RCP与头颈鳞癌侵袭转移及预后的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     检测(?)Rab coupling protein (RCP) mRNA及蛋白在头颈部鳞状细胞癌(头颈鳞癌)组织、癌旁、癌前病变组织及细胞株中的表达,并探索其表达与头颈鳞癌临床病理特征和预后的关系。
     方法
     采用免疫组织化学技术检测RCP蛋白在95例头颈鳞癌、16例癌旁组织及18例声带白斑石蜡组织标本中的表达,并统计分析RCP蛋白在头颈鳞癌中的表达水平与其临床病理特征和预后之间的关系;另外,应用RT-PCR技术检测(?)RCP mRNA在10对喉癌新鲜标本及癌旁组织的表达水平;利用Western blot技术检测RCP蛋白在NP-69(鼻咽部永生化细胞株)及头颈鳞癌细胞株(Tu212、Tu686、M2、M4)中的表达水平。
     结果
     RCP mRNA在喉癌组织中表达明显升高,而在癌旁组织中表达微弱,差异具有统计学意义;RCP蛋白在癌旁组织、声带白斑(癌前病变)及头颈鳞癌组织中表达呈梯形依次升高,差异具有统计学意义;RCP蛋白在头颈鳞癌中的表达水平与头颈鳞癌的T分期(P=0.028)、临床分期(P=0.012)、淋巴结转移(P=0.004)和肿瘤复发(P=0.016)密切相关,而与患者年龄(P=0.383)、饮酒史(P=0.658)、抽烟史(P=0.811)、肿瘤类型(P=0.153)、分化程度(P=1.004)在统计学上无相关性;Kaplan-Meier生存分析显示头颈鳞癌患者RCP蛋白高表达组与低表达组5年总生存率(Overall survival)分别为40%和75%,5年无病生存率(Disease-free survival)分别为30.7%和64%,差异具有统计学意义(P均<0.05);多因素Cox比例风险回归模型分析进一步显示,淋巴结转移(P=0.037)、肿瘤复发(P=0.000)和RCP蛋白表达水平(P=0.016)均为头颈鳞癌患者预后的独立影响因素。
     结论
     RCP在头颈鳞癌组织及细胞中高表达,而在癌旁组织及NP-69细胞株中表达较低,RCP可能与肿瘤的发生相关;RCP蛋白在头颈鳞癌中的表达水平与与头颈鳞癌患者的复发、转移及预后密切相关,且RCP蛋白表达是头颈鳞癌预后的独立影响因素。这些结果均提示RCP在头颈鳞癌的发生、发展中可能发挥了重要作用,并对头颈鳞癌复发、转移及预后具有评估价值。
     目的
     我们前期研究表明RCP蛋白在头颈鳞癌组织中显著上调,并与头颈鳞癌患者的临床分期、复发、转移及预后密切相关。因此,本部分将利用RNAi技术沉默RCP基因在头颈鳞癌细胞株CNE-2中的表达,并观察RCP基因沉默后对头颈鳞癌CNE-2细胞体外生长、迁移及侵袭能力等生物学行为的影响。
     方法
     利用慢病毒介导的RCP shRNA沉默头颈鳞癌CNE-2细胞中RCP基因表达,Western blot技术检验RCP基因的沉默效果;嘌呤霉素筛选,建立RCP基因稳定沉默的CNE-2细胞株;通过CCK-8法及平板克隆形成实验检测沉默RCP基因对CNE-2细胞增殖及克隆形成能力的影响;利用Transwell迁移侵袭实验观察RCP基因沉默后对CNE-2细胞迁移及侵袭能力的影响。
     结果
     慢病毒介导的RCP shRNA显著抑制了CNE-2细胞中RCP基因的表达。利用嘌呤霉素对转染后的细胞进行筛选,成功建立了CNE-2RCPRNAi+(RCP基因稳定沉默)(?)(?)CNE-2RCPRNAi-(空白对照)细胞株;与正常对照组CNE-2及空白对照组CNE-2RCPRNAi细胞比较,RCP干扰组CNE-2RCPRNAi+细胞增殖能力及克隆形成能力显著减弱。CCK-8实验中通过对OD450测得数据的统计学分析发现,CNE-2RCPRNAi+与CNE-2、CNE-2RCPRNAi-三组细胞生长到第2、3,4,5,6,7天,CNE-2RCPRNAi+与其他两组细胞的增殖能力差异具有统计学意义(P<0.05),而CNE-2、CNE-2RCPRNAi-细胞增殖能力无统计学差异;平板克隆形成实验结果表明,CNE-2RCPRNAi+细胞克隆形成数(均数±标准差)为7.3±3.02,而CNE-2RCPRNAi-、CNE-2细胞克隆形成数(均数±标准差)分别为18.0±3.43、20.1±4.09,独立因素T检验提示和其他两组相比,CNE-2RCPRNAi+克隆形成能力明显减弱,差别具有统计学意义(P<0.01),而CNE-2RCPRNAi-和CNE-2在克隆形成数上无统计学差异(P>0.05); Transwell迁移实验发现24小时后穿过Transwell小室聚碳酸酯膜的CNE-2RCPRNAi+细胞较两对照组(CNE-2和CNE-2RCPRNAi-)明显减少(173.67±8.08vs277.33±8.74,260.67±10.02)(P<0.01); Transwell侵袭实验发现48小时后穿过Transwell小室Matrigel胶的CNE-2RCPRNAi+细胞较两对照组(CNE-2和CNE-2RCPRNAi-)显著减少(94.00±6.56vs184.67±5.51,175.00±9.64)(P<0.01)
     结论
     RCP表达抑制后能明显减弱头颈鳞癌CNE-2细胞的体外增殖、迁移及侵袭能力,提示其在头颈鳞癌的恶性进展中发挥了重要作用。
Objective
     The role of Rab coupling protein (RCP) has not been previously investigated in squamous cell carcinoma of the head and neck (SCCHN). The aim of this study was to explore RCP protein expression and its clinicopathological significance in SCCHN.
     Methods
     RCP mRNAs were detected in10of laryngocarcinoma tissues and its corresponding adjacent tissues by RT-PCR. RCP protein expression in95SCCHN samples,18corresponding adjacent epithelia and16leukoplakia epithelia samples was analyzed by immunohistochemistry and correlated with clinicopathological parameters and patient outcome. Furthermore,4SCCHN cell lines and an immortal cell line from nasopharynx (NP-69) were evaluated for RCP expression by RT-PCR. Statistical analyses were performed using the SPSS statistical software version17.0(SPSS Inc., Chicago, IL, USA). Statistical significance between the expression of RCP protein and clinicopathological parameters was compared by the χ2test. Survival analyses were undertaken using the Kaplan-Meier method and curves were compared by the log-rank test. Identification of relevant prognostic factors was performed by the univariate and multivariate Cox regression analysis. Tests were two-sided, and P<0.05was considered to indicate a statistically significant difference.
     Results
     1. The expression of RCP mRNAs in laryngocarcinoma tissues was statistically up-regulated than corresponding adjacent tissues.
     2. RCP was statistically detected in SCCHN cell lines over expressed than that of NP-69by western blot.
     3. Our data indicated that corresponding adjacent epithelia, leukoplakia epithelia and SCCHN showed a gradual increase in the expression of RCP protein.
     4. RCP overexpression was significantly associated with T classification (p=0.028), clinical staging (p=0.012), lymph node metastasis (p=0.004) and recurrence (p=0.016).
     5. The multivariate analysis revealed that RCP had independent prognostic effects on the overall survival rate of the patients with SCCHN.
     6. Survival analysis revealed that a high RCP expression was significantly correlated with shorter overall survival and disease-free survival.
     Conclusion
     RCP protein may contribute to the malignant progression of SCCHN, and serve as a novel prognostic marker of the recurrence, metastasis and prognosis in patients with SCCHN.
     Objective
     Our previous studys have demonstrated that RCP was statistically up-regulated in SCCHN than that of corresponding adjacent tissues and NP-69cell line, and RCP protein overe-xpression was related to tumor recurrence, metastasis and poorer survival in patients with SCCHN. These suggested RCP may serve as a novel prognostic marker of the recurrence, metastasis and prognosis in SCCHN. The aim of this study was to explore the impact of RCP on the proliferation, cloning efficiency, migration and invasion of the squamous cellcarcinoma of the head and neck in vitro.
     Methods
     RCP shRNA lentiviral particles were used to knockdown RCP gene expression in SCCHN cell line CNE-2. Western blotting was estimated the gene silencing efficiency of RCP. Stable transfected cell lines were obtained by puromycin screening. CCK-8assay and Flat cloning formation experiment were carried out to assess the effect of RCP inhibition on the proliferation and cloning efficiency of CNE-2. Invasion and migration assay were used to observe the variation of the migration and invasion of CNE-2when RCP knocked out.
     Results
     1. RCP shRNA lentiviral particles efficiently decreased the transcription and translation level of RCP in CNE-2cell line.
     2. By puromycin screening, the stable transfected cell lines were obtained:CNE-2RCPRNAi+(RCP gene knocked out) and CNE-2RCPRNAi-(Blank control).
     3. The cell proliferations of CNE-2R PRNAi+cells were much slower than that of the control cells (CNE-2, CNE-2RCPRNAi-) by CCK-8assay.
     4. The proliferation and cloning efficiency of CNE-2RCPRNA+cell was significantly down-regulated than that of both control groups (CNE-2and CNE-2RCPRNAi-). Specifically, the quantity of the cell cloning of the CNE-2RCPRNAi+was7.3±3.02(x±s), while that of the CNE-2and CNE-2RCPRNAi-was20.1±4.09,18.0±3.43respectively, P<0.05.
     5. RCP silence led to statistically decreased migration ability of CNE-2. Specifically, the quantity of the cells through the transwell membrane24hours after treatment in CNE-2RCPRNAi+was173.67±8.08(x±s), while that of the CNE-2and CNE-2RCPRNAi-were277.33±8.74,260.67±10.02respectively, P<0.01.
     6. RCP silence led to statistically decreased invasion ability of CNE-2. Specifically, the quantity of the cells through the transwell matrigel membrane48hours after treatment in CNE-2RCPRNAi+was94.00±6.56,while that of the CNE-2and CNE-2RCPRNAi-were184.67±5.51,175.00±9.64respectively, P<0.01.
     Conclusion
     Silencing the expression of RCP led to the downregulation of tumor growth, cloning efficiency, migration and invasion in vitro. These suggest that RCP promotes the aggressive behavior of SCCHN, indicating RCP may be a promising targeted gene to block SCCHN progression.
引文
[1]Jemal A, Siegel R, Ward E, et al. Cancer statistics,2008. CA Cancer J Clin 2008; 58:71-96
    [2]Fischer CA, Jung M, Zlobec I, et al.Co-overexpression of p21 and Ki-67 in squamous cell carcinoma of the head and neck relative to a significantly poor prognosis. Head Neck 2010; 33:267-273
    [3]Seabra MC, Mules EH, Hume AN. Rab GTPases, intracellular traffic and disease. Trends Mol Med.2002; 8(1):23-30
    [4]Marsh, M.& Helenius, A. Virus entry:open sesame. Cell 2006; 124:729-740
    [5]Smith AC, Heo WD, Braun V, et al.A network of Rab GTPases controls phagosome maturation and is modulated by Salmonella enterica serovar Typhimurium. J Cell Biol 2007; 176:263-268
    [6]Terebiznik MR, Vazquez CL, Torbicki K, et al. Helicobacter pylori VacA toxin promotes bacterial intracellular survival in gastric epithelial cells. Infect Immun 2006; 74:6599-6614
    [7]Via LE, Deretic D, Ulmer RJ, et al. Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J. Biol.Chem1997; 272:13326-13331
    [8]Prada-Delgado A, Carrasco-Marin E, Pena-Macarro C, et al. Inhibition of Rab5a exchange activity is a key step for Listeria monocytogenes survival. Traffic 2005; 6:252-265
    [9]Mallo GV, Espina M, Smith AC, et al. SopB promotes phosphatidylinositol 3-phosphate formation on Salmonella vacuoles by recruiting Rab5 and Vps34. J. Cell Biol 2008; 182:741-752
    [10]Dell'Amico MC, Vivani P, Miccoli M, et al. Mutations in GDI1 And X-linked non-specific mental retardation. Ann lg.2001; 23:71-79
    [11]Aligianis I A, Johnson CA, Gissen P, et al. Mutations of the catalytic subunit of RAB3GAP cause Warburg Micro syndrome. Nature Genet 2005; 37:221-223
    [12]Aligianis IA, Morgan NV, Mione M, et al. Mutation in Rab3 GTPaseactivating protein (RAB3GAP) noncatalytic subunit in a kindred with Martsolf syndrome. Am J Hum Genet 2006; 78:702-707
    [13]Verhoeven K, De Jonghe P, Coen K, et al. Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. Am J Hum Genet 2003; 72:722-727
    [14]Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature 2001; 411:355-365
    [15]Bache KG, Slagsvold T, Stenmark H. Defective downregulation of receptor tyrosine kinases in cancer. EMBO J 2004; 23:2707-2712
    [16]Bravo-Cordero JJ, Marrero-Diaz R, Megi'as D, et al. MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway. EMBO J 2007;26:1499-1510
    [17]Prekeris, R., Klumperman, J., Scheller, R.H. A Rab11/Rip11 protein complex regulates apical membrane trafficking via recycling endosomes. Mol. Cell 2000; 6; 1437-1448
    [18]Lindsay, A.J., Hendrick, A.G., Cantalupo, G., et al. () Rab coupling protein (RCP), a novel Rab4 and Rabll effector protein. J Biol Chem 2002; 277:12190-12199
    [19]Wallace, D.M., Lindsay, A.J., Hendrick, A.G., et al. The novel Rabll-FIP/Rip/RCP family of proteins displays extensive homo- and hetero-interacting abilities. Biochem Biophys Res Commun 2002; 292:909-915
    [20]Hales, C.M., Griner, R., Hobdy-Henderson, K.C.,et al. Identification and characterization of a family of Rabl 1-interacting proteins. J. Biol. Chem 2001; 276:39067-39075
    [21]Lindsay, A.J. and McCaffrey, M.W. Rabll-FIP2 functions in transferrin recycling and associates with endosomal membranes via its COOH-terminal domain. J. Biol. Chem 2002; 277:27193-27199
    [22]Schwenk, R.W., Luiken, J.J., Eckel, J. FIP2 and Ripll specify Rabl la-mediated cellular distribution of GLUT4 and FAT/CD36 in H9c2-hIR cells. Biochem Biophys Res Commun 2007;363:119-125
    [23]Utley, T.J., Ducharme, N.A., Varthakavi, V., et al. Respiratory syncytial virus uses a Vps4-independent budding mechanism controlled by Rab11-FIP2. Proc. Natl. Acad. Sci. U.S.A 2008; 105:10209-10214
    [24]Damiani, M.T., Pavarotti, M., Leiva, N., et al. Rab coupling protein associates with phagosomes and regulates recycling from the phagosomal compartment. Traffic 2004; 5:785-797
    [25]Horgan, C.P., Zurawski, T.H.,et al. Purification and functional properties of Rab11-FIP3. Methods Enzymol 2005; 403:499-512
    [26]Horgan, C.P., Walsh, M., Zurawski, T.H.,et al. Rab11-FIP3 localises to a Rab11-positive pericentrosomal compartment during interphase and to the cleavage furrow during cytokinesis. Biochem Biophys Res Commun 2004; 319:83-94
    [27]Wilson, G.M., Fielding, A.B., Simon, G.C., et al. The FIP3-Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis. Mol Biol Cell 2005; 16:849-860
    [28]Shin, O.H., Ross, A.H., Mihai, I., et al. Identification of arfophilin, a target protein for GTP-bound class Ⅱ ADP-ribosylation factors. J. Biol. Chem1999; 274:36609-36615
    [29]Fielding, A.B., Schonteich, E., Matheson, J., et al. Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO J 2005;24:3389-3399
    [30]Hales, C.M., Vaerman, J.P., et al. Rab11 family interacting protein 2 associates with Myosin Vb and regulates plasma membrane recycling. J. Biol. Chem 2002; 277:50415-50421
    [31]Schonteich, E., Wilson, G.M., Burden, J., et al. The Rip11/Rab11-FIP5 and kinesin Ⅱ complex regulates endocytic protein recycling. J. Cell Sci 2008; 121:3824-3833
    [32]Simon, G.C. and Prekeris, R. Mechanisms regulating targeting of recycling endosomes to the cleavage furrow during cytokinesis. Biochem Soc Trans 2008; 36:391-394
    [33]Lindsay AJ, Hendrick AG, Cantalupo G, et al. Rab coupling protein (RCP), a novel Rab4 and Rab11 effector protein J Biol Chem.2002; 277:12190-9
    [34]Zhang J, Liu X, Datta A, et al. RCP is a human breast cancer-promoting gene with Ras-activating function. J Clin Invest 2009; 119:2171-2183
    [35]Caswell PT, Chan M, Lindsay AJ, et al. Rab-coupling protein coordinates recycling of alpha5betal integrin and EGFR1 to promote cell migration in 3D microenvironments. J Cell Biol 2008; 183:143-155
    [36]Caswell PT, Spence HJ, Parsons M, et al. Rab25 associates with alpha5betal integrin to promote invasive migration in 3D microenvironments. Dev Cell. 2007;13:496-510
    [37]Zhang X, Liu Y, Gilcrease MZ, et al. A lymph node metastatic mouse model reveals alterations of metastasis-related gene expression in metastatic human oral carcinoma sublines selected from a poorly metastatic parental cell line. Cancer 2002; 95:1663-1672
    [38]Sobin LH, Wittekind Ch, eds. TNM classification of malignant tumors. New York:Wiley-Liss; 2002
    [39]Yuan P, Temam S, El-Naggar A, et al. Over-expression of podoplanin in oral cancer and its association with poor clinical outcome. Cancer 2006; 107:563-569
    [40]Sahai E. Mechanisms of cancer cell invasion. Curr Opin Genet Dev 2005; 15:87-96
    [41]Peden AA, Schonteich E, Chun J, et al.The RCP-Rabll complex regulates endocytic protein sorting. Mol Biol Cell 2004; 15(8):3530-41
    [42]Cosetti M, Yu GP, Schantz SP.Five-year survival rates and time trends of laryngeal cancer in the US population. Arch Otolaryngol Head Neck Surg. 2008;134(4):370-379
    [43]Francis DO, Yueh B, Weymuller EA Jr, et al. Impact of surveillance on survival after laryngeal cancer in the medicare population. Laryngoscope 2009; 119: 2337-2344
    [44]Hoffman HT, Porter K, Karnell LH, et al. Laryngeal cancer in the United States: changes in demographics, patterns of care, and survival. Laryngoscope 2006; 16:1-13
    [45]Snow GB, Patel P, Leemans CR, et al.Management of cervical lymph nodes in patients with head and neck cancer. Eur Arch Otorhinolaryngol 1992; 249:187-94
    [46]于靖寰,季文樾,关超,等。声门上型喉癌颈淋巴结转移的临床病理研究。中华耳鼻咽喉科杂志,1997,;32(6):325-328
    [47]Oztiirkcan S,Katilmis H,Ozdemir I,et al. Occult contralateral nodal metastases in supraglottic laryngeal cancer crossing the midline. Eur Arch Otorhinolaryngol 2009; 266:117-120
    [48]Ramroth H, Dietz A, Becher H.Intensity and inhalation of smoking in the aetiology of laryngeal cancer. Int J Environ Res Public Health 2011; 8:976-984
    [49]Rosenquist K. Risk factors in oral and oropharyngeal squamous cell carcinoma: a population-based case-control study in southern Sweden. Swed Dent J Suppl 2005; 179:1-66
    [50]Piemonte ED, Lazos JP, Brunotto M. Relationship between chronic trauma of the oral mucosa,oral potentially malignant disorders and oral cancer. J Oral Pathol Med 2010; 39:513-517
    [51]Spitz MR, Fueger JJ, Goepfert H, et al.Salivary gland cancer. A case-control investigation of risk factors. Arch Otolaryngol Head Neck Surg 1990; 116:1163-1166
    [52]郭剑锋,陈福进,曾宗渊,等。声门上喉癌预后的相关因素分析。中山大学学报(医学科学版),2005,26(2):236-239
    [53]季文樾,杜强,关超,等。1115例喉癌患者的生存分析。中华耳鼻咽喉科杂志,2004,39(1):17-19
    [54]张艳,刘素香。甲状腺乳头状癌病理分型和淋巴结转移与预后的关系,2005.20(7):422-424
    [1]Seabra MC, Mules EH, Hume AN.Rab GTPases, intracellular traffic and disease. Trends Mol Med.2002; 8(1):23-30
    [2]Pereira-Leal, J.B. and Seabra, M.C. The mammalian Rab family of small GTPases:definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J. Mol. Biol. 2000;301:1077-1087
    [3]Sonnichsen, B., De Renzis, S, Nielsen, E., et al. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11.J. Cell Biol.2000; 149:901-914
    [4]Calero, M., Chen, C.Z., Zhu, W., et al. Dual prenylation is required for Rab protein localization and function. Mol. Biol. Cell 2003; 14:1852-1867
    [5]Gomes, A.Q., Ali, B.R., Ramalho, J.S., et al. Membrane targeting of Rab GTPases is influenced by the prenylation motif. Mol. Biol. Cell 2003;14:1882-1899
    [6]Pfeffer, S. R. Structural clues to Rab GTPase functional diversity. J. Biol. Chem.2005;280:15485-15488
    [7]Delprato, A., Merithew, E.& Lambright, D. G.Structure, exchange determinants, and family-wide rab specificity of the tandem helical bundle and Vps9 domains of Rabex-5. Cell 2004; 118:607-617
    [8]Haas AK, Yoshimura S, Stephens DJ, et al.Analysis of GTPase-activating proteins:Rab1 and Rab43 are key Rabs required to maintain a functional Golgi complex in human cells. J Cell Sci 2007; 120:2997-3010
    [9]Quellhorst GJ Jr, Allen CM, Wessling-Resnick M. Modification of Rab5 with a photoactivatable analog of geranylgeranyl diphosphate. J Biol Chem. 2001;276(44):40727-33
    [10]Pereira-Leal JB, Gomes AQ, Seabra MC. Analysis and preparation of stable complexes between Rab GTPases, Rab escort protein, and Rab geranylgeranyl transferase. Methods Mol Biol 2002; 189:157-65
    [11]Matsui Y, Kikuchi A, Araki S,et al. Molecular cloning and characterization of a novel type of regulatory protein (GDI) for smg p25A, a ras p21-like GTP-binding protein. Mol. Cell. Biol.1990; 10:4116-4122
    [12]Zhang H. Binding platforms for Rab prenylation and recycling:Rab escort protein, RabGGT, and RabGDI.Structure 2003; 11(3):237-9
    [13]Goody RS, Rak A, Alexandrov K. The structural and mechanistic basis for recycling of Rab proteins between membrane compartments. Cell Mol Life Sci.2005;62(15):1657-70
    [14]Itzen A, Goody RS. GTPases involved in vesicular trafficking:structures and mechanisms. Semin Cell Dev Biol.2011; 22(1):48-56
    [15]Seabra MC, Mules EH, Hume AN. Rab GTPases, intracellular traffic and disease. Trends Mol Med.2002; 8(1):23-30
    [16]Aridor M, Weissman J, Bannykh S, et al. Cargo selection by the COPII budding machinery during export from the ER. J Cell Biol.1998 Apr 6; 141(1):61-70
    [17]Aridor M, Traub LM. Cargo selection in vesicular transport:the making and breaking of a coat. Traffic.2002;3(8):537-46
    [18]Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol.2009; 10(8):513-25
    [19]Burguete AS, Sivars U, Pfeffer S. Purification and analysis of TIP47 function in Rab9-dependent mannose 6-phosphate receptor trafficking. Methods Enzymol 2005; 403:357-66
    [20]Carroll KS, Hanna J, Simon I, et al. Role of Rab9 GTPase in facilitating receptor recruitment by TIP47. Science 2001;292:1373-1376
    [21]McLauchlan H, Newell J, Morrice N, et al. A novel role for Rab5-GDI in ligand sequestration into calthrin-coated pits. Curr. Biol 1998; 8:34-45
    [22]Cremona O, Di Paolo G, Wenk MR, et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 1999 99:179-188
    [23]Pechstein A, Bacetic J, Vahedi-Faridi A, er al. Regulation of synaptic vesicle recycling by complex formation between intersectin 1 and the clathrin adaptor complex AP2. Proc Natl Acad Sci U S A.2010;107(9):4206-11
    [24]Jost M, Simpson F, Kavran JM, et al. Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Curr Biol 1998; 8:1399-1402
    [25]Semerdjieva S, Shortt B, Maxwell E, et al. Coordinated regulation of AP2 uncoating from clathrin-coated vesicles by rab5 and hRME-6. J. Cell Biol 2008; 183:499-511
    [26]Hamm-Alvarez SF. Molecular motors and their role in membrane traffic. Adv Drug Deliv Rev 19982; 29(3):229-242
    [27]Potokar M, Kreft M, Li L, Daniel Andersson J,et al. Cytoskeleton and vesicle mobility in astrocytes. Traffic 2007; 8:12-20
    [28]Seabra, M. C.& Coudrier, E. Rab GTPases and myosin motors in organelle motility. Traffic 2004; 5:393-399
    [29]Wu XS, Rao K, Zhang H, et al. Identification of an organelle receptor for myosin-Va. Nature Cell Biol 2002; 4:271-278
    [30]Menasche G, Pastural E, Feldmann J, et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nature Genet 2000; 25:173-176
    [31]Kuroda, T. S.& Fukuda, M. Rab27A-binding protein Slp2-a is required for peripheral melanosome distribution and elongated cell shape in melanocytes.Nature Cell Biol 2004; 6:1195-1203
    [32]Hales, C. M., Vaerman, J. P.& Goldenring, J. R. Rab11 family interacting protein 2 associates with Myosin Vb and regulates plasma membrane recycling. J. Biol. Chem 2002; 277:50415-50421
    [33]Roland, J. T., Kenworthy, A. K., Peranen, J.,et al. Myosin Vb interacts with Rab8a on a tubular network containing EHD1 and EHD3. Mol. Biol. Cell 2007; 18:2828-2837
    [34]Fontijn RD, Goud B, Echard A, et al. The human kinesin-like protein RB6K is under tight cell cycle control and is essential for cytokinesis. Mol. Cell. Biol 2001; 21:2944-2955
    [35]Hoepfner S, Severin F, Cabezas A, et al. Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B. Cell 2005; 121:437-450
    [36]Jordens I, Fernandez-Borja M, Marsman M, et al. The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr Biol 2001; 11:1680-1685
    [37]Matanis T, Akhmanova A, Wulf P, et al. Bicaudal-D regulates COPIindependent Golgi-ER transport by recruiting the dynein-dynactin motor complex. Nature Cell Biol 2002; 4:986-992
    [38]Salminen, A.& Novick, P. J. A ras-like protein is required for a post-Golgi event in yeast secretion. Cell 1987; 49:527-538
    [39]Gorvel JP, Chavrier P, Zerial M, Gruenberg J.rab5 controls early endosome fusion in vitro. Cell 1991; 64:915-925
    [40]Rubino, M., Miaczynska, M., Lippe, R. et al. Selective membrane recruitment of EEA1 suggests a role in directional transport of clathrin-coated vesicles to early endosomes. J. Biol. Chem.2000; 275:3745-3748
    [41]Stenmark H, Parton RG, Steele-Mortimer O, et al. Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J 1994; 13:1287-1296
    [42]Nielsen E, Christoforidis S, Uttenweiler-Joseph S, et al. Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J. Cell Biol 2000; 151:601-612
    [43]Morrison HA, Dionne H, Rusten TE, et al. Regulation of early endosomal entry by the Drosophila tumor suppressors rabenosyn and Vps45. Mol. Biol. Cell 2008; 19:4167-4176
    [44]Simonsen A, Gaullier JM, D'Arrigo A,et al.The Rab5 effector EEA1 interacts directly with syntaxin-6. J. Biol. Chem 1999; 274:28857-28860
    [45]McBride HM, Rybin V, Murphy C, et al. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13.Cell 1999; 98:377-386
    [46]Ohya T, Miaczynska M, Coskun U, et al. Reconstitution of Rab- and SNARE dependent membrane fusion by synthetic endosomes. Nature 2009; 459(7250):1091-1097
    [47]Fukuda, M. Versatile role of Rab27 in membrane trafficking:focus on the Rab27 effector families. J. Biochem 2005; 137:9-16
    [48]Tsuboi, T.& Fukuda, M. The Slp4-a linker domain controls exocytosis through interaction with Munc18-1 syntaxin-la complex. Mol. Biol. Cell 2006; 17:2101-2112
    [49]Gomi, H., Mizutani, S., Kasai, K.,et al. Granuphilin molecularly docks insulin granules to the fusion machinery. J. Cell Biol2005; 171:99-109
    [50]Tsuboi, T.& Fukuda, M. The C2B domain of rabphilin directly interacts with SNAP-25 and regulates the docking step of dense core vesicle exocytosis in PC12 cells. J. Biol. Chem 2005; 280:39253-39259
    [51]Tsuboi, T.& Fukuda, M. The Slp4-a linker domain controls exocytosis through interaction with Munc18-1 syntaxin-1a complex. Mol. Biol. Cell 2006; 17:2101-2112
    [52]Gomi, H., Mizutani, S., Kasai, K., et al. molecularly docks insulin granules to the fusion machinery. J. Cell Biol 2005; 171:99-109
    [53]Chavrier, P., Parton, R. G., Hauri, H. P., et al. Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 1990; 62:317-329
    [54]Barbero, P., Bittova, L.& Pfeffer, S. R. Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells. J Cell Biol 2002; 156:511-518
    [55]de Renzis, S., Sonnichsen, B.& Zerial, M. Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes. Nature Cell Biol 2002; 4:124-133
    [56]Naslavsky N, Boehm M, Backlund PS Jr,et al. Rabenosyn-5 and EHD1 interact and sequentially regulate protein recycling to the plasma membrane.Mol Biol Cell 2004; 15(5):2410-22
    [57]Burguete, A. S., Fenn, T. D., Brunger, A. T. et al. Rab and Arl GTPase family members cooperate in the localization of the golgin GCC185. Cell 2008; 132:286-298
    [58]Hayes GL, Brown FC, Haas AK, et al. Multiple Rab GTPase binding sites in GCC185 suggest a model for vesicle tethering at the trans-Golgi. Mol Biol Cell 2009; 20:209-17.
    [59]Burguete, A. S., Fenn, T. D., Brunger, A. T. et al. Rab and Arl GTPase family members cooperate in the localization of the golgin GCC185.Cell 2008; 132:286-298
    [60]Shapiro, A.D, Pfeffer, S.R. Quantitative analysis of the interactions between prenyl Rab9, GDP dissociation inhibitor-alpha, and guanine nucleotides.J. Biol. Chem 1995; 270:11085-11090
    [61]Dirac-Svejstrup, A.B., Sumizawa, T, Pfeffer, S.R. Identification of a GDI displacement factor that releases endosomal Rab GTPases from Rab-GDI.EMBO J1997; 16:465-472
    [62]Sivars, U, Aivazian, D, Pfeffer, S.R. Yip3 catalyses the dissociation of endosomal Rab-GDI complexes. Nature 2003;425:856-859
    [63]Barrowman, J., Wang, W., Zhang, Y. Ferro-Novick, S. The Yiplp.Yiflp complex is required for the fusion competence of endoplasmic reticulum-derived vesicles. J Biol Chem 2003; 278:19878-19884
    [64]Heidtman, M., Chen, C.Z., Collins, et al. A role for Yip1p in COPII vesicle biogenesis. J Cell Biol 2003; 163:57-69
    [65]Martincic, I., Peralta, M.E., Ngsee, J.K. Isolation and characterization of a dual prenylated Rab and VAMP2 receptor. J Biol Chem 1997; 272:26991-26998
    [66]Tang, B.L., Ong, Y.S., Huang, B., et al. A membrane protein enriched in endoplasmic reticulum exit sites interacts with COPII.J. Biol. Chem 2001; 276:40008-40017
    [67]Ortiz, D., Medkova, M., Walch-Solimena, C.,et al. Ypt32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles; evidence for a Rab cascade in yeast. J Cell Biol 2002; 157:1005-1015
    [68]Sakisaka, T., Meerlo, T., Matteson, J., et al. Rab-alpha GDI activity is regulated by a Hsp90 chaperone complex. EMBO J 2002; 21:6125-6135
    [69]Chen CY, Balch WE. The Hsp90 chaperone complex regulates GDI-dependent Rab recycling. Mol Biol Cell 2006; 17:3494-3507.
    [70]Shin HW, Hayashi M, Christoforidis S, et al. An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J Cell Biol 2005; 170:607-618.
    [71]Fukuda, M., Kanno, E., Ishibashi, K,et al. Large scale screening for novel Rab effectors reveals unexpected broad Rab binding specificity. Mol. Cell Proteomics 2008; 7:1031-1042
    [72]Schnatwinkel C, Christoforidis S, Lindsay MR, et al. The Rab5 effector Rabankyrin-5 regulates and coordinates different endocytic mechanisms. PLoS Biol.2004; 2:E261
    [73]Kurosu H, Katada T. Association of phosphatidylinositol 3-kinase composed of pllObeta-catalytic and p85-regulatory subunits with the small GTPase Rab5. J Bilchem 2001; 130:73-78
    [74]Von Zastrow, M.& Sorkin, A. Signaling on the endocytic pathway. Curr Opin Cell Biol 2007; 19:436-445
    [75]Snider MD. A role for rab7 GTPase in growth factor-regulated cell nutrition and apoptosis. Mol Cell 2003; 12:796-797
    [76]Barbieri MA, Roberts RL, Gumusboga A, et al.Epidermal growth factor and membrane trafficking. EGF receptor activation of endocytosis requires Rab5a. J Cell Biol 2000; 151:539-550
    [77]Tall, G. G., Barbieri, M. A., Stahl, P. D. et al. Ras-activated endocytosis is mediated by the Rab5 guanine nucleotide exchange activity of RIN1. Dev Cell 2001,1:3-82
    [78]Lanzetti, L., Palamidessi, A., Areces, L., et al. Rab5 is a signalling GTPase involved in actin remodelling by receptor tyrosine kinases. Nature 2004; 429: 309-314
    [79]Lanzetti L, Rybin V, Malabarba MG, et al.The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature 2000; 408:374-377
    [80]Palamidessi A, Frittoli E, Garre M, et al. Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 2008; 134:135-147
    [81]Miaczynska M, Christoforidis S, Giner A, et al.APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell 2004; 116: 445-456
    [82]Schenck A, Goto-Silva L, Collinet C, et al.The endosomal protein Appll mediates Akt substrate specificity and cell survival in vertebrate development. Cell 2008; 133:486-497
    [83]Wang Y, Roche O, Yan MS, et al.Regulation of endocytosis via the oxygen-sensing pathway. Nature Med 2009; 15:319-324
    [84]Marsh, M.& Helenius, A. Virus entry:open sesame. Cell 2006; 124: 729-740
    [85]Smith AC, Heo WD, Braun V, et al.A network of Rab GTPases controls phagosome maturation and is modulated by Salmonella enterica serovar Typhimurium. J Cell Biol 2007; 176:263-268
    [86]Desjardins, M., Huber, L. A., Parton, R. G. et al. Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J. Cell Biol 1994; 124:677-688
    [87]Kinchen, J. M.& Ravichandran, K. S. Phagosome maturation:going through the acid test. Nature Rev Mol Cell Biol 2008; 9:781-795
    [88]Kitano, M., Nakaya, M., Nakamura, T., et al. Imaging of Rab5 activity identifies essential regulators for phagosome maturation.Nature 2008; 453: 241-245
    [89]Terebiznik MR, Vazquez CL, Torbicki K, et al. Helicobacter pylori VacA toxin promotes bacterial intracellular survival in gastric epithelial cells. Infect Immun 2006; 74:6599-6614
    [90]Via LE, Deretic D, Ulmer RJ, et al. Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J. Biol.Chem1997; 272:13326-13331
    [91]Prada-Delgado A, Carrasco-Marin E, Pena-Macarro C, et al. Inhibition of Rab5a exchange activity is a key step for Listeria monocytogenes survival. Traffic 2005; 6:252-265
    [92]Mallo GV, Espina M, Smith AC, et al. SopB promotes phosphatidylinositol 3-phosphate formation on Salmonella vacuoles by recruiting Rab5 and Vps34. J. Cell Biol 2008; 182:741-752
    [93]Ingmundson, A., Delprato, A., Lambright, D. G. et al. Legionella pneumophila proteins that regulate Rabl membrane cycling. Nature 2007; 450,365-369
    [94]Machner, M. P.& Isberg, R. R. A bifunctional bacterial protein links GDI displacement to Rabl activation. Science 2007; 318:974-977
    [95]Takagishi Y, Murata Y. Myosin Va mutation in rats is an animal model for the human hereditary neurological disease, Griscelli syndrome type 1. Ann N Y Acad Sci.2006; 1086:66-80.
    [96]Masri A, Bakri FG, Al-Hussaini M, et al. Griscelli syndrome type 2:a rare and lethal disorder. J Child Neurol 2008; 23:964-967
    [97]Menasche G, Ho CH, Sanal O, et al. Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J Clin Invest 2003; 112:450-456
    [98]Neeft, M. et al. Munc13-4 is an effector of Rab27a and controls secretion of lysosomes in hematopoietic cells. Mol. Biol. Cell 2005;16:731-741
    [99]Holt, O. et al. Slpl and Slp2-a localize to the plasma membrane of CTL and contribute to secretion from the immunological synapse. Traffic 2008; 9:446-457
    [100]Hayasaka S, Shoji K, Kanno C, et al. Differential diagnosis of diffuse choroidal atrophies. Diffuse choriocapillaris atrophy, choroideremia, and gyrate atrophy of the choroid and retina. Reiina1985;5(1):30-7.
    [101]Seabra, M. C., Brown, M. S.& Goldstein, J. L. Retinal degeneration in choroideremia:deficiency of rab geranylgeranyl transferase. Science 1993; 259:377-381
    [102]Seabra,M.C., Ho,Y.K., Anant,J.S. Deficient geranylgeranylation of Ram/Rab27 in choroideremia. J. Biol. Chem1995; 270:24420-24427
    [103]Dell'Amico MC, Vivani P, Miccoli M, et al. Mutations in GDI1 And X-linked non-specific mental retardation. Ann lg.2001; 23:71-79
    [104]Aligianis IA, Johnson CA, Gissen P, et al. Mutations of the catalytic subunit of RAB3GAP cause Warburg Micro syndrome. Nature Genet 2005; 37: 221-223
    [105]Aligianis IA, Morgan NV, Mione M, et al. Mutation in Rab3 GTPaseactivating protein (RAB3GAP) noncatalytic subunit in a kindred with Martsolf syndrome. Am J Hum Genet 2006; 78:702-707
    [106]Verhoeven K, De Jonghe P, Coen K, et al. Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. Am J Hum Genet 2003; 72:722-727
    [107]Miinea CP, Sano H, Kane S, et al. AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. Biochem J 2005; 391:87-93
    [108]Roach, W. G., Chavez, J. A., Miinea,et al. Substrate specificity and effect on GLUT4 translocation of the Rab GTPase-activating protein Tbc1d1. Biochem. J 2007; 403:353-358
    [109]Chadt A, Leicht K, Deshmukh A, et al.Tbc1d1 mutation in lean mouse strain confers leanness and protects from dietinduced obesity. Nature Genet 2008; 40:1354-1359
    [110]Sano, H., Roach, W. G., Peck, et al. Rab10 in insulin-stimulated GLUT4 translocation. Biochem J 2008; 411:89-95
    [111]Jenkins D, Seelow D, Jehee FS, et al.RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. Am J Hum Genet 2007; 80:1162-1170
    [112]Kapfhamer D, Valladares O, Sun Y, et al. Mutations in Rab3a alter circadian period and homeostatic response to sleep loss in the mouse. Nature Gene 2002; 32:290-295
    [113]Geppert M, Bolshakov VY, Siegelbaum SA, et al. The role of Rab3A in neurotransmitter release. Nature 1994; 369:493-497
    [114]Sato T, Mushiake S, Kato Y, et al.The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature 2007; 448:366-369
    [115]Eggenschwiler, J. T., Espinoza, E.& Anderson, K. V.Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature 2001;412:194-198
    [116]Loftus SK, Larson DM, Baxter LL, et al.Mutation of melanosome protein RAB38 in chocolate mice. Proc Natl Acad Sci USA 2002; 99:4471-4476
    [117]Blume-Jensen P, Hunter T.Oncogenic kinase signalling. Nature 2001; 411:355-365
    [118]Bache KG, Slagsvold T, Stenmark H. Defective downregulation of receptor tyrosine kinases in cancer. EMBO J 2004; 23:2707-2712
    [119]Carpenter G. The EGF receptor:a nexus for trafficking and signalling. Bioessays 2000; 22:697-707
    [120]Burke P, Schooler K, Wiley HS. Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Mol Biol Cell 2001; 12:1897-1910
    [121]Wang Y, Pennock S, Chen X, et al. Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol Cell Biol 2002; 22:7279-7290
    [122]Balbis A, Pamar A, Wang Y, et al. Compartmentalization of signaling-competent epidermal growth factor receptors in endosomes. Endocrinology 2007;148:2944-2954
    [123]Pellinen T, Ivaska J. Integrin traffic. J Cell Sci 2006; 119:3723-3731
    [124]Caswell PT, Norman JC. Integrin trafficking and the control of cell migration. Traffic 2006; 7:14-21
    [125]Bravo-Cordero JJ, Marrero-Diaz R, Megi'as D, et al. MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway. EMBO J 2007; 26:1499-1510
    [126]Cheng KW, Lahad JP, Kuo WL, et al.The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nature Med 2004;10:1251-1256
    [127]Wang, X., Kumar, R., Navarre, J., et al. Regulation of vesicle trafficking in Madin-Darby canine kidney cells by Rab11a and Rab25. J. Biol. Chem 2000; 275:29138-29146
    [128]Caswell PT, Spence HJ, Parsons M, et al. Rab25 associates with alpha5betal integrin to promote invasive migration in 3D microenvironments. Dev Cell. 2007;13:496-510.
    [129]Pellinen T, Arjonen A, Vuoriluoto K, et al. Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic ofβ1-integrins. J. Cell Biol 2006; 173:767-780
    [130]Pellinen T, Tuomi S, Arjonen A, et al. Integrin trafficking regulated by Rab21 is necessary for cytokinesis. Dev Cell 2008; 15:371-385
    [131]Bravo-Cordero JJ, Marrero-Diaz R, Megias D, et al. MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway. EMBO J 2007;26:1499-1510
    [132]Hou Q, Wu YH, Grabsch H, et al.Integrative genomics identifies RAB23 as an invasion mediator gene in diffuse-type gastric cancer. Cancer Res 2008; 68:4623-4630
    [133]Pereira-Leal JB, Seabra MC. Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 2001; 313:889-901
    [134]Simpson JC, Griffiths G, Wessling-Resnick M, et al. A role for the small GTPase Rab21 in the early endocytic pathway. J Cell Sci 2004; 117:6297-6311
    [135]Hognas G, Tuomi S, Veltel S, et al. Cytokinesis failure due to derailed integrin traffic induces aneuploidy and oncogenic transformation in vitro and in vivo. Oncogene 2011; Nov 28 [in print]
    [136]Goldenring JR, Shen KR, Vaughan HD, et al.Identification of a small GTP-binding protein, Rab25, expressed in the gastrointestinal mucosa, kidney, and lung. J Biol Chem 1993;268:18419-18422
    [137]Casanova JE, Wang X, Kumar R, et al. Association of Rab25 and Rablla with the apical recycling system of polarized Madin-Darby canine kidney cells. Mol Biol Cell 1999; 10:47-61
    [138]Cheng KW, Lahad JP, Kuo WL, et al. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med 2004; 10:1251-1256
    [139]Fan Y, Xin XY, Chen BL,et al. Knockdown of RAB25 expression by RNAi inhibits growth of human epithelial ovarian cancer cells in vitro and in vivo. Pathology 2006; 38:561-7.
    [140]Caswell PT, Chan M, Lindsay AJ, et al. Rab-coupling protein coordinates recycling of alpha5betal integrin and EGFR1 to promote cell migration in 3D microenvironments. J Cell Biol 2008; 183:143-155
    [141]Polette M, Birembaut P. Membrane-type metalloproteinases in tumor invasion. Int J Biochem Cell Biol 1998; 30:1195-1202
    [142]Seiki M.Membrane-type 1 matrix metalloproteinase:a key enzyme for tumor invasion. Cancer Lett 2003; 194:1-11
    [143]Sato H, Kinoshita T, Takino T, et al. Activation of a recombinant membrane type 1-matrix metalloproteinase (MT1-MMP) by furin and its interaction with tissue inhibitor of metalloproteinases (TIMP)-2. Febs Lett 1996; 393:101-4
    [144]Osenkowski P, Toth M, Fridman R. Processing, shedding, and endocytosis of membrane type 1-matrix metalloproteinase (MT1-MMP). J Cell Physiol 2004; 200:2-10
    [145]Ga'lvez BG, Mati'as-Roma'n S, Ya'n-ez-Mo'M, et al. ECM regulates MT1-MMP localization with betal or alphavbeta3 integrins at distinct cell compartments modulating its internalization and activity on human endothelial cells. J Cell Biol 2002; 159:509-521
    [146]Burton JL, Burns ME, Gatti E, et al. Specific interactions of Mss4 with members of the Rab GTPase subfamily. EMBO J 1994; 13:5547-5558
    [147]Knoblauch A, Will C, Goncharenko G, et al. The binding of Mss4 to alpha-integrin subunits regulates matrix metalloproteinase activation and fibronectin remodeling. FASEB J 2007; 21:497-510
    [148]Stenmark, H. and Olkkonen, V.M. The Rab GTPase family. Genome Biol 2001; 2, REVIEWS3007
    [149]Schlierf, B., Fey, G.H., Hauber, J., et al. Rab11b is essential for recycling of transferrin to the plasma membrane. Exp. Cell Res 2000; 259:257-265
    [150]Ullrich, O., Reinsch, S., Urbe, S., et al. Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Biol 1996; 135:913-924
    [151]Casanova, J.E., Wang, X., Kumar, R., et al. Association of Rab25 and Rab11a with the apical recycling system of polarized Madin-Darby canine kidney cells. Mol Biol Cell 1999; 10:47-61
    [152]Zeng, J., Ren, M., Gravotta, D., et al. Identification of a putative effector protein for rab11 that participates in transferrin recycling. Proc. Natl. Acad. Sci. U.S.A.1999; 96:2840-2845
    [153]Mammoto, A., Ohtsuka, T., Hotta, I., et al.Rab11BP/Rabphilin-11, a downstream target of rabl 1 small G protein implicated in vesicle recycling. J. Biol. Chem 1999; 274:25517-25524
    [154]Lapierre, L.A., Kumar, R., Hales, C.M., et al. Myosin Vb is associated with plasma membrane recycling systems. Mol. Biol. Cell 2001; 12:1843-1857
    [155]de Graaf, P., Zwart, W.T., van Dijken, R.A., et al. Phosphatidylinositol 4-kinasebeta is critical for functional association of rab11 with the Golgi complex. Mol Biol Cell 2004; 15:2038-2047
    [156]Zhang, X.M., Ellis, S., Sriratana, A., et al. Sec15 is an effector for the Rab11 GTPase in mammalian cells. J Biol Chem 2004;279:43027-43034
    [157]Prekeris,R., Klumperman,J., Scheller,R.H. A Rab11/Rip11 protein complex regulates apical membrane trafficking via recycling endosomes. Mol. Cell 2000; 6:1437-1448
    [158]Lindsay, A.J., Hendrick, A.G., Cantalupo, G., et al. Rab coupling protein (RCP), a novel Rab4 and Rab11 effector protein. J Biol Chem 2002; 277:12190-12199
    [159]Wallace, D.M., Lindsay, A.J., Hendrick, A.G.,et al. The novel Rab11-FIP/ Rip/RCP family of proteins displays extensive homo- and hetero-interacting abilities. Biochem Biophys Res Commun 2002; 292:909-915
    [160]Hales,C.M.,Griner,R., Hobdy-Henderson,K.C.,etal. Identification and characterization of a family of Rab11-interacting proteins. J. Biol. Chem 2001; 276:39067-39075
    [161]Muto, A., Aoki, Y. and Watanabe, S. Mouse Rabl 1-FIP4 regulates prolifera-tion and differentiation of retinal progenitors in a Rab11-independent manner. Dev. Dyn 2007; 236:214-225
    [162]Jin, M., Goldenring, J.R. The Rab11-FIP1/RCP gene codes for multiple protein transcripts related to the plasma membrane recycling system. Biochim Biophys Acta 2006; 1759:281-295
    [163]Kawase, K., Shibata, M., Kawashima, H., et al. Gaf-1b is an alternative splice variant of Gaf-1/Rip11. Biochem Biophys Res Commun 2003; 303:1042-1046
    [164]Eathiraj, S., Mishra, A., Prekeris, R.,et al. Structural basis for Rab11-mediated recruitment of FIP3 to recycling endosomes. J Mol Biol 2006; 364: 121-135
    [165]Jagoe, W.N., Lindsay, A.J., Read, R.J., et al. Crystal structure of rabll in complex with rab11 family interacting protein 2. Structure 2006; 14:1273-1283
    [166]Shiba, T., Koga, H., Shin, H.W., et al. Structural basis for Rab11-dependent membrane recruitment of a family of Rab11-interacting protein 3 (FIP3)/Arfophilin-1. Proc. Natl. Acad. Sci. U.S.A 2006; 103:15416-15421
    [167]Lindsay, A.J. and McCaffrey, M.W. Rabll-FIP2 functions in transferrin recycling and associates with endosomal membranes via its COOH-terminal domain. J. Biol. Chem 2002; 277:27193-27199
    [168]Lindsay, A.J. and McCaffrey, M.W. The C2 domains of the class Ⅰ Rab11 family of interacting proteins target recycling vesicles to the plasma membrane. J. Cell Sci 2004; 117:4365-4375
    [169]Welsh, G.I., Leney, S.E., Lloyd-Lewis, B., et al. Ripll is a Rab11- and AS160-RabGAP-binding protein required for insulin-stimulated glucose uptake in adipocytes. J. Cell Sci 2007; 120:4197-4208
    [170]Fan, G.H., Lapierre, L.A., Goldenring, J.R., et al. Rab11-family interacting protein 2 and myosin Vb are required for CXCR2 recycling and receptor-mediated chemotaxis. Mol. Biol. Cell 2004; 15:2456-2469
    [171]Nedvetsky, P.I., Stefan, E., Frische, S., et al. A role of myosin Vb and Rab11-FIP2 in the aquaporin-2 shuttle. Traffic 2007; 8:110-123
    [172]Schwenk, R.W., Luiken, J.J., Eckel, J. FIP2 and Rip11 specify Rab11a-mediated cellular distribution of GLUT4 and FAT/CD36 in H9c2-hIR cells. Biochem Biophys Res Commun 2007;363:119-125
    [173]Utley, T.J., Ducharme, N.A., Varthakavi, V., et al. Respiratory syncytial virus uses a Vps4-independent budding mechanism controlled by Rab11-FIP2. Proc. Natl. Acad. Sci. U.S.A 2008; 105:10209-10214
    [174]Wang, Z., Edwards, J.G., Riley, N., et al. Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell 2008;135:535-548
    [175]Damiani, M.T., Pavarotti, M., Leiva, N., et al. Rab coupling protein associates with phagosomes and regulates recycling from the phagosomal compartment. Traffic 2004; 5:785-797
    [176]Horgan, C.P., Zurawski, T.H., McCaffrey, M.W. Purification and functional properties of Rab11-FIP3. Methods Enzymol 2005; 403:499-512
    [177]Horgan, C.P., Walsh, M., Zurawski, T.H., et al. Rab11-FIP3 localises to a Rab11-positive pericentrosomal compartment during interphase and to the cleavage furrow during cytokinesis. Biochem Biophys Res Commun 2004; 319:83-94
    [178]Wilson, G.M., Fielding, A.B., Simon, G.C., et al. The FIP3-Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis. Mol Biol Cell 2005; 16:849-860
    [179]Shin, O.H., Ross, A.H., Mihai, I., et al. Identification of arfophilin, a target protein for GTP-bound class Ⅱ ADP-ribosylation factors. J. Biol. Chem 1999; 274:36609-36615
    [180]Fielding, A.B., Schonteich, E., Matheson, J., et al. Rabll-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO J 2005;24:3389-3399
    [181]Simon, G.C., Schonteich, E., Wu, C.C., et al. Sequential Cyk-4 binding to ECT2 and FIP3 regulates cleavage furrow ingression and abscission during cytokinesis. EMBO J 2008;27:1791-1803
    [182]Hales, C.M., Vaerman, J.P., Goldenring, J.R. Rab11 family interacting protein 2 associates with Myosin Vb and regulates plasma membrane recycling. J. Biol. Chem 2002; 277:50415-50421
    [183]Schonteich, E., Wilson, G.M., Burden, J.,et al. The Rip11/Rabll-FIP5 and kinesin II complex regulates endocytic protein recycling. J. Cell Sci 2008; 121:3824-3833
    [184]Simon, G.C. and Prekeris, R. Mechanisms regulating targeting of recycling endosomes to the cleavage furrow during cytokinesis. Biochem Soc Trans 2008; 36:391-394
    [185]Sahai E. Mechanisms of cancer cell invasion. Curr Opin Genet Dev 2005; 15:87-96
    [186]Hynes RO. Integrins:bidirectional, allosteric signaling machines. Cell 2002 Sep 20; 110:673-687.
    [187]Lindsay AJ, Hendrick AG, Cantalupo G, et al. Rab coupling protein (RCP), a novel Rab4 and Rab11 effector protein。J Biol Chem.2002; 277:12190-9
    [188]Zhang J, Liu X, Datta A, et al.2009. RCP is a human breast cancer-promoting gene with Ras-activating function. J Clin Invest; 119:2171-2183
    [189]Ducharme, N.A., Hales, C.M., Lapierre, L.A., et al. MARK2/EMK1/Par-1Bα phosphorylation of Rab11-family interacting protein 2 is necessary for the timely establishment of polarity in Madin-Darby canine kidney cells. Mol. Biol.Cell 2006; 17:3625-3637
    [190]Wang, D., Buyon, J.P., Zhu, W., Chan, E.K. Defining a novel 75-kDa phosphoprotein associated with SS-A/Ro and identification of distinct human autoantibodies. J Clin Invest1999; 104:1265-1275
    [191]Marie, N., Lindsay, A.J., McCaffrey, M.W. Rab coupling protein is selectively degraded by calpain in a Ca2+-dependent manner. Biochem J 2005;389:223-231
    [192]Patil, V.S., Sachdeva, G., Modi, D.N., et al. Rab coupling protein (RCP):a novel target of progesterone action in primate endometrium. J Mol Endocrinol 2005; 35:357-372
    [193]Behrends, U., Schneider, I., Rossler, S., et al. Novel tumor antigens identified by autologous antibody screening of childhood medulloblastoma cDNA libraries. Int J Cancer 2003;106:244-251
    [194]Garcia, M.J., Pole, J.C., Chin, S.F., et al. A 1 Mb minimal amplicon at 8p11-12 in breast cancer identifies new candidate oncogenes. Oncogene 2005; 24:5235-5245

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700