利用UPFC提高电力系统阻尼的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代电力系统迅速发展,以大机组、超高压、长距离、重负荷为特点,是一个典型的强非线性、高维、动态大系统。随着大型电力系统的互联以及各种新设备的使用,在使发电、输电更经济、高效的同时也增加了电力系统的规模和复杂性,再加上快速励磁系统的普遍使用和电力市场竞争机制的引入,电网运行在稳定极限边缘的可能性也大为增加。由于输电走廊的饱和及电网公司的商业化运作,依靠建设新输电线路来增加输送容量将会越来越困难,因此低频振荡现象成为大型互联电网安全运行的重要问题。而通过采用新型FACTS装置来改善系统运行工况,提高线路输送容量是一个现实且理想的选择。本文针对利用UPFC(统一潮流控制器)阻尼系统振荡这一问题,对UPFC的数学建模,其稳定控制器的设计与优化,以及提高稳定控制器的适应性等方面进行了研究。主要成果归纳如下:
     建立UPFC的小扰动模型。电力系统低频振荡问题属于小扰动稳定性的研究范畴,UPFC的数学建模必须要满足小扰动分析的要求,还应同时考虑计算时间及计算精度两个方面。本文推导出一个适用于小扰动分析的UPFC模型,此模型简明精确并包括控制系统及稳定控制器。因为低频振荡是一个全局性的问题,因此该数学模型经过模块化处理,使其便于和系统无缝连接。
     设计UPFC稳定控制器,将系统特征值与发电机转矩系数相结合,对振荡模式进行分析。利用现代控制理论建立包括UPFC的全系统状态方程,同时利用经典控制理论中的频域法设计UPFC稳定控制器,巧妙利用两种控制理论的内在联系指导UPFC稳定控制器的设计,同时基于全系统状态方程,分析稳定控制器的最佳安装位置及理想的阻尼信号,使稳定控制器充分发挥其功能。
     提出“转矩面积”的概念,并优化UPFC稳定控制器。稳定控制器投入运行的一个问题是可能会恶化系统同步转矩,转矩面积则同时考虑阻尼转矩系数及同步转矩系数两个因素。利用转矩面积优化设计稳定控制器,可以确保系统同时具有足够大的同步转矩和阻尼转矩。首先利用STATCOM(UPFC简化运行方式)-单机系统推导和验证转矩面积概念,然后在4机系统中利用转矩面积优化UPFC稳定控制器,取得了预期效果。
     把智能软计算方法应用于UPFC稳定控制器的设计,提高其自适应程度。综合模糊理论和线性理论的优点,设计基于模糊理论的UPFC线性稳定控制器。建立系统运行方式库,利用模糊推理规则优化组合线性稳定控制器,使得稳定控制器的鲁棒性明显增强,最后对一个曾发生低频振荡的系统进行仿真计算,模糊UPFC线性稳定控制器的效果令人满意。
Modern power systems, characterized by large capacity units, Extra High Voltage, long distance transmission, heavy load demand, are typical nonlinear, high dimensional, large-scale and dynamic systems. With the interconnections among different power systems, and the increasing numbers of newly introduced devices, a lot of issues on system security and stability raise up while the system size and complexity grow and make the generation and transmission more economic and efficient.
     More and more large-capacity generators with fast control excitation systems are put into operation. Along with the introduction of the competition mechanism by power marketing, the possibility of operating at the stability limit increases. Further more, since that transmission corridors are almost saturated; it is difficult to enhance transmission capability of power grid by building new transmission lines. The low frequency oscillation occurs more often in the large-scale interconnected system, which threatens the safety of system operation. Designing UPFC stabilizers for the purpose of damping power oscillation is an effective measure to improve system stability. The thesis presents systematic study on mathematic model of UPFC, optimization and Adaptive critic design of the UPFC stabilizer, et al. The main achievements are as follows:
     A small signal model of UPFC, which could be used in small signal analysis of power system, is established. Both calculation velocity and accuracy are considered during the model-establishing procedure. Furthermore, modular design enables it to communicate with other programs easily. The dynamic characteristic of capacitor voltage is taken into account. Besides, the bus voltage control, dc voltage control and power flow control, etc are included. With high precision, the model could be used in further study of the small signal stability in power system.
     Oscillation mode is analyzed by using system eigenvalues and the generator torque. The mathematical model including UPFC is derived based on modern control theory; meanwhile, the stabilizer is designed based on classic control theory. Design Procedure is controlled by the intrinsical link between modern control theory and classic control theory. In a multi-machine power system, the optimal location of stabilizers could be determined and the effective feedback signal could be obtained by the state-space equation. Further, the stabilizer could be implemented according to the results. The proposed method improves the damping level significantly and shown by simulation.
     A novel torque area method is proposed. For a modal frequency, the electrical damping and synchronizing torque coefficients are two main factors that influence the stability of power system, Damping and synchronizing torque components will be affected by the STATCOM stabilizer. By using torque area method, the design of STATCOM stabilizer is optimized and further more, it could maintains sufficient synchronizing torque as well as damping torque. In a 4-machine system, the stabilizer is also optimized; simulation shows the method is effective.
     Intelligent Soft Computing Methods is used to Design UPFC stabilizer to enhance stabilizer’s adaptability. Typical linearized system models, namely model bank, are taken into account and corresponding linear stabilizers for various models are designed. Furthermore, the similarity between real system model and the model bank is evaluated by fuzzy logic, and the results obtained are used to adjust the weight of each linear stabilizer, and the whole procedure is adaptive according to system operating conditions. Therefore, the stabilizer works effectively and continuously. Finally, the simulation for a poor-damped power system is studied. Results shows that the proposed stabilizer improves the damping level significantly.
引文
[1] 印永华, 郭剑波, 赵建军. 美加“8.14”大停电事故初步分析以及应吸取的教训. 电网技术. 2003, 27(10):8-11.
    [2] Fairney W, Miles A, Whitelegg T M, Murray N S. Low Frequency Oscillations on the 275 kV Interconnected System Between Scotland and England. CIGRE Paper. 1982, 31-08.
    [3] Cressap K L, Hauer J F. Emergence of a New Swing Mode in the Western Power System. IEEE Trans. on PAS. 1981, PAS-100:2037-2043.
    [4] Mansour Y. Appiication of Eigenvalue Analysis to the Western North American Power System. in Eigenanalysis and Frequency Domain Methods for System Dynamic Performance. 1989: IEEE 90TH0292-3PWR.
    [5] 徐光虎. 交直流输电系统低频振荡相关问题分析及阻尼控制策略研究[博士论文]. 上海:上海交通大学. 2005.
    [6] 朱鹏程. 用于 UPFC 的串、并联双变流器控制策略研究[博士论文]. 武汉:华中科技大学. 2005.
    [7] Schleif F R, White J H. Damping for the northwest-southwest tie line oscillations-an analog study. IEEE Trans. on PAS. 1966, PAS-85(12):1239-1247.
    [8] DeMello F P, Concordia C. Concepts of synchronous machine stability as affected by excitation control. IEEE Trans. on PAS. 1969, 88(4):316-329.
    [9] DeMello F P, Laskowski T F. Concepts of Power System Dynamic Stability. IEEE Trans. on PAS. 1975, PAS-94(3):827-833.
    [10] Kundur P, Lee D C, Zein-el-din H M. Power System Stabilizers for Thermal Units: Analytical Techniques and Onsite Validation. IEEE Trans. on PAS. 1981, PAS-100:81-89.
    [11] Kundur P, Klein M, Rogers G J, Zwyno M. Application of Power System Stabilizers for Enhancement of Overall System Stability. IEEE Trans. on PAS. 1989, PS-4:614-621.
    [12] Klein M, Rogers G J, Kundur P. A FUNDAMENTAL STUDY OFINTER-AREA OSCILLATIONS IN POWER SYSTEMS. Transactions on Power Systems. 1991, 6(3):914-921.
    [13] Ooi B T, Nishimoto M. Analytical structures for eigensystem study of power flow oscillations in large power systems. Power Systems, IEEE Transactions on. 1988, 3(4):1609-1615.
    [14] Chow J H, Cheung K W. A Toolbox for Power System Dynamics and Control Engineering Education and Research. Transactions on Power Systems. 1992, 7(4):1559-1564.
    [15] Li W. Simulations of prefiring NGH damping scheme on suppressing torsional oscillations using EMTP. Power Systems, IEEE Transactions on. 1997, 12(2):882-888.
    [16] Marti J R, Lin J. Suppression of numerical oscillations in the EMTP power systems. Power Systems, IEEE Transactions on. 1989, 4(2):739-747.
    [17] Anaya-Lara O, Acha E. Modeling and analysis of custom power systems by PSCAD/EMTDC. Power Delivery, IEEE Transactions on. 2002, 17(1):266-272.
    [18] Iravani M R. Coupling phenomenon of torsional modes. Power Systems, IEEE Transactions on. 1989, 4(3):881-888.
    [19] Martins N. Efficient Eigenvalue and Frequency Response Methods Applied to Power System Small-Signal Stability Studies. IEEE Trans. on Power Systems. 1986, 1(1):217-226.
    [20] Li W. A comparative study of damping schemes on damping generator oscillations. Power Systems, IEEE Transactions on. 1993, 8(2):613-619.
    [21] Wang K W, Chung C Y, Tse C T, Tsang K M. Multimachine eigenvalue sensitivities of power system parameters. Power Systems, IEEE Transactions on. 2000, 15(2):741-747.
    [22] Parniani M, Iravani M R. Computer analysis of small-signal stability of power systems including network dynamics. Generation, Transmission and Distribution, IEE Proceedings-. 1995, 142(6):613-617.
    [23] Wen-Shiow K. The effect of load models on unstable low-frequency oscillation damping in Taipower system experience w/wo power system stabilizers. Power Systems, IEEE Transactions on. 2001, 16(3):463-472.
    [24] Ruiz-Vega D, Messina A R, Pavella M. Online assessment and control oftransient oscillations damping. Power Systems, IEEE Transactions on. 2004, 19(2):1038-1047.
    [25] Du Z, Liu W, Fang W. Calculation of electromechanical oscillation modes in large power systems using Jacobi-Davidson method. Generation, Transmission and Distribution, IEE Proceedings-. 2005, 152(6):913-918.
    [26] Amano H, Kumano T, Inoue T. Nonlinear stability indexes of power swing oscillation using normal form analysis. Power Systems, IEEE Transactions on. 2006, 21(2):825-834.
    [27] Kakimoto N, Sugumi M, Makino T, Tomiyama K. Monitoring of interarea oscillation mode by synchronized phasor measurement. Power Systems, IEEE Transactions on. 2006, 21(1):260-268.
    [28] Makarov Y V, Zhao Yang D, Hill D J. A general method for small signal stability analysis. Power Systems, IEEE Transactions on. 1998, 13(3):979-985.
    [29] Elices A, Rouco L, Bourles H, Margotin T. Physical interpretation of state feedback controllers to damp power system oscillations. Power Systems, IEEE Transactions on. 2004, 19(1):436-443.
    [30] Yuan-Chyuan L, Chi-Jui W. Damping of power system oscillations with output feedback and strip eigenvalue assignment. Power Systems, IEEE Transactions on. 1995, 10(3):1620-1626.
    [31] Byerly R T, Sherman D E, McLain D K. Normal modes and mode shapes applied to dynamic stability analysis. Power Apparatus and Systems, IEEE Transactions on. 1975, 94(2):224-229.
    [32] Y.Obata, S.Takeda, HSuzuki. An Efficient Eigenvalue Estimation Technique for Multimachine Power System Dynamic Stability Analysis. IEEE Transactions on Power Apparatus and Systems. 1981, PAS-100(1):259-263.
    [33] R.T.Byerly, R.J.Bennon, D.E.Sherman. Eigenvalue Analysis of Synchronizing Power Flow Oscillations in Large Electric Power Systems. IEEE Trans. on Power Apparatus and Systems. 1982, PAS-101(1):235-243.
    [34] N.Martins. Efficient Eigenvalue and Frequency Response Methods Applied to Power System Small-Signal Stability Studies. IEEE Transactions on Power Systems. 1986, PWRS-I:217-226.
    [35] G.C.Verghese, I.J.Perez-Arriaga, F.C.Schweppe. Selective Modal Analysis withApplication to Electric Power Systems, Part I: Heuristic Introduction. Transactions on Power Apparatus and Systems. 1982, PAS-101(9):3117-3125.
    [36] Osheba S M, Abdel-Kader F M. Dynamic performance analysis of reluctance motors using damping and synchronising torques. Electric Power Applications, IEE Proceedings B [see also IEE Proceedings-Electric Power Applications]. 1990, 137(4):231-238.
    [37] De Oliveira S E M. Synchronizing and damping torque coefficients and power system steady-state stability as affected by static VAr compensators. Power Systems, IEEE Transactions on. 1994, 9(1):109-119.
    [38] Pourbeik P, Gibbard M J. Simultaneous coordination of power system stabilizers and FACTS device stabilizers in a multimachine power system for enhancing dynamic performance. Power Systems, IEEE Transactions on. 1998, 13(2):473-479.
    [39] Simo J B, Kamwa I. Exploratory assessment of the dynamic behavior of multimachine system stabilized by a SMES unit. Power Systems, IEEE Transactions on. 1995, 10(3):1566-1571.
    [40] Wang L, Eigenvalue Analysis of Large Power Systems. Doctoral Dissertation. 1991.
    [41] Martins N, Lima L T G, Pinto H J C P. Computing Dominant Poles of Power System Transfer Functions. IEEE Trans on Power Systems. 1996, 11(1):162-170.
    [42] Perez-Arriaga I J, Verghese G C, Schweppe F C. Selective Modal Analysis with Applications to electric power Systems, Part I: Heuristic Introduction; Part II: The Dynamic Stability problem. Trans. on PAS. 1982, 101(9):3117-3134.
    [43] 谷寒雨, 陈陈. 一种新的大型电力系统低频机电模式计算方法. 中国电机工程学报. 2000, 20(9):50-54.
    [44] Hingorani N G. High Power Electronics and flexible AC Transmission System. Power Engineering Review, IEEE. 1988, 8(7):3-4.
    [45] Hingorani N C. Power Electronics: Advances in the application of power electronics in generation, transmission, and distribution systems. Power Engineering Review, IEEE. 1995, 15(10):13.
    [46] Oliver J A. 345 kV MVA Fully Water-Cooled Synchronous Condenser for Dumont Station. IEEE Transactions on Power Apparatus and Systems. 1971, 90:2758-2777.
    [47] IEEE guide for a detailed functional specification and application of static VAr compensators. IEEE Std 1031-1991. 1992.
    [48] Mathur R M, Varma R K, Thyristor-Based FACTS Controllers for Electrical Transmission Systems, ed. W-I Press. 2002.2.
    [49] 艾欣, 蔡国伟. 伊敏——大庆 500kv 系统采用 SVC 提高稳定水平的研究. 电力系统自动化. 1997, 21(3):54-57,66.
    [50] Larsen E V, Clark K, Miske S A, Jr., Urbanek J. Characteristics and rating considerations of thyristor controlled series compensation. Power Delivery, IEEE Transactions on. 1994, 9(2):992-1000.
    [51] Keri A J F, Ware B J, Byron R A. Improving Transmission System Performance Using Controlled Series Capacitors. CIGRE Paper, Paris. 1992.
    [52] G J, P L, A S. Advanced Series Compensation (ASC) Main Circuit and Related Components. in EPRI FACTS Conference Paper. 1992. Boston, Massachusetts.
    [53] J P R, A W C, C F B. The Slatt Thyristor-Controlled Series Capacitor Project – Design, Installation, Commissioning and System Testing. in CIGRE. 1994. Paris.
    [54] Gama C. Brazilian North-South Interconnection control-application and operating experience with a TCSC. 1999.
    [55] 祝谦, 刘相枪. 平果可控串补本体保护介绍. 电网技术. 2004, 28(16):73-77.
    [56] Gole A M, Sood V K. A static compensator model for use with electromagnetic transients simulation programs. Power Delivery, IEEE Transactions on. 1990, 5(3):1398-1407.
    [57] Edwards C W, Mattern K E, Stacey E J. Advanced Static VAR Generator Employing GTO Thyristors. IEEE Trans. on Power Delivery. 1988, 3(4):1622-1627.
    [58] Schauder C, Gernhardt M. Stacey E, et al. Development of a ±100 MVAr Static Condenser for Voltage Control of Transmission Systems. IEEE Trans. on Power Delivery. 1997, 10(3):1486-1496.
    [59] Schauder C, Gernhardt M, Stacey E, Lemak T, et al. Operation of ±100 MVAr TVA STATCON. Power Delivery, IEEE Transactions on. 1997, 12(4):1805-1811.
    [60] Sobrink K H, Renz K W, Tyll H K. Operational Experience and Field Tests of the SVG at Rejsby Hede. in IEEE PowerCon’98. 1998. Beijing.
    [61] Hanson D J, Horwill C, Gemmell B D. A STATCOM-based Relocatable SVC Project in the UK for National Grid. in Proceeding of 2002 IEEE Power Engineering Society Winter Meeting. 2002.
    [62] 刘文华, 罗承廉. 采用 GTO 逆变器的±20Mvar STATCOM. 电力系统自动化. 2000, 24(23):19-23.
    [63] 魏文辉, 刘文华, 滕乐天, 王伟, et al. ±50Mvar 链式 STATCOM 稳态特性研究. 电力系统自动化. 2004, 28(3):28-31,63.
    [64] 无. 许继研制的 STATCOM 装置在上海成功并网投运. 继电器. 2006, 34(7):5-5.
    [65] Kojori H A, Dewan S B, Lavers J D. A two stage inverter large scale static VAR compensator with minimum filtering requirements. Magnetics, IEEE Transactions on. 1990, 26(5):2247-2249.
    [66] Zuniga-Haro P, Ramirez J M. SSSC switching functions model. Power Delivery, IEEE Transactions on. 2006, 21(1):518-520.
    [67] L.Gyugyi. A unified power-flow control concept for flexible AC transmission systems. IEE Proceedings-C. 1992, 139(4):323-331.
    [68] Gyugyi L, Schauder C D, Williams S L, Rietman T R, et al. The unified power flow controller: a new approach to power transmission control. Power Delivery, IEEE Transactions on. 1995, 10(2):1085-1097.
    [69] Nelson R J, Bian J, Williams S L. Transmission series power flow control. Power Delivery, IEEE Transactions on. 1995, 10(1):504-510.
    [70] 戚庆茹, 焦连伟, 严正, 倪以信, et al. 统一潮流控制器的动态相量建模与仿真. 电力系统自动化. 2003, 27(15):10-14.
    [71] Haque M H. Power flow control and voltage stability limit: regulating transformer versus UPFC. Generation, Transmission and Distribution, IEE Proceedings-. 2004, 151(3):299-304.
    [72] Schauder C, Stacey E, Lund M, Gyugyi L, et al. AEP UPFC project: installation, commissioning and operation of the ±160 MVA STATCOM (phase I). Power Delivery, IEEE Transactions on. 1998, 13(4):1530-1535.
    [73] Choo J B, Yoon J S, Chang B H, Han B, et al. Development of FACTS operation technology to the KEPCO power network-detailed EMTDC model of 80 MVA UPFC. 2002.
    [74] Arabi S, Hamadanizadeh H, Fardanesh B B. Convertible static compensatorperformance studies on the NY state transmission system. Power Systems, IEEE Transactions on. 2002, 17(3):701-706.
    [75] Wirth E, Kara A. IPCs with conventional or electronically switched phase shifting devices. Power Engineering Journal [see also Power Engineer]. 2000, 14(2):77-80.
    [76] Miao Z, Choudhry M A, Klein R L. Dynamic simulation and stability control of three-phase power distribution system with distributed generators. 2002.
    [77] Edris A. Proposed Terms and Definitions for Flexible ac Transmission System(FACTS). IEEE Transactions on Power Delivery. 1997, 12(4):1848-1853.
    [78] Papic I. Simulation model for discharging a lead-acid battery energy storage system for load leveling. 2006.
    [79] Arsoy A B, Liu Y, Ribeiro P F, Wang F. StatCom-SMES. Industry Applications Magazine, IEEE. 2003, 9(2):21-28.
    [80] Iravani M R, Maratukulam D. Review of semiconductor-controlled (static) phase shifters for power systems applications. Power Systems, IEEE Transactions on. 1994, 9(4):1833-1839.
    [81] 王海风, Swift F. 静止无功补偿器阻尼电力系统振荡(下)——研究实例. 中国电机工程学报. 1996, 16(3):196-200.
    [82] Hammad A E. Analysis of power system stability enhancement by static var compensators. IEEE Trans. on Power Systems. 1986, 1(4):222-227.
    [83] Lerch E N, Povh D, Xu L. Advanced SVC control for damping power system oscillations. Power Systems, IEEE Transactions on. 1991, 6(2):524-535.
    [84] Zhou E Z. Application of static VAr compensators to increase power system damping. Power Systems, IEEE Transactions on. 1993, 8(2):655-661.
    [85] Wu C J, Lee Y S. Damping of synchronous generator by static reactive power compensator with digital controller. Generation, Transmission and Distribution [see also IEE Proceedings-Generation, Transmission and Distribution], IEE Proceedings C. 1991, 138(5):427-433.
    [86] Angquist L, Lundin B, Samuelsson J. Power oscillation damping using controlled reactive power compensation-a comparison between series and shunt approaches. Power Systems, IEEE Transactions on. 1993, 8(2):687-700.
    [87] Hiyama T, Mishiro M, Kihara H, Ortmeyer T H. Fuzzy logic switching of thyristor controlled braking resistor considering coordination with SVC. PowerDelivery, IEEE Transactions on. 1995, 10(4):2020-2026.
    [88] Hiyama T, Hubbi W, Ortmeyer T H. Fuzzy logic control scheme with variable gain for static VAr compensator to enhance power system stability. Power Systems, IEEE Transactions on. 1999, 14(1):186-191.
    [89] Pourbeik P, Gibbard M J. Damping and Synchronizing Torque Coefficients Induced on Generators by FACTS Stabilizers in Multimachine Power Systems. IEEE Trans. on Power Systems. 1996, 11(4):1920-1930.
    [90] 钟志勇, 王克文, 谢志裳. 用特征根灵敏度分析进行静态无功补偿器的设计. 电力系统自动化. 1997, 23(14):9-12.
    [91] Haque M H. Improvement of first swing stability limit by utilizing full benefit of shunt FACTS devices. Power Systems, IEEE Transactions on. 2004, 19(4):1894-1902.
    [92] Haque M H. Application of energy function to assess the first-swing stability of a power system with a SVC. Generation, Transmission and Distribution, IEE Proceedings-. 2005, 152(6):806-812.
    [93] Larsen E V, Rostamkolai N, Fisher D A, Poitras A E. Design of a supplementary modulation control function for the Chester SVC. Power Delivery, IEEE Transactions on. 1993, 8(2):719-724.
    [94] Larsen E V, Sanchez-Gasca J J, Chow J H. Concepts for design of FACTS controllers to damp power swings. Power Systems, IEEE Transactions on. 1995, 10(2):948-956.
    [95] Lee S, Liu C C. An Output Feedback Static Var Controller for the Damping of Generator Oscillations. Electric Power Systems Research. 1994, 29:9-6.
    [96] Smith J R, Pierre D A, Rudberg D A, Sadighi I, et al. An enhanced LQ adaptive VAr unit controller for power system damping. Power Systems, IEEE Transactions on. 1989, 4(2):443-451.
    [97] Qihua Z, Jin J. Robust SVC controller design for improving power system damping. Power Systems, IEEE Transactions on. 1995, 10(4):1927-1932.
    [98] Parniani M, Iravani M R. Optimal robust control design of static VAr compensators. Generation, Transmission and Distribution, IEE Proceedings-. 1998, 145(3):301-307.
    [99] Dash P K, Mishra S, Liew A C. Fuzzy-logic-based VAr stabiliser for powersystem control. Generation, Transmission and Distribution, IEE Proceedings-. 1995, 142(6):618-624.
    [100] Mishra S, Dash P K, Hota P K, Tripathy M. Genetically optimized neuro-fuzzy IPFC for damping modal oscillations of power system. Power Systems, IEEE Transactions on. 2002, 17(4):1140-1147.
    [101] Ellithy K A, Al-Alwai S M. Tuning a Static Var Compensators Controller Over a Wide Range of Load Modes Using an Artificial Neural Network. Electric Power Systems Research. 1996, 38(2):97-104.
    [102] Changaroon B, Srivastava S C, Thukaram D, Chirarattananon S. Neural network based power system damping controller for SVC. Generation, Transmission and Distribution, IEE Proceedings-. 1999, 146(4):370-376.
    [103] Ju P, Handschin E, Reyer F. Genetic algorithm aided controller design with application to SVC. Generation, Transmission and Distribution, IEE Proceedings-. 1996, 143(3):258-262.
    [104] 汪冰, 刘笙, 陈陈. 基于能量函数的可控串联补偿稳定控制策略. 电网技术. 2002, 26(2):19-23.
    [105] Zhou X, Liang J. Overview of control schemes for TCSC to enhance the stability of power systems. Generation, Transmission and Distribution, IEE Proceedings-. 1999, 146(2):125-130.
    [106] Tain-Syh L, Yuan-Yih H, Tzong-Yih G, Jiann-Tyng L, et al. Application of thyristor-controlled series compensators to enhance oscillatory stability and transmission capability of a longitudinal power system. Power Systems, IEEE Transactions on. 1999, 14(1):179-185.
    [107] Klein M, Le L X, Rogers G J, Farrokhpay S, et al. H damping controller design in large power systems. Power Systems, IEEE Transactions on. 1995, 10(1):158-166.
    [108] Zhao Q, Jiang J. TCSC Damping Controller Design Using Robust Control Theory. International Journal of Electrical Power and Energy Systems. 1998, 20(1):25-33.
    [109] Taranto G N, Chow J H. A robust frequency domain optimization technique for tuning series compensation damping controllers. Power Systems, IEEE Transactions on. 1995, 10(3):1219-1225.
    [110] Chen X R, Pahalawaththa N C, Annakkage U D, Kumble C S. Output feedbackTCSC controllers to improve damping of meshed multi-machine power systems. Generation, Transmission and Distribution, IEE Proceedings-. 1997, 144(3):243-248.
    [111] Taranto G M, Falcao D M. Robust decentralised control design using genetic algorithms in power system damping control. Generation, Transmission and Distribution, IEE Proceedings-. 1998, 145(1):1-6.
    [112] Wang H F. Selection of robust installing locations and feedback signals of FACTS-based stabilizers in multi-machine power systems. Power Systems, IEEE Transactions on. 1999, 14(2):569-574.
    [113] Ramirez Arredondo J M. A passivity approach to controller design for a TCSC. Power Engineering Review, IEEE. 2000, 20(2):55-57.
    [114] Dolan P S, Smith J R, Mittelstadt W A. A study of TCSC optimal damping control parameters for different operating conditions. Power Systems, IEEE Transactions on. 1995, 10(4):1972-1978.
    [115] Noroozian M, Ghandhari M, Andersson G, Gronquist J, et al. A robust control strategy for shunt and series reactive compensators to damp electromechanical oscillations. Power Delivery, IEEE Transactions on. 2001, 16(4):812-817.
    [116] Ramos R A, Alberto L F C, Bretas N G. A new methodology for the coordinated design of robust decentralized power system damping controllers. Power Systems, IEEE Transactions on. 2004, 19(1):444-454.
    [117] Majumder R, Chaudhuri B, Pal B C. A probabilistic approach to model-based adaptive control for damping of interarea oscillations. Power Systems, IEEE Transactions on. 2005, 20(1):367-374.
    [118] 栗春, 马晓军. STATCOM 提高系统暂态稳定及阻尼的动模实验研究. 中国电机工程学报. 1999, 19(12):36-40.
    [119] Rao P, Crow M L, Yang Z. STATCOM control for power system voltage control applications. Power Delivery, IEEE Transactions on. 2000, 15(4):1311-1317.
    [120] Farsangi M M, Song Y H, Lee K Y. Choice of FACTS device control inputs for damping interarea oscillations. Power Systems, IEEE Transactions on. 2004, 19(2):1135-1143.
    [121] Wood A R, Osauskas C M. A linear frequency-domain model of a STATCOM. Power Delivery, IEEE Transactions on. 2004, 19(3):1410-1418.
    [122] 孙元章, 宋永华, 等. STATCOM 控制的电力系统稳定性分析. 电力系统自动化. 2001, 25(11):1-5.
    [123] Mithulananthan N, Canizares C A, Reeve J, Rogers G J. Comparison of PSS, SVC, and STATCOM controllers for damping power system oscillations. Power Systems, IEEE Transactions on. 2003, 18(2):786-792.
    [124] Padiyar K R, SaiKumar H V. Investigations on strong resonance in multimachine power systems with STATCOM supplementary modulation controller. Power Systems, IEEE Transactions on. 2006, 21(2):754-762.
    [125] Norouzi A H, Sharaf A M. Two control schemes to enhance the dynamic performance of the STATCOM and SSSC. Power Delivery, IEEE Transactions on. 2005, 20(1):435-442.
    [126] Mohagheghi S, Venayagamoorthy G K, Harley R G. Adaptive Critic Design Based Neuro-Fuzzy Controller for a Static Compensator in a Multimachine Power System. Power Systems, IEEE Transactions on. 2006, 21(4):1744-1754.
    [127] Pillai G N, Ghosh A, Joshi A. Torsional interaction studies on a power system compensated by SSSC and fixed capacitor. Power Delivery, IEEE Transactions on. 2003, 18(3):988-993.
    [128] Mihalic R, Gabrijel U. A structure-preserving energy function for a static series synchronous compensator. Power Systems, IEEE Transactions on. 2004, 19(3):1501-1507.
    [129] Jowder F A L. Influence of mode of operation of the SSSC on the small disturbance and transient stability of a radial power system. Power Systems, IEEE Transactions on. 2005, 20(2):935-942.
    [130] Gyugyi L. Unified power-flow control concept for flexible AC transmission systems. Generation, Transmission and Distribution [see also IEE Proceedings-Generation, Transmission and Distribution], IEE Proceedings C. 1992, 139(4):323-331.
    [131] Nabavi-Niaki A, Iravani M R. Steady-state and dynamic models of unified power flow controller (UPFC) for power system studies. Power Systems, IEEE Transactions on. 1996, 11(4):1937-1943.
    [132] 章良栋, 岑文辉. UPFC 的模型及控制器研究. 电力系统自动化. 1998, 22(1):36-39.
    [133] Arabi S, Kundur P, Adapa R. Innovative techniques in modeling UPFC for power system analysis. Power Systems, IEEE Transactions on. 2000, 15(1):336-341.
    [134] Zhengyu H, Yinxin N, Shen C M, Wu F F, et al. Application of unified power flow controller in interconnected power systems-modeling, interface, control strategy, and case study. Power Systems, IEEE Transactions on. 2000, 15(2):817-824.
    [135] 刘前进, 宋永华, 等. 基于功率注入法的 UPFC 潮流控制研究. 清华大学学报:自然科学版. 2001, 41(3):55-58.
    [136] 李浩昱, 李兰英, 等. 具有能量缓冲的统一潮流控制器及其控制的研究. 中国电机工程学报. 2001, 21(7):9-13.
    [137] Papic I, Gole A M. Frequency response characteristics of the unified power flow controller. Power Delivery, IEEE Transactions on. 2003, 18(4):1394-1402.
    [138] Garcia-Gonzalez P, Garcia-Cerrada A. Detailed analysis and experimental results of the control system of a UPFC. Generation, Transmission and Distribution, IEE Proceedings-. 2003, 150(2):147-154.
    [139] 鞠儒生, 陈宝贤, 邱晓刚. UPFC 控制方法研究. 中国电机工程学报. 2003, 23(6):60-65,70.
    [140] Alomoush M I. Derivation of UPFC DC load flow model with examples of its use in restructured power systems. Power Systems, IEEE Transactions on. 2003, 18(3):1173-1180.
    [141] Bian J, Ramey D G, Nelson R J, Edris A. A study of equipment sizes and constraints for a unified power flow controller. Power Delivery, IEEE Transactions on. 1997, 12(3):1385-1391.
    [142] Papic I, Zunko P, Povh D, Weinhold M. Basic control of unified power flow controller. Power Systems, IEEE Transactions on. 1997, 12(4):1734-1739.
    [143] Schauder C D, Gyugyi L, Lund M R, Hamai D M, et al. Operation of the unified power flow controller (UPFC) under practical constraints. Power Delivery, IEEE Transactions on. 1998, 13(2):630-639.
    [144] Limyingcharoen S, Annakkage U D, Pahalawaththa N C. Fuzzy logic based unified power flow controllers for transient stability improvement. Generation, Transmission and Distribution, IEE Proceedings-. 1998, 145(3):225-232.
    [145] Lehn P W, Iravani M R. Experimental evaluation of STATCOM closed loopdynamics. Power Delivery, IEEE Transactions on. 1998, 13(4):1378-1384.
    [146] Sonnenmoser A, Lehn P W. Line current balancing with a unified power flow controller. Power Delivery, IEEE Transactions on. 1999, 14(3):1151-1157.
    [147] Fujita H, Watanabe Y, Akagi H. Control and analysis of a unified power flow controller. Power Electronics, IEEE Transactions on. 1999, 14(6):1021-1027.
    [148] Morioka Y, Kato M, Mishima Y, Nakachi Y, et al. Implementation of unified power flow controller and verification for transmission capability improvement. Power Systems, IEEE Transactions on. 1999, 14(2):575-581.
    [149] Kannan S, Jayaram S, Salama M M A. Real and reactive power coordination for a unified power flow controller. Power Systems, IEEE Transactions on. 2004, 19(3):1454-1461.
    [150] Mihalic R, Zunko P, Povh D. Improvement of transient stability using unified power flow controller. Power Delivery, IEEE Transactions on. 1996, 11(1):485-492.
    [151] Noroozian M, Angquist L, Ghandhari M, Andersson G. Improving power system dynamics by series-connected FACTS devices. Power Delivery, IEEE Transactions on. 1997, 12(4):1635-1641.
    [152] Edris A, Mehraban A S, Rahman M, Gyugyi L, et al. Controlling the flow of real and reactive power. Computer Applications in Power, IEEE. 1998, 11(1):20-25.
    [153] Limyingcharoen S, Annakkage U D, Pahalawaththa N C. Effects of unified power flow controllers on transient stability. Generation, Transmission and Distribution, IEE Proceedings-. 1998, 145(2):182-188.
    [154] Dash P K, Mishra S, Panda G. Damping multimodal power system oscillation using a hybrid fuzzy controller for series connected FACTS devices. Power Systems, IEEE Transactions on. 2000, 15(4):1360-1366.
    [155] Chang C T, Hsu Y Y. Design of UPFC controllers and supplementary damping controller for power transmission control and stability enhancement of a longitudinal power system. Generation, Transmission and Distribution, IEE Proceedings-. 2002, 149(4):463-471.
    [156] Tambey N, Kothari M L. Damping of power system oscillations with unified power flow controller (UPFC). Generation, Transmission and Distribution, IEEProceedings-. 2003, 150(2):129-140.
    [157] Son K M, Lasseter R H. A Newton-type current injection model of UPFC for studying low-frequency oscillations. Power Delivery, IEEE Transactions on. 2004, 19(2):694-701.
    [158] Mishra S. Neural-network-based adaptive UPFC for improving transient stability performance of power system. Neural Networks, IEEE Transactions on. 2006, 17(2):461-470.
    [159] 王海风, 陈珩. 装有统一潮流控制器的多机电力系统 Phillips—Heffron 模型及其应用. 中国电机工程学报. 2001, 21(2):6-10,15.
    [160] Fujita H, Akagi H, Watanabe Y. Dynamic control and performance of a unified power flow controller for stabilizing an AC transmission system. Power Electronics, IEEE Transactions on. 2006, 21(4):1013-1020.
    [161] 刘黎明, 康勇, 陈坚, 朱鹏程, et al. 统一潮流控制器控制策略的研究与实现. 中国电机工程学报. 2006, 26(10):114-119.
    [162] Rouco L, Pagola F L. An eigenvalue sensitivity approach to location and controller design of controllable series capacitors for damping power system oscillations. Power Systems, IEEE Transactions on. 1997, 12(4):1660-1666.
    [163] 苏建设, 柯宁, 陈陈. 提高暂态稳定的励磁与 FACTS 协调策略设计. 中国电机工程学报. 2003, 23(9):6-10.
    [164] Kundur P, Power System Stability and Control. 1994: McGraw-Hill Companies, Inc.
    [165] Gibbard M J, Vowles D J, Pourbeik P. Interactions between, and effectiveness of, power system stabilizers and FACTS device stabilizers in multimachine systems. Power Systems, IEEE Transactions on. 2000, 15(2):748-755.
    [166] 黄方能, 黄成军, 陈陈, 钱勇, et al. 利用转矩面积设计 STATCOM 稳定控制器. 电力系统自动化. 2007, 31(19):50-53.
    [167] Pourbeik P, Bostrom A, Ray B. Modeling and application studies for a modern static VAr system installation. Power Delivery, IEEE Transactions on. 2006, 21(1):368-377.
    [168] 李鹏, 余贻鑫, 贾宏杰, 宿吉锋. 小扰动电压稳定分析的 P-H 模型及振荡阻尼因子. 中国电机工程学报. 2003, 23(12):19-22.
    [169] Zolotas A C, Chaudhuri B, Jaimoukha I M, Korba P. A Study on LQG/LTRControl for Damping Inter-Area Oscillations in Power Systems. Control Systems Technology, IEEE Transactions on. 2007, 15(1):151-160.
    [170] J.S.R.JANG, C.T.SUN, MIZUTANI E, Neuro-Fuzzy and Soft Computing. 1997: Prentice Hall.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700