and optimized in detail. The proposed method in this paper exhibits high selectivity and sensitivity to dipyridamole. Under the optimum conditions, the relative CL imaging intensity (AVG) is proportional to the concentration of dipyridamole ranging from 0.02 to 10μg/mL. The detection limit is 0.006μg/mL. The method can perform 96 independent measurements simultaneously in 30 min. These results show that the MIP-based CL imaging method can become a useful analytical technology for quick detection of dipyridamole in real sample.
     Chapter 6 Determination of rhodamine B in water by molecular imprinted polymer and CL imageing
     A simple, sensitive and specific method has been developed for high throughput detection of rhodamine B. Molecular imprinted polymer microspheres were prepared by precipitation polymerization. Polymer microspheres were immobilized in microtiter plates (96 wells). The analyte was selectively adsorbed on the MIP microspheres. After washing, the bound fraction was quantified based on peroxyoxalate chemiluminescence (PO-CL) analysis. The signal was detected and quantified with a highly sensitive cooled charge-coupled device (CCD). In addition, the developed method was satisfactorily applied to the determination of rhodamine B in water samples.
     Chapter 7 Determination of fluoranthene in water by molecular imprinted polymer and CL imageing
     Fluoranthene is a representative compound among polycyclic aromatic hydrocarbons (PAHs). PAHs is a kind toxic organic contamination distributing in environment abroad and difficult to be degraded by biology, is a kind environmental carcinogens described earliest.oweing to the lower solubility in water and hydrophobicity, the detection of these compounds was very difficult. This work detected fluoranthene in the water by conbinding the high sensitivity CL imageing assay and high selectivity MIP. The results showed that MIP could be an enrichment technology.
     Part Two MIP-fluorescence optical fiber sensor assay
     Chapter 1 The development of fiber optic sensor
     This charpter reviewed the development of fiber optic sensor. It is containing the progress of fiber optic sensor in recent years, the mechanisms of fiber optic sensor, the methods of fixing sensitive materials and the trend of fiber optic sensor was described.
     Chapter 2 The study of oxidization fluorescence sensor with molecular imprinting polymer and its application for 6-Mercaptopurine (6-MP) determination
     This paper developed high-performance optical fiber sensors based on molecular imprinting polymer (MIP) and studied the application in 6-Mercaptopurine (6-MP) pharmaceutical formulations, human serum and urine samples. The sensors were fabricated by coupling the optical fibers with the polymer coated in 96-microtiter well plates using poly(vinyl alcohol) (PVA) as glue. The polymer acted as the artificial biomimetic recognition element for 6-MP. The MIP microspheres with uniform shape were prepared using precipitation polymerization method. During the determination, 6-MP was oxidized to a strong fluorescent compound with H_2O_2 in the alkaline media, which was one of the maim advantages that made it could be washed off easily from MIP and detected sensitively with fluorescence. This molecular imprinting approach offered a relatively nice selectivity for 6-MP detection. In addition, the developed method was satisfactorily applied to the determination of 6-MP in human serum samples.
     Chapter 3 The study of oxidization fluorescence sensors with molecular imprinting polymer and the application for carbamazepine determination
     This paper developed high-performance optical fiber fluorescence sensors based on molecular imprinting polymer (MIP). As a selective recognition material, the polymers were coupled with optical fiber fluorimetry detection for the efficient determination of carbamazepine (CBZ) in human serum. The sensors were fabricated by coupling the optical fiber fluorimetry with 96-microtiter well plates coated MIP. After adsorbed to MIP, the CBZ was detected by fiber fluorescence spectrophotometer after oxidation with lead dioxide in the media of sulfuric acid and methanol (V:V=3:1), which was one of the maim advantages that made it could be washed off easily from MIP and detected sensitively with fluorescence. This molecular imprinting approach offered a relatively nice selectivity for CBZ detection. The relative standard deviation (RSD) was 5% for a same sensor (n=5) when CBZ concentration was 0.01μg/mL in serum. In addition, the developed method was satisfactorily applied to the determination of CBZ in human serum samples without any necessity for sample treatment or time-consuming extraction steps prior to the analysis.
     Chapter 4 The study of oxidization fluorescence sensor with molecular imprinting polymer andits application for folic acid determination
     Fluorescence feber optic sensor combined with MIP was fabricated. Imprinted uniform microspheres againsted folic acid were synthesized by precipitation polymerization and were fixed to microtiter plates (96 wells). The selective of the sensor was inhenced based on the MIP recognition of template. And its application to the analysis of milk powder, value of RSD (n = 5) obtained was 3.5%.
引文
[1] L. Pauling. A Theory of the Structure and Process of Formation of Antibodies [J]. J. Am. Chem. Soc, 1940,62: 2643-2657.
    [2] F.H. Dickey. The Preparation of Specific Adsorbents [J]. Proc. Natl. Acad. Sci., 1949, 35: 227-229.
    [3] G. Wulff, A. Sahan. The Use of Polymers with Enzyme - Analogus Structures for the Resolution of Racemates [J]. Angew Chem. Int. Ed. Engl, 1972,11: 341-344.
    [4] G. Vlatakis, L.I. Andersson, R. Miller, K. Mosbach. Drug Assay Using Antibody Mimics Made by Molecular Imprinting [J]. Nature, 1993, 361: 645-647.
    [5] S.A. Piletsky, S. Alcock, A.P.F. Turner. Molecular Imprinting: At the Edge of the Third Millennium [J]. Trends Biotechnol., 2001,19(1): 9-12.
    [6] F. Dickert. Molecular Imprinting [J]. Anal. Bioanal. Chem., 2007,389: 353-354.
    [7] G. Wulff, S. Schanhoff. Enzyme-analog-built Polymers. 27. Racemic Resolution of Free Sugars with Macroporous Polymers Prepared by Molecular Imprinting. Selectivity Dependence on the Arrangement of Functional Groups Versus Spatial Requirements [J]. J. Org. Chem., 1991, 56: 395-400.
    [8] G. Wulff, J. Haarer. The Preparation of Defined Chiral Cavities for the Racemic Resolution of Free Sugars [J]. Makromol. Chem., 1991,192: 1329-1338.
    [9] L.I. Andersson, D.J. O'Shannessy, K. Mosbach. Molecular Recognition in Synthetic Polymers: Preparation of Chiral Stationary Phases by Molecular Imprinting o Amino Acid Amides [J]. J. Chromatogr., 1990, 513:167-179.
    [10] G. Wulff, J. Vietmeier, Enantioselective Synthesis of Amino Acids Using Polymers Possessing Chiral Cavities Obtained by Imprinting Procedure With Template Molecules [J]. Makromol. Chem., 1989,190: 1727-1735.
    
    [11] K.J. Shea, D.Y. Sasaki. Selective Adsorption of Metal Ions on Poly(4-vinylpyridine)resins in Which the Ligand Chain is Immobilized by Cross-linking [J]. J. Am. Chem. Soc, 1989, 111: 3442-3445.
    [12] J. Steinke, D.C. Sherrington, I.R. Dunkin, Imprinting of Synthetic Polymers Using Molecular Templates [J]. Adv. Polym. Sci., 1995,123: 80-125.
    [13] G. Wulff, A. Sahan, K. Zabrocki. Enzyme - Analongue Built Polymers and TheirUse for the Resolution of Race-mates [J]. Tetrahedron Lett., 1973, 4329-4332.
    [14] G. Wulff. Drug Assay Using Antibody Mimics Made by Molecular Imprinting [J]. Angew Chem. Int. Ed. Engl., 1995, 34(6):1812-1823.
    [15] G. Chirica, V.T. Remcho. Direct Drug Determination by Selective Sample Enrichment on an Imprinted Polymer [J]. Electrophoresis, 1999,20(1) :50-56.
    [16] G.I. Nilsson, K. Sakaguchi, P. Gemeiner, K. Mosbach. Molecular Imprinting of Acetylated Carbohydrate Derivatives into Methacrylic Polymers [J]. J. Chromatogr. A., 1995, 707:199-203.
    [17] G. Wulff, E. Lohman. Enzyme-Analogue Built Polymers, XII. Specific Binding Effects in Chiral Microcavities of Crosslinked Polymers [J]. Isr. J. Chem., 1979, 18: 279-284.
    [18] A. Sarhan, G. Wulff. On the Introduction of Amino- and Boronic Acid Groups into Chiral Polymer Cavities [J]. Makromol. Chem., 1982,183: 85-92.
    [19] G. Wulff, W. Best, A. Akelah. Enzyme-analogue Built Polymers, 17 Investigations on the Racemic Resolution of Amino Acids [J]. Reactive Polymers, 1984, 2: 167-174.
    [20] A. Sarhan. Racemattrennung der Mandelsaure an Polymeren Mit Chiralen Hohlraumen, 1. Uber Die Synthese Geeigneter Polymere Mit Phenylboronsaure Als Haftgruppe [J]. Makromol. Chem. Rapid Commun., 1982,3: 489-493.
    [21] K.J. Shea, T.K. Dougherty. Molecular Recognition on Surface. The Influence of Functional Group Positioning on the Effectiveness of Molecular Recognition [J]. J. Am. Chem. Soc, 1986,108: 1091-1093.
    [22] G. Wulff, B. Heide, G. Helfmeier. Molecular Recognition through the Exact Placement of Functional Groups on Rigid Matrices via a Template Approach [J]. J. Am. Chem. Soc, 1986,108: 1089-1091.
    [23] D.C. Tahmassebi, T. Sasaki. Synthesis of a New Trialdehyde Template for Molecular Imprinting [J]. J. Org. Chem., 1994, 59: 679-681.
    [24] M. Glad, O. Norrlow, B. Sellergren, N. Siegbahn, K. Mosbach. Use of Silane Monomers for Molecular Imprinting and Enzyme Entrapment in Polysiloxane-coated Porous Silica [J]. J. Chromatogr. 1985, 347: 11-23.
    [25] O. Norrlow, M.O. Masson, K. Mosbach. Improved Chromatography: Prearranged Distances Between Boronate Groups by the Molecular Imprinting Approach [J]. J. Chromatogr, 1987, 396: 374-377.
    [26] M.J. Whitcombe, M.E. Rodriguez, P. Villar, E.N. Vulfson. A New Method for the Introduction of Recognition Site Functionality into Polymers Prepared by Molecular Imprinting: Synthesis and Characterization of Polymeric Receptors for Cholesterol [J]. J. Am. Chem. Soc, 1995,117: 7105-7111.
    [27] B. Sellergren, K.J. Shea.Enantiomeric Resolution on Molecularly Imprinted Polymers Prepared with Only Non-Covalent and Non-Ionic Interactions [J]. J. Chromatorg., 516, 313-322.
    [28] B. Sellergren, K.J. Shea. Chiral Ion-exchange Chromatography. Correlation between Solute Retention and a Theoretical Ion-exchange Model Using Imprinted Polymers [J]. J. Chromatogr. A, 1993,654:17-28.
    [29] F. Dickert, H. Besenbock, M. Tortschanoff, Molecular Imprinting through Van Der Waals Interactions: Fluorescence Detection of PAHs in Water [J]. Adv. Mater., 1998,10(2): 149-151.
    [30] P.K. Dhal, F.H. Arnold.Template-mediated Synthesis of Metal-complexing Polymers for Molecular Recognition [J]. J. Am. Chem. Soc, 1991, 113: 7417-7418.
    [31] M. Kempe, K. Mosbach. Direct Resolution of Naproxen on a Non-covalently Molecularly Imprinted Chiral Stationary Phase [J]. J. Chromatogr. A, 1994, 664: 276-279.
    [32] G. Vlatakis, L.I. Andersson, R. Muller. Drug Assay Using Antibody Mimics Made by Molecular Imprinting [J]. Nature, London: 1993,361: 645-647.
    [33] Y.R. Arshad, K. Mosbach. Acrylic Polymer Preparations Containing Recognition Sites Obtained by Imprinting with Substrates [J]. Makromol. Chem., 1981,128(2): 687-692.
    [34] B. Sellergren. Noncovalent Molecular Imprinting: Antibody-like Molecular Recognition in Polymeric Network Materials [J]. Trends Anal. Chem., 1997, 16: 310-320.
    [35] F. Svec, J.M.J. Frechet. Continuous Rods of Macroporous Polymer as High-performance Liquid Chromatography Separation Media [J]. Anal. Chem., 1992,64:820-822.
    [36] J. Matsui, Y. Miyoshi, O.D. Dier, T. Takeuchi. A Molecularly Imprinted Synthetic Polymer Receptor Selective for Atrazine [J]. Anal. Chem., 1995, 67: 4404-4408.
    [37] J. Matsui, Y. Miyoshi, O.D. Dier, T. Takeuchi. 2-(Trifluoromethyl)acrylic Acid: a Novel Functional Monomer in Non-covalent Molecular Imprinting [J]. Anal. Chim.Acta, 1997,343:1-4.
    [38] J. Matsui, Y. Miyoshi, R. Matsui, T. Takeuchi. Rod-Type Affinity Media for Liquid Chromatography Prepared by in-situ-Molecular Imprinting [J]. Anal. Sci., 1995, 11:1017-1019.
    [39] J. Matsui, T. Takeuchi. A Molecularly Imprinted Polymer Rod as Nicotine Selective Affinity Media Prepared With 2-(Trifluoromethyl)acrylic Acid [J]. Anal. Commun., 1997, 34: 199-201.
    [40] J. Matsui, I.A. Nicholls, T. Takeuchi. Molecular Recognition in Cinchona Alkaloid Molecular Imprinted Polymer Rods [J]. Anal. Chim. Acta, 1998, 365: 89-93.
    [42] J. Matsui, T. Kato, T. Takeuchi, M. Suzuki, K. Yokoyama, E. Tamiya, I. Karube. Molecular Recognition in Continuous Polymer Rods Prepared by a Molecular Imprinting Technique [J]. Anal. Chem., 1993,65: 2223-2224.
    [43] K. Mosbach. Molecularly Imprinted Polymer Beads: Suspension Polymerization Using a Liquid Perfluorocarbon as the Dispersing Phase [J]. Anal. Chem., 1996, 68: 3769-3774.
    [44] J. Matsui, M. Okada, M. Tsuruoka, T. Takeuchi. Solid-phase Extraction of a Triazine Herbicide Using a Molecularly Imprinted Synthetic Receptor [J]. Anal. Commun., 1997, 34(3): 85-87.
    [45] Lei Ye, O. Ramstrom, K. Mosbach. Molecularly Imprinted Polymeric Adsorbents for Byproduct Removal [J]. Anal. Chem., 1998, 70: 2789-2795.
    [46] J. Haginaka, H. Takehira, K. Hosoya, N. Tanaka. Uniform-sized Molecularly Imprinted Polymer for (S)-naproxen Selectively Modified with Hydrophilic External Layer [J]. J. Chromatogr. A, 1999, 849(2): 331-339.
    [47] J. Haginaka, H. Takehira, K. Hosoya, N. Tanaka. Molelcularly imprinted Uniform-sized Polymer-based Stationary Phase for Naproxen: Comparison of Molecular Recognition Ability of the Molecularly Imprinted Polymers Prepared by Thermal and Redox Polymerization Techniques [J]. J. Chromatogr. A, 1998, 816:113-121.
    [48] M. Glad, P. Peinholdsson, K. Mosbach. Molecularly Imprinted Cocomposite Polymers Based on Trimethylolpropane Trimethacrylate(TRIM) Particles for Efficient Enantiomeric Separations[J].React.Polym.,1995,25:47-54.
    [49]L.Ye,K.Mosbach.Molecularly Imprinted Microspheres as Antibody Binding Mimics[J].React.Funct.Polym.,2001,48(1-3):149-157.
    [50]M.Yoshida,K.Uezu,M.Goto.Surface Imprinted Polymers Recognizing Amino Acid Chirality[J].J.Appl.Polym.Sci.,2000,78(4):695-703.
    [51]M.Yoshida,K.Uezu,M.Goto,S.Furusaki.Metal Ion Imprinted Microsphere Prepared by Surface Molecular Imprinting Technique Using Water-in-oil-in-water Emulsions[J].J.Appl.Polym.Sci.,1999,73:1223-1230.
    [52]M.Yoshida,Y.Hatate,K.Uezu,M.Goto,S.Furusaki.Metal Imprinted Microsphere Prepared by Surface Template Polymerization and Its Application to Chromatography[J].J.Polym.Sci.A,2000,38(4):689-696.
    [53]S.A.Piletsky,E.V.Piletskaya,T.A.Sergeyeva,T.L.Panasyuk,A.V.El'skaya.Molecularly Imprinted Self-Assembled Films With Specificity To Cholesterol[J].Sens.Actuators B,2000,60:216-220.
    [54]M.Zhang,M.R.Anderson.Investigation Of The Charge-Transfer Properties of Electrodes Modified By The Spontaneous Adsorption of Unsymmetrical Dialkyl Sulfides[J].Langrnuir.,1994,10:2807-2813.
    [55]E.Hedborg,F.Winquist,I.Lundstr(o|¨)m,L.I.Andersson,K.Mosbach.Some Studies of Molecularly-imprinted Polymer Membranes in Combination with Field Effect Devices[J].Sens.Actuators A,1993,37/38:796-799.
    [56]J.Mathew-Krotz,K.J.Shea.Imprinted Polymer Membranes For The Selective Transport Of Targeted Neutral Molecules[J].J.Am.Chem.Soc.1996,118(34):8154-8155.
    [57]H.Y.Wang,K.Takaomi,F.Nobuyuki.Molecular Imprint Membranes Prepared By the Phase Inversion Precipitation Technique[J].Langmuir.1996,12:4850-4856.
    [58]P.S.Reddy,T.Kobayashi,N.Fujii.Recognition Characteristics of Dibenzofuran by Molecularly Imprinted Polymers Made of Common Polymers[J].Eur.Polym.J.,2002,38(4):779-785.
    [59]M.Yoshikawa,T.Fujisawa,J.Izumi,T.Kitao,S.Sakamoto.Molecularly Imprinted Polymeric Membranes Involving Tetrapeptide EQKL Derivatives as Chiral-recognition Sites toward Amino Acids[J].Anal.Chim.Acta,1998,365(1-3):59-67.
    [60]T.Yamazaki,E.Yilmaz,K.Mosbach,K.Sode.Towards the Use of Molecularly Imprinted Polymers Containing Imidazoles and Bivalent Metal Complexes for the Detection and Degradation of organophosphotriester Pesticides[J].Anal.Chim.Acta,2001,435:209-214.
    [61]E.Yilmaz,K.Haupt,K.Mosbach.The Use of Immobilizd Templates-A New Approach in Molecular Imprinting[J].Angrew.Chem.Int.Ed.,2000,39:2115-2120.
    [62]E.Yilmaz,A Facile Method for Preparing Molecularly Imprinted Polymer Spheres Using Spherical Silica Templates[J].J.Mater.Chem.,2002,12:1577-1581.
    [63]N.Kodakari,T.Sakamoto,K.Shinkawa,H.Funabiki,N.Katada,M.Niwa.Molecular-Sieving Gas Sensor Prepared by Chemical Vapor Deposition of Silica on Tin Oxide Using an Organic Template[J].Bull.Chem.Soc.Jpn.,1998,71:513-519.
    [64]N.Kodakari,N.Katada,M.Niwa.Molecular Sieving Silica Overlayer on Tin Oxide Prepared Using an Organic Template[J].Chem.Commun.,1995,623-624.
    [65]N.Kodakari,N.Katada,M.Niwa.Molecular Sieving Property of Silica Overlayer on Tin Oxide Generated by Organic Template[J].Appl.Surf.Sci.,1997,121/122:292-295.
    [66]N.Kodakari,N.Katada,M.Niwa,Silica Overlayers Prepared Using Organic Template Molecules on Tin Txide and its Molecular Sieving Property[J].Chem.Vapor Deposition.,1997,3(1):59-66.
    [67]N.Kodakari,K.Tomita,K.Iwata,N.Katada,M.Niwa.Molecular Sieving Silica Overlayer on Alumina:The Structure and Acidity Controlled by the Template Molecule[J].Langmuir.,1998,14(16):4623-4629.
    [68]C.Sulitzky,B.Riickert,A.J.Hall,F.Lanza,K.Unger,B.Sellergren.Grafting of Molecularly Imprinted Polymer Films on Silica Supports Containing Surface-bound Free Radical Initiators[J].Macromolecules,2002,35(1):79-91.
    [69]M.Quaglia,E.D.Lorenzi,G.Massolini,C.Sulitzky,B.Sellergren.Surface Initiated Molecularly Imprinted Polymer Films:A New Approach in Chiral Capillary Electrochromatography[J].Analyst,2001,126(9):1495-1498.
    [70]B.Sellergren.Direct Drug Determination by Selective Sample Enrichment on an Imprinted Polymer[J].Anal.Chem.,1994,66(9):1578-1582.
    [71]J.Matsui,M.Okada,M.Tsuruoka.Solid-phase Extraction of a Triazine Herbicide Imprinted Synthetic Recepto r[J].Anal.Commun.,1997,34(3):85-87.
    [72]M.T.Muldoon,L.H.Stanker.Molecularly Imprinted.Solid Phase Extraction of Atrazine from Beef Liver Extracts[J].Anal.Chem.,1997,69:803-808.
    [73]P.D.Martin,G.R.Jones,F.Stringer.Comparison of Extraction of a β-blocker from Plasma onto a Molecularly Imprinted Polymer with Liquid-liquid Extraction and Solid Phase Extraction Methods[J].J.Pharm.Biomed.Anal.,2004,35(5):1231-1239.
    [74]G.Wulff,W.Vesper.Preparation of Chromatographic Sorbents with Chiral Cavities for Racemic Resolution[J].J.Chromatorg.,1978,167:171-186.
    [75]H.Karsten.Molecularly Imprinted Polymers in Analytical Chemistry[J].Analyst,2001,126(5):747-756.
    [76]R.E.Fairhurst,C.Chassaing,R.F.Venn.A Direct Comparison of the Performance of Ground,Beaded and Silica-grafted MIPs in HPLC and Turbulent Flow Chromatography applications[J].Biosens.Bioelectron.,2004,20(6):1098-1105.
    [77]Q.Fu,H.Sanbe,C.Kagawa.Uniformly Sized Molecularly Imprinted Polymer for (s)-Nilvadipine.Comparison of Chiral Recognition Ability with HPLC Chiral Stationary Phases Based on a Protein[J].Anal.Chem.,2003,75(2):191-198.
    [78]Y.Watabe,T.Kondo,M.Morita.Determination of Bisphenol A in Environmental Water at Ultra-low Level by High-performance Liquid Chromatography with an Effective On-line Pretreatment Device[J].J.Chromatogr.A,2004,1032(2):45-49.
    [79]K.Haupt.Molecularly Imprinted Polymer:The Next Generation[J].Anal.Chem.,2003,76:376A-383A.
    [80]M.Quaglia,L.E.De,E.Sulitzky.Molecularly Imprinted Polymer Films Grafted from Porous or Nonporous Silica:Novel Affinity Stationary Phases in Capillary Electrochromatography[J].Electrophoresis,2003,24(5):952-957.
    [81]W.Michaela,G.Edelmiro,J.Howarth.Separation of the Enantiomers of Propranolol by Incorporation of Molecularly Imprinted Polymer Particles as Chiral Selectors in Capillary Electrophoresis[J].Anal.Commun.,1997,34(1):119-122.
    [82]B.R.M.Theode,A.D.Z.Rokus.Spherical Molecularly Imprinted Polymer Particles:A Promising Tool for Molecular Recognition in Capillary Electrokinetic Separations[J].Electrophoresis,1998,19(11):2055-2060.
    [83] K. Haupt, K. Mosbach. Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors [J]. Chem. Rev., 2000,100: 2495-2504.
    [84] K. Haupt, K. Mosbach. Plastic Antibodies: Developments and Application [J]. Tibtech., 1998,16: 468-475.
    [85] L. Ye, K. Mosbach. Scintillation Proximity Assay Using Molecularly Imprinted Microspheres [J]. Reac. Func. Polym., 2001,48: 149-157.
    [86] A. Leonhardt, K. Mosbach. Enzyme-mimicking Polymers Exhibiting Specific Substrate Binding and Catalytic Functions [J]. React. Polym., 1987,6: 285-290.
    [87] O. Ramstrom, K. Mosbach. Synthesis and Catalysis by Molecularly Imprinted Materials [J]. Curr. Opin. Chem. Biol, 1999, 3: 759-764.
    [88] W.R. Ahmad, M.E. Davis. Transesterification on "Imprinted" Silica [J]. Catal. Lett., 1996,40:109-114.
    [89] M.E. Davis, A. Katz, W.R. Ahmad. Rational Catalyst Design via Imprinted Nanostructured Materials [J]. Chem. Mater., 1996, 8: 1820-1839.
    [90] A. McCluskey, C.I. Holdswortha, M.C. Bowyerb. Molecularly Imprinted Polymers (MIPs): Sensing, an Explosive New Opportunity? [J]. Org. Biomol. Chem., 2007, 5: 3233-3244.
    [91] O.Y.F. Henry, D.C. Cullen, S.A. Piletsky. Optical Interrogation of Molecularly Imprinted Polymers and Development of MIP Sensors: A Review [J]. Anal. Bioanal. Chem., 2005, 382: 947-956.
    [92] S.APiletsky, E.VPiletskay, A.V. Elgersma. Atrazine Sensing by Molecularly Imprint Membranes [J]. Biosens. Bioelectron., 1995,10(4): 959-964.
    [93] R. Suedee, T. Srichana, C. Sangpagai. Development of Trichloroacetic Acid Sensor Based on Molecularly Imprinted Polymer Membrane for the Screening of Complex Mixture Haloacetic Acids in Drinking Water [J]. Anal. Chim. Acta, 2004, 504(1): 89-100.
    [94] T.ASergeyeva, S.A. Piletsky, A. A. Brovko. Selective Recognition of Atrazine Molecularly Imprinted Polymer Membranes. Development of Conductometric Sensor Herbicides Detection [J]. Anal. Chim. Acta, 1999, 392(1): 105-111.
    
    [95] D. Kriz, K. Mosbach. Competitive Amperometric Morphine Sensor Based on an Agar Immobilized Molecularly Imprinted Polymer [J]. Anal. Chim. Acta, 1995, 300(1): 71-75.
    [96] R. Shoji, T. Takeuchi, I. Kubo. Atrazine Sensor Based on Molecularly Imprint Polymer-modified Gold Electrode [J]. Anal. Chem., 2003, 75(18): 4882-4886.
    [97] C.H. Luo, M.Q. Liu, Y.C. Mo. Thickness-shear Mode Acoustic Sensor for Atrazine Use Molecularly Imprinted Polymer as Recognition Element [J]. Anal. Chim. Acta, 2001,428(1): 143-148.
    [98] J. Ekeroth, F. Bjorefors, A. Borgh. Electrochemical Evaluation of the Interfacial Capacitance upon Phosphorylation of Amino Acid Analogue Molecular Films [J]. Anal Chem., 2001, 73(18): 4463-4468.
    [99] T.L. Panasyuk, V.M. Mirsky, S.A. Piletsky. Electropolymerized Molecularly Imprint Polymers as Receptor Layers in Capacitive Chemical Sensors [J]. Anal. Chem., 1999, 71(20): 4609-4613.
    [100] Z.L. Cheng, E.K. Wang, X.R. Yang. Capacitive Detection of Glucose Using Molecular Imprinted Polymers [J]. Biosens. Bioelectron. 2001,16(2): 179-185.
    [101] M.C. Bianco-Lopez, M.J. Lobo-Castaon, A. J. Miranda-Ordieres. Electro-chemsensors based on Molecularly Imprinted Polymers [J]. Trends Anal. Chem., 2004, 23(1): 36-48.
    
    [102] F.L. Dickert, P. Forth, P. Lieberzeit, M. Tortschanoff. Molecularly Imprinting in Chemical Sensing: Detection of Aromatic and Halogenated Hydrocarbons as well as Polar Solvent Vapors [J], Fresenius' J. Anal. Chem., 1998,360: 759-762.
    [103] H.-S. Ji, S. McNiven, K. Ikebukuro, I. Karube. Selective Piezoelectric Odor Sensors Using Molecularly Imprinted Polymers [J]. Anal. Chim. Acta, 1999, 390(1): 93-100.
    [104] T. Kobayashi, Y. Murawaki, P.S. Reddy, M. Abe, N. Fujii. Molecular Imprinting of Caffeine and Its Recognition Assay by Quartz-crystal Microbalance [J]. Anal. Chim. Acta, 2001,435(1): 141-149.
    [105] L. Feng, Y.J. Liu, Y.Y. Tan. Biosensor for the Determination of Sorbitol Based on Molecularly Imprinted Electrosynthesized Polymers [J]. Biosens. Bioelectron., 2004,19(11): 1513-1519.
    [106] H. Peng, F. Yin, A.H. Zhou. Characterization of Electrosynthesized Poly-(o-aminophenol) as a Molecular Imprinting Material for Sensor Preparation by means of Quartz Crystal Impedance Analysis [J]. Anal. Lett., 2002, 35(3): 435-450.
    [107] H.P. Liao, Z.H. Zhang, L.H. Nie, S. Yao. Electrosynthesis of Imprinted Polyacrylamide Membranes for the Stereospecific L-histidine Sensor and its Characterization by AC Impedance Spectroscopy and Piezoelectric Quartz Crystal Technique[J].J.Biochem.Biophys.Methods.,2004,59(1):75-87.
    [108]H.P.Liao,Z.H.Zhang,H.Li.Preparation of the Molecularly Imprinted Polymers-based Capacitive Sensor Specific for Tegafur and its Characterization by Electrochemical Impedance and Piezoelectric Quartz Crystal Microbalance[J].Electrochim.Acta.,2004,49(24):4101-4107.
    [109]G.Bunte,J.H(u|¨)ttlen,H.Pontius,K.Hartlieb,H.Krause.Gas Phase Detection of Explosives such as 2,4,6-trinitrotoluene by Molecularly Imprinted Polymers[J].Anal.Chim.Acta,2007,591:49-56.
    [110]J.M.Lin,M.Yamada.Chemiluminescent Flow-through Sensor for 1,10-phenanthroline Based on the Combination of Molecular Imprinting and Chemiluminescence[J].Analyst,2001,126:810-815.
    [111]J.X.Du,L.H.Shen,J.R.Lu.Flow Injection Chemiluminescence Determination of Epinephrine Using Epinephrine-imprinted Polymer as Recognition Material[J].Anal.Chim.Acta,2003,489:183-189.
    [112]F.Nie,J.Lu,Y.He,J.Du.Determination of Indomethacin in Urine Using Molecule Imprinting-chemiluminescence Method[J].Talanta,2005,66(3):728-733.
    [113]F.Nie,J.Lu,W.Niu.Chemiluminescence Determination of Indapamide Using Indapamide-imprinted Polymer as Recognition Material[J].Anal.Chim.Acta,2005,545(2):129-136
    [114]D.He,Z.Zhang,H.Zhou,Y.Huang.Micro Flow Sensor on a Chip for the Determination of Terbutaline in Human Serum Based on Chemiluminescence and a Molecularly Imprinted Polymer[J].Talanta,2006,69:1215-1220.
    [115]Y.Xiong,H.Zhou,Z.Zhang,D.He,C.He.Determination of Hydralazine with Flow Injection Chemiluminescence Sensor Using Molecularly Imprinted Polymer as Recognition Element[J].J.Pharm.Biomed.Anal.,2006,41:694-700.
    [116]H.Zhou,Z.Zhang,D.He,Y.Xiong.Flow through Chemiluminescence Sensor Using Molecularly Imprinted Polymer as Recognition Elements for Detection of Salbutamol[J].Sens.Actuators B,2005,107:798-804.
    [117]D.Krit,A.Ramstrom,K.Mosbach.Introducing Biomimetic Sensors Based On Molecularly Imprinted Polymers As Recognition Elements[J].Anal.Chem.,1995,67:2142-2144.
    [118]S.A.Piletsky,E.V.Piletskaya,K.Yano,A.Kugimiya,A.V.Elgersma,R.Levi,U.Kahlow,T.Takeuchi,I.Karube.A Biomimetic Receptor System for Sialic Acid Based on Molecular Imprinting[J].Anal.Lett.,1996,29:157-170.
    [119]M.F.Lulka,J.P.Chambers,E.R.Valdes.Molecular Smprinting of Small Molecules with Organic Silanes:Fluorescence Detection[J].Anal.Lett.,1997,30(13):2301-2313.
    [120]M.Jun,H.Miho,T.Toshifumi.Molecularly Imprinted Polymer as 9-Ethyladenine Receptor Having a Porphyrin-Based Recognition Center[J].J.Am.Chem.Soc.,2000,122:5218-5219.
    [121]S.A.Piletsky,E.V.Piletskaya,A.V.El'skaya,R.Levi,K.Yano,I.Karube.Optical Detection System for Triazine Based on Molecularly-Imprinted Polymers [J].Anal.Lett.,1997,30:445-455.
    [122]A.L.Jenkins,R.Yin,J.L.Jensen.Molecularly Imprinted Polymer Sensors for Pesticide and Insecticide Detection in Water[J].Analyst,2001,126:798
    [123]C.I.Lin,A.K.Joseph,C.K.Chang,Y.D.Lee,Synthesis and Photoluminescencestudy of Molecularly Imprinted Polymers Appended onto CdSe/ZnS Core-shells[J].Biosens.Bioelectron.,2004,20:127-131.
    [124]R.Levi,S.McNiven,S.A.Piletsky,S.-H.Cheong,K.Yano,I.Karube.Optical Detection of Chloramphenicol Using Molecularly Imprinted Polymers[J].Anal.Chem.,1997,69(11):2017-2021.
    [125]A.L.Jenkins,O.M.Uy,G.M.Murray.Polymer-Based Lanthanide Luminescent Sensor for Detection of the Hydrolysis Product of the Nerve Agent Soman in Water[J].Anal.Chem.,1999,71(2):373-378.
    [126]M.Jakusch,M.Janotta,B.Mizaikoff,K.Mosbach,K.Haupt.Molecularly Imprinted Polymers and Infrared Evanescent Wave Spectroscopy.A Chemical Sensors Approach[J].Anal.Chem.,1999,71:4786-4791
    [1]林金明,化学发光基础理论与应用,北京,化学工业出版社,2004:1-2.
    [2]M.J.Navas,A.M.Jimenez,Review of Chemiluminescent Methods in Food Analysis[J].Food Chem.,1996,55:7-15.
    [3]X.J.Huang,Z.L.Fang,Chemiluminescence Detection in Capillary Electrophoresis [J]. Anal. Chim. Acta, 2000,414: 1-14.
    [4] Y.M. Liu, J.K. Cheng, Ultrasensitive Chemiluminescence Detection in Capillary Electrophoresis [J]. J. Chromatogr. A, 2002, 959: 1-13.
    [5] M. Yamaguchi, H. Yoshida, H. Nohta. Luminol-type Chemiluminescence Derivatization Reagents for Liquid Chromatography and Capillary Electrophoresis [J]. J Chromatogr. A, 2002, 950: 1-19.
    [6] Y. Ohba, N. Kuroda, K. Nakashima. Liquid Chromatography of Fatty Acids with Chemiluminescence Detection [J]. Anal. Chim. Acta, 2002,465: 101-109.
    [7] Z.Y. Zhang, S.C. Zhang, X.R. Zhang. Recent Developments and Applications of Chemiluminescence Sensors [J]. Anal. Chim. Acta, 2005, 541: 37-46.
    [8] W.J.S. Jobgen, S.C. Jobgen, H. Li, C.J. Meininger, G.Y. Wu. Analysis of Nitrite and Nitrate in Biological Samples Using High-performance Liquid Chromatography [J]. J. Chromatogr. B, 2007, 851(1-2): 71-82.
    [9] K. Teranishi, Luminescence of Imidazo [1, 2-a] pyrazin-3(7H)-one Compounds [J]. Bioorg. Chem., 2007, 35: 82-111.
    [10] B.J. Hindson, N.W. Barnett. Analytical Applications of Acidic Potassium Permanganate as a Chemiluminescence Reagent [J]. Anal. Chim. Acta, 2001, 445: 1-19.
    [11] C.X. Sun, J.H. Yang, L. Li, X. Wu, Y. Liu, S.F. Liu. Advances in the Study of Luminescence Probes for Proteins [J]. J. Chromatogr. B, 2004, 803: 173-190.
    [12] M. Tsunoda, K. Imai. Analytical Applications of Peroxyoxalate Chemiluminescence [J]. Anal. Chim. Acta, 2005, 541: 13-23.
    [13] M. Matsumoto. Advanced Chemistry of Dioxetane-based Chemiluminescent Substrates Originating from Bioluminescence [J]. J. Photochem. Photobiol., C, 2004, 5:27-53.
    [14] C. Dodeigne, L. Thunus, R. Lejeune, Chemiluminescence as Diagnostic Tool. A Review [J]. Talanta, 2000, 51: 415-439.
    [15] L.J. Kricka. Clinical Applications of Chemiluminescence [J]. Anal. Chim. Acta, 2003, 500: 279-286.
    [16] M.M. Pelletier, P. Kleinbongard, L. Ringwood, R. Hito, C.J. Hunter, A.N. Schechter, M.T. Gladwin, A. Dejam. The Measurement of Blood and Plasma Nitrite by Chemiluminescence: Pitfalls and Solutions [J]. Free Radical Bio. Med., 2006,41:541-548.
    [17]A.Roda,P.Pasini,M.Musiani,S.Girotti,M.Baraldini,G.Carrea,A.Suozzi.Chemiluminescent Low-light Imaging of Biospecific Reactions on Macro- and Microsamples Using a Videocamera-based Luminograph[J].Anal.Chem.,1996,68:1073-1080.
    [18]A.Roda,M.Guardigli,R.Ziessel,M.Mirasoli,E.Michelini,M.Musiani.Molecular Luminescencelimaging[J].Microchem.J.,2007,85:5-12.
    [19]A.Roda,M.Guardigli,P.Pasini,M.Mirasoli,E.Michelini,M.Musiani.Bio- and Chemiluminescence Imaging in Analytical Chemistry[J].Anal.Chim.Acta,2005,541:25-36.
    [19]汪尔康.21世纪的分析化学[M].北京,科学出版社,1999:10-12.
    [20]A.E.Karger,R.Weiss,R.F.Gesteland.Line Scanning System for Direct Digital Chemiluminesncece Imaging of DNA-sequencing Blots[J].Anal.Chem.,1993,65:1785-1793.
    [21]A.S.Carretero,J.R.Fernandez,A.R.Bowie,P.J.Worsfold.Acquisition of Chemiluminescence Spectral Profiles Using a Continuous Flow Manifold with Two Dimensional CCD Detection[J].Analyst,2000,125:387-390.
    [22]任宏周,唐贵,杜宇.新型图像传感器CCD的原理及应用[J].中州煤炭,1998,76(1):10-11.
    [23]樊旭峰,单亚拿,卢雁,吕晶.CCD摄像技术用于分光计实验的研究[J].大学物理实验,2005,18:36-38.
    [24]W.Zhang,J.Q.Feng,S.E.Harris,P.R.Contag,D.K.Stevenson,C.H.Contag.Rapid In Vivo Functional Analysis of Transgenes in Mice Using Whole Body Imaging of Luciferase Expression[J].Transgenic Res.,2001,10:423-434.
    [25]F.Mallard,G.Marchand,F.Ginot,R.Campagnolo.Opto-electronic DNA Chip:High Performance Chip Reading with an All-electricinterface[J].Biosens Bioelectron.,2005,20:1813-1820.
    [26]A.Roda,P.Pasini,M.Mirasoli,E.Michelini,M.Guardigli.Biotechnological Applications of Bioluminescence and Chemiluminescence Review[J].Trends Biotechnol.,2004,22:295-303.
    [27]A.Dzgoev,M.Mecklenburg,P.O.Larsson,B.Danielsson.Microformat Imaging ELISA for Pesticide Determination[J].Anal.Chem.,1996,68:3364-3369.
    [28]T.Urbanowska,S.Mangialaio,C.Zickler,S.Cheevapruk,P.Hasler,S.Regenass,F.Legay.Protein Microarray Platform for the Multiplex Analysis of Biomarkers in Human Sera [J]. J. Immunol. Methods., 2006, 316: 1-7.
    [29] R.P. Huang. Detection of Multiple Proteins in an Antibody-based Protein Microarray System [J]. J. Immunol. Methods., 2001, 255:1-13.
    [30] P. Pasini, M. Musiani, C. Russo, P. Valenti, G. Aicardi, J.E. Crabtree, M. Baraldini, A. Roda. Chemiluminescence Imaging in Bioanalysis [J]. J. Pharm. Biomed. Anal., 1998,18: 555-564.
    [31] A. Roda, M. Mirasoli, S. Venturoli, M. Cricca, F. Bonvicini, M. Baraldini, P. Pasini, M. Zerbini, M. Musiani. Microtiter Format for Simultaneous Multianalyte Detection and Development of a PCR-chemiluminescent Enzyme Immunoassay for Typing Human Papillomavirus DNAs [J]. Clin. Chem., 2002,48:1654-1660.
    [32] S. Girotti, P. Pasini, E. Ferri, S. Ghini, F. Fini, R. Budini, A. Roda. Chemiluminescent Determination of Xanthine Oxidase Activity Using a Sensitive Low-light Detection System [J]. Anal. Lett., 1996,29: 2097-2114.
    [33] I. Surugiu, B. Danielsson, L. Ye, K. Mosbach, K. Haupt, Chemiluminescence Imaging ELISA Using an Imprinted Polymer as the Recognition Element Instead of an Antibody [J]. Anal. Chem, 2001,73:487-491.
    [34] L.J. Kricka, X.Y. Ji, O. Nozaki, P. Wilding. Imaging of Chemiluminescent Reactions in Mesoscale Silicon-glass Microstructures [J]. J. Biolumin. Chemilumin., 1994,9: 135-138.
    [35] B.J. Cheek, A.B. Steel, M.P. Torres, Y.Y. Yu, H.J. Yang. Chemiluminescence Detection for Hybridization Assays on the Flow-through Chip, A Three-dimensional MicroChannel Biochip [J]. Anal. Chem, 2001, 73: 5777-5783.
    [36] B.R. Knecht, A. Strasser, R. Dietrich, E. Martibauer, R. Niesser, M.G. Weller, Automated Microarray System for the Simultaneous Detection of Antibiotics in Milk [J], Anal. Chem, 2004, 76: 646-654.
    [37] K. Kamiya. Imaging-processing in Video Microscopy [J]. Acta Histochem. Cytochem, 1991,24: 353-356.
    [38] R. Creton, L.F. Jaffe. Chemiluminescence Microscopy as a Tool in Biomedical Research [J]. Biotechniques, 2001, 31:1098-1015.
    [39] A. Roda, P. Pasini, M. Baraldini, M. Musiani, G. Gentilomi, C. Robert, Chemiluminescent Imaging of Enzyme-labeled Probes Using an Optical Microscope-video Camera Luminograph [J]. Anal. Biochem, 1998, 257: 53-62.
    [40] N.P. Wiklund, H.H. Iversen, A.M. Leone, S. Cellek, L. Brundin, L.E. Gustafsson, S.Moncada.Visualization of Nitric Oxide Formation in Cell Cultures and Living Tissue[J].Acta Physiol.Scand.,1999,167:161-166.
    [41]R.Creton,J.A.Kreiling,L.F.Jaffe.Calcium Imaging with Chemiluminescence[J].Microsc.Res.Techniq.,1999,46:390-397.
    [42]O.P.Mishra,R.Mishra,Q.M.Ashraf,M.D.Papadopoulos.Nitric Oxide-mediated Mechanism of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Expression During Hypoxia in the Cerebral Cortex of Newborn Piglets [J].Neuroscience,2006,140:857-863.
    [43]T.Sasaki,A.Iwamoto,H.Tsuboi,Y.Watanabe.Development of Real-time Bioradiographic System for Functional and Metabolic Imaging in Living Brain Tissue[J].Brain Res.,2006,1077:161-169.
    [44]Z.Q.Wang,P.G.Haydon,E.S.Yeung.Direct Observation of Calcium-independent Intercellular ATP Signaling in Astrocytes[J].Anal.Chem.,2000,72:2001-2007.
    [45]J.A.Gruenhagen,P.Lovell,L.L.Morozb,E.S.Yeung.Monitoring Real-time Release of ATP from the Molluscan Central Nervous System[J].J.Neurosci.Meth.,2004,139:145-152.
    [46]Z.Q.Wang,E.S.Yeung.Selective Detection of Neurotransmitters by Fluorescence and Chemiluminescence Imaging[J].Pure Appl.Chem.,2001,73:1599-1611.
    [47]A.Roda,M.Musiani,P.Pasini,M.Baraldini,J.E.Crabtree.In Situ Hybridization and Immunohistochemistry with Enzyme-triggered Chemiluminescent Probes[J].Method Enzymol.,2000,305:577-586.
    [48]M.Musiani,P.Pasini,M.Zerbini,A.Roda,G.Gentilomi,G.Gallinella,S.Venturoli,Chemiluminescence:A Sensitive Detection System in In Situ Hybridization[J].Histol.Histopathol.,1998,13:243-248.
    [49]M.Musiani,M.Zerbini,S.Venturoli,G.Gentilomi,G.Gallinella,E.Manaresi,M.LaPlaca,A.Dantuono,A.Roda,P.Pasini.Sensitive Chemiluminescence In Situ Hybridization for the Detection of Human Papillomavirus Genomes in Biopsy Specimens[J].J.Histochem.Cytochem.,1997,45:729-735.
    [50]M.Musiani,P.Pasini,M.Zerbini,G.Gentilomi,A.Roda,G.Gallinella,E.Manaresi,S.Venturoli.Prenatal Diagnosis of Parvovirus B19-Induced Hydrops Fetalis by Chemiluminescence In Situ Hybridization[J].J.Clin.Microbiol.,1999,37:2326-2329.
    [51]L.Lamarcq,F.Labatmoleur,C.Guillermet,R.Bethier,P.Stoebner.Enhanced Chemiluminescence a High-sensitivity Detection System for In-situ Hybridizatioa and Immunohistochemistry[J].J.Histochem.Cytochem.,1993,41:1591-1597.
    [52]H.Heider,C.Schroeder.Luminescence Assay:Macroscopically Visualized Foci of Human Cytomegalovirus and Varicella Zoster Virus Infection[J].J.Virol.Methods,1997,66:311-316.
    [53]H.E.van Gijssel,R.L.Divi,O.A.Olivero,M.J.Roth,G.Q.Wang,S.M.Dawsey,P.S.Albert,Y.L.Qiao,P.R.Taylor,Z.W.Dong,J.A.Schrager,D.E.Kleiner,M.C.Poirier.Semiquantitation of Polycyclic Aromatic Hydrocarbon-DNA Adducts in Human Esophagus by Immunohistochemistry and the Automated Cellular Imaging System[J].Cancer Epidem.Biomar.,2002,11:1622-1629.
    [54]A.Zulli,J.J.Liu.A Novel Immunohistochemical Semiquantitative Technique for Endothelial Constitutive Nitric Oxide Synthase Immunoreactivity in Rat Coronary Artery[J].J.Histochem.Cytochem.,1998,46:257-262.
    [55]A.J.Minn,G.P.Gupta,P.M.Siegel,P.D.Bos,W.Shu,D.D.Giri,A.Viale,A.B.Olshen,W.L.Gerald,J.Massague.Genes That Mediate Breast Cancer Metastasis to Lung[J].Nature,2005,436:518-524.
    [56]张力华,张志良,沈曾佑.不同幼苗对大豆化学发光的影响[J].华东师范大学学报(自然科学版),1997,199:80-85.
    [57]H.Saito,D.Fukumura,I.Kurose,M.Suematsu,S.Tada,T.Kagawa,S.Miura,T.Morizane,M.Tsuchiya.Visualization of Oxidative Processes,At the Cellular-level During Neutrophil-mediated Cytotoxicity Against a Human Hepatoma-cell Line,Hcc-M[J].Int.J.Cancer,1992,51:124-129.
    [58]A.T.Campbell,L.J.Robertson,H.V.Smith.Detection of Oocysts of Cryptosporidium by Enhanced Chemiluminescence[J].J.Microbiol.Meth.,1993,17:297-303.
    [59]R.J.Whiston,M.B.Hallett,E.V.Davies,K.G.Harding,I.F.Lane.Inappropriate Neutrophil Activation in Venous Disease[J].Brit.J.Surg.,1994,81:695-698.
    [60]P.Chanez,P.Godard,I.Vachier,C.Ledoucen,J.Loubatiere,M.Damon,B.Terouanne,J.C.Nicolas.Imaging Reactive Oxygen Species in Asthma[J].J.Biol.Chem.,1994,9:171-175.
    [61]T.Makino,K.Kato,H.Iyozumi,H.Honzawa,Y.Tachiiri,M.Hiramatsu.Ultraweak Luminescence Generated by Sweet Potato and Fusarium Oxysporum Interactions Associated with a Defense Response[J].J.Photochem.Photobiol.,B, 1996,64:953-956.
    [62] A. Roda, M. Musiani, P. Pasini, M. Baraldini, J.E. Crabtree. In Situ Hybridization and Immunohistochemistry with Enzyme-triggered Chemiluminescent Probes [J]. 2000, 305: 577-590.
    [63] A. Gasbarrini, P. Pasini, B. Nardo, S. Notariis, M. Simoncini, A. Cavallari, E. Roda, M. Bernardi, A.Roda. Chemiluminescent Real Time Imaging of Post-ischemic Oxygen Free Radicals Formation in Livers Isolated from Young and Old Rats [J]. Free Radic. Biol. Med., 1998,24(2): 211-216.
    [64] H. Yasui, H. Sakurai. Chemiluminescent Detection and Imaging of Reactive Oxygen Species in Live Mouse Skin Exposed to UVA [J]. Biochem. Bioph. Res. Co., 2000,269: 131-136.
    [65] M. Kobayashi, M. Takeda, K.I. Ito, H. Kato, H. Inaba. Two-dimensional Photon Counting Imaging and Spatiotemporal Characterization of Ultraweak Photon Emission from a Rat's Brain In Vivo [J]. J. Neurosci. Meth., 1999,93: 163-168.
    [66] M. Kobayashi, M. Takeda, T. Sato, Y. Yamazaki, K. Kaneko, K. Ito, H. Kato, H. Inaba. In Vivo Imaging of Spontaneous Ultraweak Photon Emission from a Rat's Brain Correlated with Cerebral Energy Metabolism and Oxidative Stress [J]. Neurosci. Res., 1999,34: 103-113.
    [67] Y.H. He, D. Xing, S.C. Tan, Y.H. Tang, K. Ueda. In Vivo Sonoluminescence Imaging with the Assistance of FCLA [J]. Phys. Med. Biol, 2002,47: 1535-1541.
    [68] J. Wang, D. Xing, Y.G He, X.J. Hu. Localization of Tumor by Chemiluminescence Probe During Photosensitization Action [J]. Cancer Lett., 2002,188: 59-65.
    [69] Y.H. He, D. Xing, J. Wang. A Novel Cancer Imaging Method Using Chemiluminescence-mediated Sonosensitization [J]. Chinese Sci. Bull., 2003, 48: 777-780.
    [70] W.L. Chen, D. Xing, S.C. Tan, Y.H. Tang, Y.H. He. Imaging of Ultra-weak Bio-chemiluminescence and Singlet Oxygen Generation in Germinating Soybean in Response to Wounding [J]. Luminescence, 2003,18: 37-41.
    [71] V. Ojetti, C.C. Di, M. Mutignani, A. Migneco, A. Tridente, N.G Silveri, G Gasbarrini, A. Gasbarrini. Real Time Endoscopic Imaging of Oxyradical Generation in Pig Stomach During Ischemia-reperfusion [J]. Dig. Liver Dis., 2003, 35: 309-313.
    [72] A. Roda, M. Guardigli, P. Pasini, M. Mirasoli. Bioluminescence and Chemiluminescence in Drug Screening [J]. Anal. Bioanal. Chem., 2003, 377: 826-833.
    [73] Y. Yoshiki, T. Iida, Y. Akiyama, K. Okubo, H. Matsumoto, M. Sato. Imaging of Hydroperoxide and Hydrogen Peroxide-scavenging Substances by Photon Emission [J]. Luminescence, 2001,16: 327-335.
    [74] A. Roda, P. Pasini, M. Musiani, S. Girotti, M. Baraldini, G. Carrea, A. Suozzi. Chemiluminescent Low-light Imaging of Biospecific Reactions on Macro- and Microsamples Using a Videocamera-based Luminograph [J]. Anal. Chem., 1996, 68: 1073-1080.
    [75] A. Roda, M. Guardigli, R. Ziessel, M. Mirasoli, E. Michelini, M. Musiani. Molecular Luminescence Imaging [J]. Microchem. J., 2007, 85: 5-12.
    [76] A. Roda, M. Guardigli, P. Pasini, M. Mirasoli, E. Michelini, M. Musiani. Bio- and Chemiluminescence Imaging in Analytical Chemistry [J]. Anal. Chim. Acta, 2005, 541:25-36.
    [77] H. Akhavantafti, A.P. Schaap, Z. Arghavani, R. Desilva, R.A. Eickholt, R.S. Handley, B.A. Schoenfelner, K. Sugioka, Y. Sugioka. CCD Camera Imaging for the Chemiluminescent Detection of Enzymes Using New Ultra Sensitive Reagents [J]. J. Biol. Chem., 1994,9: 155-164.
    [78] C.E.M. Olesen, C.S. Martin, J.C. Voyta, B. Edwards, I. Bronstein. Dioxetane Substrates for Alkaline Phosphatase Labels [J]. J. Clin. Ligand Assay, 1999, 22: 129-138.
    [79] C.W. Lau, J.Z. Lu, T. Yamaguchi, M. Kai. Controlled Kinetics of Non-enzymatic Chemiluminescence Reactions for Simple Imaging of DNA and Protein [J]. Anal. Bioanal. Chem., 2002, 374: 1064-1068.
    [80] J. Lu, C. Lau, M. Morizono, K. Ohta, M.A. Kai. Chemiluminescence reaction between hydrogen peroxide and acetonitrile and its applications [J]. Anal. Chem., 2001,73:5979-5983.
    [1] K. Haupt, K. Mosbach. Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors [J]. Chem. Rev., 2000,100: 2495-2504.
    [2] S.A. Piletsky, S. Alcock, A.P.F. Turner. Molecular imprinting: at the edge of the third millennium [J]. Trends Biotechnol. 2001,19(1): 9-12.
    [3] K. Haupt. Molecularly Imprinted Polymers: The Next Generation [J]. Anal. Chem., 2003, 75: 377A-383A.
    [4] A. Fernandez-Gonzalez, L. Guardia, R. Badia-Laino, M.E. Diaz-Garcia. Mimicking Molecular Receptors for Antibiotics-Analytical Implications [J]. Trends Anal. Chem., 2006,25(10): 949-957.
    [5] A. Bossi, F. Bonini, A.P.F. Turner, S.A. Piletsky. Molecularly Imprinted Polymers for the Recognition of Proteins: The State of the Art [J]. Biosens. Bioelectron. 2007,22:1131-1137.
    [6] M. Kempe, K. Mosbach. Separation of Amino Acids, Peptides and Proteins on Molecularly Imprinted Stationary Phases [J]. J. Chromatogr. A, 1995, 691: 317-323.
    [7] O. Bruggemann, K. Haupt, L.E. Yilmaz. New Configurations and Applications of Molecularly Imprinted Polymers [J]. J. Chromatogr. A, 2000, 889: 15-24.
    [8] L. Ye, A.P.G. Cormack, K. Mosbach. Molecularly Imprinted Monodisperse Microspheres for Competitive Radioassay [J]. Anal.Commun., 1999, 36: 35-38.
    [9] Y. Naka, I. Kaestu, Y. Yamamoto. Preparation of Micropheres by Radiation-Induced Polymerization. I. Mechanism for the Formation of Monodisperse Poly(diethylene Glycol Dimethacrylate) Microsphere [J]. J. Polym. Sci., Part A: Polym. Chem. 1991,29: 1197-1202.
    [10] L. Ye, R. Weiss, K. Mosbach. Synthesis and Characterization of Molecularly Imprinted Microspheres [J]. Macromolecules, 2000, 33 (22): 8239-8245.
    [11] A.A. Bertelli, L. Giovannini, R. Stradi, S. Urien, J.P. Tillement, A. Bertelli. Kinetics of Trans- and Cis-resveratrol (3,4',5-trihydroxystibene) after Red Wine Oral Administration in Rats [J]. Int. J. Clin. Pharmacol. Res., 1996, 16(4-5): 77-81.
    [12] E.N. Frankel, A.L. Waterhouse, P.L. Teissedre. Principal Phenolic Phytochemicals in Selected California Wines and Their Antioxidant Activity in Inhibiting Oxidation of Human Low-density Lipoproteins [J]. J. Agric. Food Chem., 1995, 43: 890-894.
    [13] M.A. Rodnguez-Delgado, S. Malovana, J.P. Perez, T. Borges, F.J. Garcia Montelongo, Separation of Phenolic Compounds by High-performance Liquid Chromatography with Absorbance and Fluorimetric Detection [J]. J. Chromatogr. A,2001,912:249-257.
    [14]M.Goldberg,J.Yan,G.Soleas,A.L.Waterhouse.Direct Injection Gas Chromatographic Mass Spectrometric Assay for trans-Resveratrol[J].Anal.Chem.,1994,66:3959-3963.
    [15]童平,唐盈.中药虎杖中白藜芦醇含量测定的研究[J].中草药,1987,21(11):16-18.
    [16]H.Akhavantafti,A.P.Schaap,Z.Arghavani,R.Desilva,R.A.Eickholt,R.S.Handley,B.A.Schoenfelner,K.Sugioka,Y.Sugioka.CCD Camera Imaging for the Cherniluminescent Detection of Enzymes Using New Ultra Sensitive Reagents [J].J.Biol.Chem.,1994,9:155-164.
    [17]I.Surugiu,B.Danielsson,L.Ye,K.Mosbach,K.Haupt.Chemiluminescence Imaging ELISA Using,Instead of an Antibody,an Imprinted Polymer as the Recognition Element.Anal.Chem.,2001,73(3):487-491.
    [1]S.A.Piletsky,S.Alcock,A.P.F.Turner.Molecular Imprinting:At the Edge of the Third Millennium[J].Trends Biotechnol.,2001,19(1):9-12.
    [2]R.Ansell,D.Kriz,K.Mosbach.Molecularly Imprinted Polymers for Bioanalysis:Chromatography,Binding Assays and Biomimetic Sensors[J].Current Opin.Biotechnol.,1996,7(1):89-94.
    [3]M.Ulbricht,M.Belter,U.Langenhangen.Novel Molecularly Imprinted Polymer (MIP) Composite Membranes via Controlled Surface and Pore Functionalizations [J].Desalination,2002,149(1-3):293-295.
    [4]刘慧君,徐伟箭,刘耀驰.分子印迹技术在药物手性分离和分析中的研究进展[J].精细化工中间体,2003,33(6):1-6.
    [5]T.H.Webb,C.S.Wilcox.Enantioselective and Diastereoselective Molecular Recognition of Neutral Molecules[J].Chem.Soc.Rev.1993,22:383-395.
    [6]Y.Kuroda,Y.J.Kato.Chiral Amino Acid Recognition by a Porphyrin-based Artificial Receptor[J].J.Am.Chem.Soc.1995,117:10950-10958.
    [7]陆国元.有机底物的分子识别[J].化学通报,1995,11:21-24.
    [8]F.Liu,X.Liu,S.-C.Ng,H.S.Chan.Enantioselective Molecular Imprinting Polymer Coated QCM for the Recognition of L-Tryptophan[J].Sens.Actuators,B,2006,113:234-240.
    [9]L.Cao,X.C.Zhou,S.F.Y.Li.Enantioselective sensor based on microgravimetric quartz crystal microbalance with molecularly imprinted polymer film[J].Analyst,2001,126:184-188.
    [10]L.Feng,Y.Liu,J.Hu.Molecularly Imprinted TiO2 Thin Film by Liquid Phase Deposition for the Determination of L-Glutamic Acid[J].Langmuir 2004,20:1786-1790.
    [11]X.Li,S.M.Husson.Adsorption of Dansylated Amino Acids on Molecularly Imprinted Surfaces:A Surface Plasmon Resonance Study[J].Biosens.Bioelectron.,2006,22:336-348.
    [1]A.Salinas-Castillo,A.Segura-Carretero,A.Fernandez-Gutierrez.Sensitive and Simple Determination of the Vasodilator Agent Dipyridamole in Pharmaceutical Preparations by Phosphorimetry[J].Anal.Bioanal.Chem.,2003,376:1111-1114.
    [2]周兴国,陈移姣,李桂玲.潘生丁分子印迹聚合物的合成条件及特性[J].武汉大学学报(理学版),2004,50(6):687-690.
    [3]刘清慧,吕九如,冯娜.铁氰化钾-鲁米诺体系后化学发光反应及其分析应用研究—分子印迹-后化学发光法测定双嘧达莫[J].高等学校化学学报,2006,27(6):1036-1041.
    [4]董赫,童爱军,李隆弟.发光性分子印迹聚合物的合成及其对组胺的识别性能研究[J].高等学校化学学报,2002,23(6):1018-1021.
    [5]K.Uezu,H.Nakamura,J.Kanno,T.Sugo,M.Goto,F.Nakashio.Metal Ion-Imprinted Polymer Prepared by the Combination of Surface Template Polymerization with Postirradiation by γ-rays[J].Macromolecules,1997,30(13):3888-3891.
    [6]L.Ye,A.P.G.Cormack,K.Mosbach.Molecularly Imprinted Monodisperse Microspheres for Competitive Radioassay[J].Anal.Commun.,1999,36:35-38.
    [7]Y.Naka,I.Kaestu,Y.Yamamoto.Preparation of Micropheres by Radiation-Induced Polymerization.I.Mechanism for the Formation of Monodisperse Poly(diethylene Glycol Dimethacrylate) Microsphere[J].J.Polym.Sci.,Part A:Polym.Chem.1991,29:1197-1202.
    [1]王邃,王永珍,龚国权,常希俊.罗丹明B分子印迹聚合物的分子识别与结合特性的研究[J].兰州大学学报(自然科学版),2003,39(2):61-64.
    [2]郑红,李晶,韩鸿萍.罗丹明6G分子印迹聚合物的合成与性能研究[J].青海师范大学学报(自然科学版),2006,2:72-75.
    [1]于世林.高效液相色谱方法及应用[M].北京:化学工业出版社,2001.
    [2]魏复盛,徐晓白,阎吉晶.水和废水监测分析方法指南[M].北京:中国环境科学出版社,1997.
    [3]Research Triangle Institute.Polycyclic aromatic hydrocarbons(PAHs)[M].CRC Press LLC,1999.
    [4]Perkin Elmer Corporation.Liquid chromatography HPLC system for PAH analysis[M].PAH analysis cookbook,order No.LC- 292,1993.
    [5]H.Shiraishi,N.H.Pilkington,A.Otsuki.Occurrence of Chlorinated Polynuclear Aromatic Hydrocarbons in Tap Water[J].Environ.Sci.Technol.,1985,19:585-590.
    [6]G.M.Titato,F.M.Lancas.Optimization and Validation of HPLC-UV-DAD and HPLC-APCI-MS Methodologies for the Determination of Selected PAHs in water samples[J].J.Chromatogr.Sci.,2006,44:35-40.
    [7]E.Martinez,G.Meritxell,S.Lacorte.Simplified Procedures for the Analysis of Polycyclic Aromatic Hydrocarbons in Water,Sediments and Mussels[J].J.Chromatog.A,2004,1047:181-188.
    [8]L.Oliferova,M.Statkus,G.Tsysin.On-line Solid-phase Extraction and HPLC Determination of Polycyclic Aromatic Hydrocarbons in Water Using Fluorocarbon Polymer Sorbents[J].Anal.Chim.Acta.2005,538:35-40.
    [9]F.Busettia,A.Heitza,M.Cuomob.Determination of Sixteen Polycyclic Aromatic Hydrocarbons in Aqueous and Solid Samples from an Italian Wastewater Treatment Plant[J].J.Chromatogr.A,2006,1102:104-115.
    [10]J.Poerschmann,Z.Zhang,F.Kopinke.Solid Phase Microextraction for Determining the Distribution of Chemicals in Aqueous Matrices[J].Anal.Chem.,1997,69:597-600.
    [11]A.J.King,J.W.Readman,J.L.Zhou.Determination of Polycyclic Aromatic Hydrocarbons in Water by Solid-phase Microextraction-Gas chromatography-Mass Spectrometry[J].Anal.Chim.Acta.,2004,523:259-267.
    [12]H.W.Chen.Determination of Polycyclic Aromatic Hydrocarbons in Water by Solid- phase Microextraction and Liquid Chromatography[J].Anal.Sci.,2004,20:1383-1388.
    [13]F.L.Dickert,H.Besenb(o|¨)ck,M.Tortschanoff.Molecularly Imprinted Sensor Layers for the Detection of Polycyclic Aromatic Hydrocarbons in Water[J].Adv.Mater.,1998,10(2):149-151.
    [14]F.L.Dickert,M.Tortschanoff,W.E.Bulst,G.Fischerauer.Molecularly Imprinted Sensor Layers for the Detection of Polycyclic Aromatic Hydrocarbons in Water [J].Anal.Chem.,1999,71,4559-4563.
    [15]F.L.Dickert,P.Achatz,K.Halikias.Double Molecular Imprinting-A New Sensor Concept for Improving Selectivity in the Detection of Polycyclic Aromatic Hydrocarbons(PAHs) in Water[J].Fresenius J.Anal.Chem.2001,371:11-15.
    [16]A.Salinas-Castillo,I.Sanchez-Barragan,J.M.Costa-Fernandez,R.Pereiro,A.Ballesteros,J.M.Gonzalez,A.Segura-Carretero,A.Fernandez-Gutierrez,A.Sanz-Medel.Iodinated Molecularly Imprinted Polymer for Room Temperature Phosphorescence Optosensing of Fluoranthene[J].Chem.Commun.,2005,3224-3226.
    [17]I.Sanchez-Barragan,J.M.Costa-Fernandez,R.Pereiro,A.Sanz-Medel,A.Salinas,Antonio Segura,A.Fernandez-Gutierrez,A.Ballesteros,J.M.Gonzalez.Molecularly Imprinted Polymers Based on Iodinated Monomers for Selective Room-Temperature Phosphorescence Optosensing of Fluoranthene in Water[J].Anal.Chem.,2005,77:7005-7011.
    [1]C.M.Davis.光纤传感器技术手册[M].北京:电子工业出版社,1987.
    [2]A.D.Kersey,T.A.Berkoff,W.W.Morey.Multiplexed Fiber Bragg Grating Strain-sensor System with a Fiber Fabry-Perot Wavelength Filter[J].Opt.Lett.,1993,18(16):1370-1373.
    [3]贾可.光纤生物传感器在胆碱和兴奋剂检测中的应用[D].南京:东南大学,2005.
    [4]韩馥儿.国外光纤通信技术发展趋势分析电线电缆[J].电线电缆.1994,(1):2-7.
    [5]王琳,王学伟.光纤传感器基础[J].电测与仪表.1996,(4):42-48.
    [6]J.I.Peterson,S.R.Goldstein,R.V.Fitzgerald.Fiber Optic pH Probe for Physiological Use[J].Anal.Chem.,1980,52:864-869.
    [7]Z.Zhujun,W.R.Seitz.A Fluorescent Sensor for Aluminum(Ⅲ),Magnesium(Ⅱ),Zinc(Ⅱ) and Cadmium(Ⅱ) Based on Electrostatically Immobilized Quinolin-8-OL Sulfonate[J].Anal.Chim.Acta,1985,171:251-258.
    [8]K.P.McNamara,X.Li,A.D.Stull,Z.Rosenzweig.Fiber-optic Oxygen Sensor Based on the Fluorescence Quenching of Tris(5-acrylamido,1,10 phenanthroline)Ruthenium Chloride[J].Anal.Chim.Acta,1998,361:73-83.
    [9]A.I.Baba,J.Ferguson,B.G Healey,D.R.Walt.Oxygen Sensing Properties of a New Ruthenium(Ⅱ) Compound[J].Anal.Lett.,1997,30(13):2289-2299.
    [10]O.S.Wolfbeis,B.Kovacs,K.Goswami,S.M.Klainer.Fiber-optic Fluorescence Carbon Dioxide Sensor for Environmental Monitoring[J].Mikrochim.Acta 1998,129(1-2):181-188.
    [11]M.D.Marazuela,B.Cuesta,M.C.Moreno-Bondi,A.Quejido.Free Cholesterol Fiber-optic Biosensor for Serum Samples with Simplex Optimization[J].Biosens.Bioelectron.1997,12(3):233-240.
    [12]姜德生,刘尔,陈兴,黄俊.Design and Properties Study of Fiber Optic Glucose Biosensor[J].中国光学快报(英文版).2003,1(2):108-110.
    [13]M.V.Baryshev,V.B.Loschenov.Optimization of Optical Fiber Catheter for Spectral Investigations in Clinics[J].Proc.SPIE-Int.Soc.Opt.Eng.1993,2084:106-118.
    [14]D.Janasek,U.Spohn.An Enzyme-modified Chemiluminescence Detector for Hydrogen Peroxide and Oxidase Substrates[J].Sens.Actuators.B.1997,39:291-294.
    [15]Z.Chen,D.L.Kaplan,H.Gao,J.Kumar,K.A.Marx,S.K.Tripathy.Molecular Assembly of Multilayer Enzyme:Toward the Development of a Chemiluminescence-based Fiber Optic Biosensor[J].Mater.Sci.Eng.,C.,1996,4:155-159.
    [16]F.Baldini,A.Falai,A.Flamini,A.A.Mencaglia.New Absorption-based Optode for the Detection of Hg(Ⅱ) in Water[J].Proc.SPIE-Int.Soc.Opt.Eng.1998,3540:191-195.
    [17]N.Malcik,P.Caglar.The Operational Parameters of a New Fibre-optic Sensor for Ferric Ions in Aqueous Media[J].Sens.Actuators.B.1997,39:386-389.
    [18]P.H.Paul,G.Kychakoff.Fiber-optic Evanescent Field Absorption Sensor[J].Appl.Phys.Lett.,1987,51(1):12-14.
    [19]N.I.Afanasyeva,R.F.Bruch,A.Katzir.Infrared Fiber Optic Evanescent Wave Spectroscopy:Applications in Biology and Medicine[J].Proc.SPIE-Int.Soc.Opt.Eng.1999,3596:152-164.
    [20]N.I.Afanasyeva.Fiberoptic Evanescent Wave Fourier Transform Infrared (FEW-FTIR) Spectroscopy of Polymer Surfaces and Living Tissue[J].Macromol.Symp.1999,141:117-127.
    [21]S.Sumida,S.Okazaki,S.Asakura,H.Nakagawa,H.Murayama,T.Hasegawa.Distributed Hydrogen Determination with Fiber-optic Sensor[J].Sens.Actuators.B,2005,108:508-514.
    [22]A.Safaai-Jazi,J.V.Petersen.Evanescent Field Fibre-optic Chlorine Sensor[J].Opt.Laser Technol.,1994,26(6):399-402.
    [23]A.Kishen,M.S.John,C.S.Lim,A.Asundi.A Fiber Optic Biosensor(FOBS) to Monitor Mutans Streptococci in Human Saliva[J].Biosens.Bioelectron.,2003,18:1371-1378.
    [24]D.Jose,M.S.John,P.Radhakrishnan,V.P.N.Nampoori,C.P.G Vallabhan.An Optical Fibre Based Evanescent Wave Sensor to Monitor the Deposition Rate of Thin Films[J].Thin Sol.Films.,1998,325:264-267.
    [25]G.P.Anderson,Raptor:A Portable Biosensor Upgraded for Reliability and Sensitivity,2002 Joint Service Scientific Conference on Chemical and Biological Defense Research[C].Hunt Valley,MD.2002:9-21.
    [26]F.S.Ligler,G.P.Anderson,P.T.Davidson,R.J.Foch,J.T.Ives,K.D.King,G.Page,D.A.Stenger,J.P.Whelan.Remote Sensing Using an Airborne Biosensor[J].Environ.Sci.Technol.,1998,32:2461-2466.
    [27]L.K.Cao,G.P.Anderson,F.S.Ligler,J.Ezzell.Detection of Yersinia Pestis Fraction 1 Antigen with a Fiber Optic Biosensor[J].J.Clin.Microbiol.,1995,33(2):336-341.
    [28]C.A.Rowe-Taitt,J.P.Golden,M.J.Feldstein,J.J.Cras,K.E.Hoffman,F.S.Ligler.Array Biosensor for Detection of Diohazards[J].Biosens.Bioelectron.2000,14(10-11):785-794.
    [29]G.P.Anderson,K.D.King,D.S.Cuttino,J.P.Whelan,F.S.Ligler,J.F.MacKrell,C.S.Bovais,D.K.Indyke,R.J.Foch.Biological Agent Detection with the Use of an Airborne Biosensor[J].Field Anal.Chem.Technol.,1999,3:307-314.
    [30]G.P.Anderson,K.D.King,K.L.Gaffney,L.H.Johnson.Multi-analyte Interrogation Using the Fiber Optic Biosensor[J].Biosens.Bioelectron.2000,14(10-11):771-777.
    [31]G.P.Anderson,C.A.Rowe-Taitt.Water Quality Monitoring Using an Automated Portable Fiber Optic Biosensor:RAPTOR[J].Proc.SPIE,2001,4206:58-63.
    [32]G.P.Anderson,K.D.King,L.K.Cao,M.Jacoby,F.S.Ligler,J.Ezzell.Quantifying Serum Antiplague Antibody with a Fiber-Optic Biosensor[J].Clin.Diagn.Lab Immunol.,1998,5(5):609-612.
    [33]黄惠杰,翟俊辉,任冰强,扬瑞馥.光纤倏逝波传感器及其应用[J].光学学报,2003,23(4):451-454.
    [34]黄惠杰,翟俊辉,赵永凯,杨瑞馥,任冰强,程兆谷,杜龙龙,路敦武.多探头光纤倏逝波生物传感器及其性能研究[J].中国激光,2004,31(6):718-722.
    [35]H.Wei,Y.Zhao,Y.Bi,H.Liu,Z.Guo,Y.Song,J.Zhai,H.Huang.R.Yang.Direct Detection of Yersinia Pestis from the Infected Animal Specimens by a Fiber Optic Biosensor[J].Sens.Actuators.B,2007,123:204-210.
    [36]R.Gotz,B.Mizaikoff,R.Kellner.Application of Sapphire Febres to IR Fibre-optic Evanescent Field Gas Sensors[J].Mikrochim.Acta Suppl.,1997,14:833-835.
    [37]M.A.Druy,R.A.Bolduc.Fiber Optic Noncontact Reflectance Probe for Detection of Contamination in Pharmaceutical Mixing Vessels[J].Proc.SPIE-Int.Soc.Opt.Eng.,1999,3538:169-171.
    [38]C.Coffey,B.E.Cooley,D.S.Walker.Real Time Quantitation of a Chemical Reaction by Fiber Optic Near-infrared Spectroscopy[J].Anal.Chim.Acta,1995,395:335-341.
    [39]C.J.Frank,R.L.McCreery,D.C.B.Redd.Raman Spectroscopy of Normal and Diseased Human Breast Tissues[J].Anal.Chem.,1995,67(5):777-783.
    [40]M.G.Shim,B.C.Wilson,E.Marple,M.L.Wach.Evaluation of Fiber Optic Probes for In-vivo Raman Spectroscopy[J].Proc.SPIE-Int.Soc.Opt.Eng.,1998,3257:208-217.
    [41]李新霞,陈坚.光纤化学传感器分子探针的固定方法[J].分析科学学报,1999,15(5):425-429.
    [42]L.Mosiello,L.Nencini,L.Segre,M.Spano.A Fibre-optic Immunosensor for 2,4-dichlorophenoxyacetic Acid Detection[J].Sens.Actuators.B,1997,39:353-359
    [43]E.Antico,M.Lerchi,B.Rusterholz,N.Achermann,M.Badertscher,M.Valiente,E.Pretsch.Monitoring Pb~(2+) with Optical Sensing Films[J].Anal.Chim.Acta,1999,388:327-338.
    [44]M.F.Choi,P.Hawkins.Development of Sulphide-selective Optode Membranes Based on Fluorescence Quenching[J].Anal.Chim.Acta,1997,344:105-110.
    [45]O.Lev,M.Tsionsky,L.Rabinovich,V.Glezer,S.Sampath,I.Pankratov,J.Gun.Organically Modified Sol-gel Sensors[J].Anal.Chem.,1995,67(1):22A-30A.
    [46]W.Tan,Z.Y.Shi,S.Smith,D.Bimbaum,R.Kopelman.Submicrometer Intracellular Chemical Optical Fiber Sensors[J].Science.1992,258:778-781.
    [47]Z.Rosenzweig,R.Kopelman.Development of a Submicrometer Optical Fiber Oxygen Sensor[J].Anal.Chem.,1995,67(15):2650-2654.
    [48]Z.Rosenzweig,R.Kopelman.Analytical Properties and Sensor Size Effects of a Micrometer-Sized Optical Fiber Glucose Biosensor[J].Anal.Chem.,1996,68:1408-1413.
    [49]W.Tan,R.Kopelman,S.L.R.Barker,M.T.Miller.Ultrasmall Optical Sensors for Cellular Measurements[J].Anal.Chem.1999,71(17):606A-612A.
    [50]R.Slavik,J.Homola,J.Ctyroky.Single-mode Optical Fiber Surface Plasmon Resonance Sensor[J].Sens.Actuators.B,1999,54:74-79.
    [51]K.S.Bronk,D.R.Walt.Fabrication of Patterned Sensor Arrays with Aryl Azides on a Polymer-Coated Imaging Optical Fiber Bundle[J].Anal.Chem.,1994,66:3519-3520.
    [52]Y.Zhao,A.Richman,C.Storey,N.B.Radford,P.Pantano.In Situ Fiber-Optic Oxygen Consumption Measurements from a Working Mouse Heart[J].Anal.Chem.,1999,71(17):3887-3893.
    [53]S.J.Glenn,B.M.Cullum,J.C.Carter,R.B.Nair,D.A.Nivens,C.J.Murphy,S.M.Angel.Development of a Lifetime-based Fiber Optic Imaging Sensor to Study Water Transport in Thin Nation Membranes[J].Proc.SPIE-Int.Soc.Opt.Eng.,3540:235-245.
    [54]K.L.Michael,J.A.Ferguson,B.G.Healey,A.P.Panova,P.Pantano,D.R.Walt.The Use of Optical-imaging Fibers for the Fabrication of Array Sensors[M].ACS Symposium Series,the American Chemical Society(ACS),1998,690(23):273-289.
    [1]中华人民共和国卫生部药典委员会编.《药典注释》[M].北京:化学工业出版社,1993:845
    [2]B.Zeng,W.C.Purdy.The Cathodic Stripping Voltammetric Determination of 6-Mercaptopurine at a Silver Electrode[J].Electroanalysis,1998,10(4):236-239.
    [3]K.Nikolic,K.Velasevic.Potentiometric and Volumetric Determination of 6-Mercaptopurin[J].Mikrochim.Acta,1990,1(1-2):69-73.
    [4]X.-C.Shen,L.-F.Jiang,L.Hong,X.Lu,L.-J.Zhang,X.-Y.Liu.Determination of 6-Mercaptopurine Based on the Fluorescence Enhancement of Au Nanoparticles [J].Talanta,2006,69:456-462.
    [5]Z.He,X.Liu,Q.Luo,X.Yu,Y.Zeng.Chemiluminescent Determination of 6-Mercaptopurine in Pharmaceutical Preparation[J].Anal.Sci.,1995,11(3):415-417.
    [6]C.Lau,J.Lu,S.Yagisawa,K.Ohta,M.Kai.Simple Chemiluminescence Method for the Determination of Mercaptopurine[J].Anal.Sci.,2002,18(9):1043-1045.
    [7]黄春保,潘祖亭.过氧化氢-巯嘌呤氧化还原反应的研究及荧光分析应用[J].分析试验室,2001,20(1):58-60.
    [8]黄春保,张丽瑶,端木传嵩,左超,潘祖亭.荧光光谱法研究6-巯基嘌呤的氧化反应及其分析应用[J].分析科学学报,1999,15(6):464-467.
    [9]Z.Sahnoun,F.Serre-Debeauvais,J.Lang,G.Faucon,M.Gavend.Determination of 6-Mercaptopurine and Its Metabolites in Plasma or Serum by High Performance Liquid Chromatography[J].Biomed.Chromat.2005,4(4):144-147.
    [10]X.-N.Cao,L.Linb,Y.-Y.Zhou,G.-Y.Shi,W.Zhang,K.Yamamoto,L.-T.Jin. Amperometric Determination of 6-Mercaptopurine on Functionalized Multi-wall Carbon Nanotubes Modified Electrode by Liquid Chromatography Coupled with Microdialysis and Its Application to Pharmacokinetics in Rabbit[J].Talanta,2003,60(5):1063-1070.
    [11]C.C.Wang,S.S.Chiou,S.M.Wu.Determination of Mercaptopurine and Its Four Metabolites by Large-volume Sample Stacking with Polarity Switching in Capillary Electrophoresis[J].Electrophoresis,2005,26(13):2637-2642.
    [1]I.Bernus,R.G.Dickinson,W.D.Hooper,M.J.Eadie,Dose-dependent Metabolism of Carbamazepine in Humans[J].Epilepsy Res.,1996,24:163-172.
    [2]J.Ichikawa.Valproate and Carbamazepine Increase Prefrontal Dopamine Release by 5-HT1 Areceptor Activation[J].Eur.J.Pharmacol.,1999,380:R1-3.
    [3]D.Deleu,L.Aarons,I.A.Ahmed.Population Pharmacokinetics of Free Carbamezipine in Adult Omani Epileptic Patients[J].Eur.J.Clin.Pharmacol.,2001,57:243-248.
    [4]H.Kutt.Neurological Diseases[M].(2nd Edition),Press,New York,1980,1022-1025.
    [5]国家药典委员会编,中华人民共和国药典[M].二部,北京:化学工业出版社,2000,127.
    [6]United States Pharmacopoeia ⅩⅩⅢ[M].US Pharmacopoeial Convention,Rockville,MD,1995,265.
    [7]X.D.Yuan,H.W.Jun,J.W.M.Call,Determination of Carbamazepine in Uncoated and Film-coated Tablets by HPLC with UV Detection[J].Anal.Lett.,2003,36:1197-1210.
    [8]A.Owen,J.N.Tettey,P.Morgan.LC Determination of Carbamazepine in Murine Brain[J].J.Pham.Biomed.Anal.,2001,26:573-577.
    [9]M.Contin,R.Riva,F.Albani,E.Perucca,A.Baruzzi.Determination of Total and Free Plasma Carbamazepine Concentrations by Enzyme Multiplied Immunoassay [J].Ther.Drug Monit.,1985,7:46-50.
    [10]R.Hsu,A.M.Au.Gas Chromatography-chemical Ionization Mass Spectrometry for Drug Screen Analyses[J].Bull.Environ.Contam.Tox.,2001,66:178-183.
    [11]E.Marziali,M.A.Raggi,N.Komarova.Octakis-6-sulfato-γ-cyclodextrin as Additive for Capillary Electrokinetic Chromatography of Dibenzoazepines:Carbamazepine,Oxcarbamazepine and Their Metabolites[J].Electrophoresis,2002,23:3020-3026.
    [12]S.H.Lee,M.LI,J.K.Suh,Determination of Carbamazepine by Chemiluminescence Detection Using Chemically Prepared Tris(2,2'-bipyridine)-ruthenium(Ⅲ) as Oxidant[J].Anal.Sci.,2003,19:903-906.
    [13]S.Kuhn,N.Meier,O.Pierart,G.Godoy,Fluorimetric Determination of Carbamazepine[J].Farmaco,Ed.Prat.,1982,37:296-303.
    [14]L.De la Pena,A.Gomez-Hens,D.Perez-Bendito.Kinetic Fluorimetric Determination of Carbamazepine in Serum by the Stopped-flow Technique[J].Fresenius.J.Anal.Chem.,1990,338:821-823.
    [15]潘祖亭,姚礼峰.电解荧光光度法测定卡马西平的含[J].分析化学,1998,26:997-1000.
    [16]C.Huang,Q.He,H.Chen.Flow Injection Photochemical Spectrofluorimetry for the Determination of Carbamazepine in Pharmaceutical Preparations[J].J.Pharm.Biomed.Anal.,2002,30:59-65.
    [17]Z.Zhang,G.Liang,J.Ma,Y.Lei,Y.Lu.A Sensitive Flow Injection Fluorimetry for the Determination of Carbamazepine in Human Plasma[J].Anal.Lett.,2006,39:2417-2428.
    [1]陈青川.叶酸的分析进展[J].国外医学-卫生学分册,1997,24(3):39-43.
    [2]J.Ghasemi;M.Vosough.Simultaneous Spectrophotometric Determination of Folic Acid,Thiamin,Riboflavin,and Pyridoxal Using Partial leaset-Squares Regression Method[J].Spectroscopy Letter.,2002,35(2):153-169.
    [3]P.Nagaraja,R.A.Vasantha,H.S.Yathirajan.Spectrophotometric Determination of Folic Acid in Pharmaceutical Preparations by Coupling Reactions with Iminodibenzyl or 3-aminophenol or Sodium Molybdate-pyrocatechol[J].Anal.Biochem.,2002,307(2):316-321.
    [4]M.J.Akhtar,M.A.Khan,I.Ahmad.Identification of Photoproducts of Folic Acid and Its Degradation Pathways in Aqueous Solution[J].J.Pharm.Biomed.Anal., 2003,31:579-588.
    [5]A.-C.Le Gall,C.M.G.van den Berg.Determination of Folic Acid in Sea Water Using Adsorptive Cathodic Stripping Voltammetry[J].Anal.Chim.Acta,1993,282(3):459-470.
    [6]孙春燕,赵慧春,欧阳津.流动注射化学发光法测定叶酸[J].分析试验室,2000,19:60-62.
    [7]苏耀东,于娟,秦立俊.间接荧光法测定奶粉中叶酸[J].理化检验-化学分册,2007,43:105-107.
    [8]R.A.S.Lapa,J.F.C.Lima,B.F.Reis,J.L.M.Santos,E.A.G.Zagatto.Photochemical-fluorimetric Determination of Folic Acid in a Multicommutated Flow System[J].Anal.Chim.Acta,1997,351(1-3):223-228.
    [9]刘欣,黄汉国.过氧化氢氧化荧光分光光度法测定片剂中叶酸含量[J].分析化学,2002,30:1-3.
    [10]刘欣,黄汉国,高锰酸钾氧化荧光分光光度法测定片剂中叶酸含量[J].分析化学,2000,28,1405-1409.
    [11]G.W.Scbieffer,G.P.Wheeler,C.O.Ciminco.Determination of Folic Acid in Commercial Diets by Anion-Exchange Solid-Phase Extraction and Subsequent Reversed-Phase HPLC[J].J.Liq.Chromatogr.,1984,7(16):2659-2661.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700