SnO_2/CNTs复合体的可控制备及气敏性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以简单、廉价的方法得到具有优良性能并在室温下可以稳定工作的气敏材料是目前气体传感器研究的重要方向,同时工业上也有着迫切需求。本文采用水热法制备得到具有介孔特征的二氧化锡(SnO_2)纳米晶,在羧基化修饰的碳纳米管(CNTs)基础上,通过调整沉淀剂种类、反应物比例等因素得到了二氧化锡晶粒均匀的分散在碳纳米管表面的、不同复合程度的SnO_2/CNTs复合体。对SnO_2/CNTs复合体的NO_x气敏性能进行了对比研究,结果表明:SnO_2纳米晶均匀分散的复合体具有更优异的NO气敏响应特征,这是由于均匀分散的SnO_2/CNTs复合体结构能形成有效的电子传输通道,利于得到优异的气敏响应信号。对SnO_2表面NO气体吸附行为进行了理论计算,通过吸附能及电荷转移的计算推测出可能的最适合吸附晶面为(101)晶面,并对理论计算结果进行了初步验证。
     采用原位聚合法制备了聚苯胺/碳纳米管(PANI/CNTs)复合体。通过控制反应物的比例得到不同形貌的核壳结构聚苯胺/碳纳米管复合体;对聚苯胺/碳纳米管复合体进行了NO_x及NH_3气敏测试。
     采用机械混合法将金属氧化物(Cu_2O)与SnO_2/CNTs复合体混合,得到Cu_2O与SnO_2/CNTs复合体混合材料,提出可以采用多种材料联用的方法提高气敏材料的选择性,该方法有望使一些性质并不突出的常规气敏材料得到更好的应用。
Gas sensitive materials with good performances and stable properties at room temperature are urgently wanted in industry and widely studied by researchers in gas sensor area. Meso-porous tin oxide nanocrystal is prepared by a hydrothermal method in this paper. With the same method, carbonxylic muliti-walled carbon nanotubes are compound with tin oxide. Different morphologies of SnO_2/CNTs composites are obtained by adjusting the concentration of ethernol water, ratio of reactants and precipitat species. The NO_x gas sensing properties of the composites are investigated. Results show that the gas sensing properties of the composites are related to their morphologies. Possible mechanism is proposed. Based on the experimental data, a theoretical study on the adsorption of NO onto the SnO_2 surface is presented. The conclutions of the theoretical calculation are verified by an experiment.
     Conductive polyaniline (PANI) and PANI/CNTs are prepared through in-situ polymerization. The diameter of the PANI/CNTs composite can be controlled by changing the mass ratio of reactants. NO_x gas and NH_3 gas sensing tests of the pure PANI and PANI/CNTs composites are carried on.
     Cu_2O powder and SnO_2/CNTs composites are mixed by grinding and the NO_x gas and NH_3 gas sensing properties of the mixture are studied. A method to promote the selectivity of a sensing material is proposed and shows a possibility to ordinary sensing materials for better use.
引文
[1]石大川,魏大程,刘云圻,朱道本.单一导电性能的单壁碳纳米管的分离[J].世界科技研究与发展, 2005, 27(2): 1-7.
    [2] L. Langer, V. Bayot, E. Grivei, et al. Quantum Transport in a Multiwalled Carbon Nanotube[J]. Physical Review Letters, 1996, 76(3): 479-482.
    [3] S. Y. Ho, A. S. W. Wong, G. W. Ho. Controllable Porosity of Monodispersed Tin Oxide Nanospheres via an Additive-Free Chemical Route[J]. Crystal Growth and Design, 2009, 9(2): 732-736.
    [4] W. D. Zhang, Y. Wenb, J. Lia, et al. Synthesis of Vertically Aligned Carbon Nanotubes Films on Silicon Wafers by Pyrolysis of Ethylenediamine[J]. Thin Solid Films, 2002, 422(1): 120-125.
    [5] M. H. Rümmeli, E. Borowiak-Palen, T. Gemming, et al. Novel Catalysts, Room Temperature, and the Importance of Oxygen for the Synthesis of Single-Walled Carbon Nanotubes[J]. Nano Letters, 2005, 5 (7): 1209-1215.
    [6] P. M. Ajayan. Nanotubes from Carbon[J]. Chemical Reviews. 1999, 99(7): 1787-1800.
    [7] L. Dai, A. W. H. Mau. Controlled Synthesis and Modification of Carbon Nanotubes and C60: Carbon Nanostructures for Advanced Polymeric Composite Materials[J]. Advanced Materials, 2001, 13(12): 899-913.
    [8] K. Yamamoto, Y. Koga, S. Fujiwara, et al. New Method of Carbon Nanotube Growth by Ion Beam Irradiation[J]. Applied Physics Letters, 1996, 69(27): 4174-4175.
    [9]曹峰,杨涵,傅强等.燃料和基板对火焰法制备一维碳纳米材料的影响[J].新型炭材料, 2005, (3): 261-269.
    [10] E. Mizoguti, F. Nihey, M. Yudasaka. Purification of Single-wall Carbon Nanotubes by Using Ultrafine Gold Particles[J]. Chemical Physics Letters, 2000, 321(3): 297-301.
    [11] J. C. Delgado, I. O. Maciel, D. A. Cullen, et al. Chemical Vapor DepositionSynthesis of N-, P-, and Si-Doped Single-Walled Carbon Nanotubes[J]. ACS Nano, 2010, 4(3): 1696-1702.
    [12] B. I. Kharisov, O. V. Kharissova. Recent Advances on the Soluble Carbon Nanotubes[J]. Journal of Chemical Research, 2009, 48(2): 572-590.
    [13] B. Safadi, R. Andrews, E. A. Grulke, et al. Multiwalled Carbon Nanotube Polymer Composites: Synthesis and Characterization of Thin Films[J]. Journal of Applied Polymer Science, 2002, 84(14): 2660-2669.
    [14] J. Sandler, M. S. P Shaffera, T. Prasse, et al. Development of a Dispersion Process for Carbon Nanotubes in an Epoxy Matrix and the Resulting Electrical Properties. Polymer, 1999, 40(21): 5967-5971.
    [15] B. J. C. Thomas, A. R. Boccaccini, M. S. P. Shaffer, et al. Multi-Walled Carbon Nanotube Coatings Using Electrophoretic Deposition (EPD)[J]. Journal of the American Ceramic Society, 2005, 88(4): 980-982.
    [16] K. T. Lee, Y. S. Jung, S. M. Oh, et al. Synthesis of Tin-Encapsulated Spherical Hollow Carbon for Anode Material in Lithium Secondary Batteries[J]. Journal of the American Chemical Society, 2003, 125(19): 5652-5653.
    [17] D. L. Shi, J. Lian, W. Wang, et al. Luminescent Carbon Nanotubes by Surface Functionalization[J]. Advanced Materials, 2006, 18(2): 189-193.
    [18] F. Caruso, A. S. Susha, M. Giersig, et al. Magnetic Core-Shell Particles: Preparation of Magnetite Multilayers on Polymer Latex Microspheres[J]. Advanced Materials, 1999, 11(11): 950-953.
    [19] Y. Lu, J. McLellan, Y. Xia, et al. Synthesis and Crystallization of Hybrid Spherical Colloids Composed of Polystyrene Cores and Silica Shells[J]. Langmuir, 2004, 20(8): 3464-3470.
    [20] Z. Jina, K. P. Pramodab, G. Xua, et al. Dynamic Mechanical Behavior of Melt-processed Multi-walled Carbon Nanotube/poly(methyl methacrylate) Composites[J]. Chemical Physics Letters, 2001, 337(1): 43-47.
    [21] G. Z. Chen, M. S. P. Shaffer, D. Coleby, et al. Carbon Nanotube and Polypyrrole Composites: Coating and Doping[J]. Advanced Materials, 2000, 12(7): 522-526.
    [22]丁雪峰.无机/有机纳米复合材料及中空材料的合成研究[D].长春:吉林大学, 2005: 6-12.
    [23] C. Aprile, L. Teruel, M. Alvaro, et al. Structured Mesoporous Tin Oxide with Electrical Conductivity: Application in Electroluminescence[J]. Journal of the American Chemical Society, 2009, 131(4): 1342-1343.
    [24] S. Fujihara, T. Maeda, H. Ohgi. Hydrothermal Routes To Prepare Nanocrystalline Mesoporous SnO_2 Having High Thermal Stability[J]. Langmuir, 2004, 20(15): 6476-6481.
    [25] S. Shukla ,V. Venkatachalapathy, S. Seal. Thermal Evaporation Processing of Nano and Submicron Tin Oxide Rods[J]. Journal of Physical Chemistry B, 2006, 110 (23): 11210-11216.
    [26] G. Cheng, J. Wang, X. Liu. Self-Assembly Synthesis of Single-Crystalline Tin Oxide Nanostructures by a Poly (acrylic acid) (PAA)-Assisted Solvothermal Process[J]. Journal of Physical Chemistry B, 2006, 110(33): 16208-16211.
    [27] N. Tatsuda, T. Nakamura, D. Yamamoto, et al. Synthesis of Highly Monodispersed Mesoporous Tin Oxide Spheres[J]. Chemistry of Materials, 2009, (21): 5252-5257.
    [28] S. Y. Ho, A. S. W. Wong, G. W. Ho. Controllable Porosity of Monodispersed Tin Oxide Nanospheres via an Additive-Free Chemical Route[J]. Crystal Growth and Design, 2009, 9(2): 732-736.
    [29] M. Vesna, R. Matthias, S. Goran, et al. Highly Conducting Nanosized Monodispersed Antimony-Doped Tin Oxide Particles Synthesized via Nonaqueous Sol-Gel Procedure[J]. Chemistry of Materials, 2009, 21(21): 5229-5236.
    [30] L. Zhang, L. Jiang, H. Yan, et al. Mono Dispersed SnO_2 Nanoparticles on Both Sides of Single Layer Graphene Sheets as Anode Materials in Li-ion Batteries[J]. Journal of Materials Chemistry, 2010, 20(26), 5462-5467.
    [31] J. Zhang, L. Gao. Synthesis and Characterization of Nanocrystalline Tin Oxide by Sol-gel Method[J]. Journal of Solid State Chemistry, 2004, 177(4): 1425-1430.
    [32] C. Wang, M. Chen. Synthesis of Vanadium-doped Tin Oxide Nanocrystallites for CO Gas Sensing[J]. Materials Letters, 2009, 63(3): 389-390.
    [33] J. N. Jang, Y. J. Lee, J. Y. Lee, et al. Development of Higher Performance Indium Tin Oxide Films at a Very Low Temperature by the Neutral Beam-assisted Sputtering Process[J]. Thin Solid Films, 2011, 519(7): 2098-2102.
    [34] B. Cheng, J. M. Russell, W. Shi. Large-Scale, Solution-Phase Growth of Single-Crystalline SnO_2 Nanorods[J]. Journal of the American Chemical Society, 2004, 126 (19): 5972-5973.
    [35] C. Wang, X. Chu, M. Wu. Highly Sensitive Gas Sensors Based on Hollow SnO_2 Spheres Prepared by Carbon Sphere Template Method[J]. Sensors and Actuators B: Chemical, 2007, 120(2): 508-513.
    [36] N. Pinna, G. Neri, M. Antonietti. Nonaqueous Synthesis of Nanocrystalline Semiconducting Metal Oxides for Gas Sensing[J]. Angewandte Chemie International Edition, 2004, 43(33): 4345-4349.
    [37] J. Huang, N. Matsunaga, K. Shimanoe. Nanotubular SnO_2 Templated by Cellulose Fibers: Synthesis and Gas Sensing[J]. Chemistry of Materials, 2005, 17(13): 3513-3518.
    [38]张建荣,高镰.纳米晶SnO_2粉体的合成[J].无机化学学报, 2003, 19(6): 641-644.
    [39] K. C. Song, J. Kim. Synthesis of High Surface Area Tin Oxide Powders via Water-in-oil Microemulsions[J]. Powder Technology, 2000, 107(3): 268-272.
    [40] V. Brinzaria, G. Korotcenkova, V. Golovanov. Factors influencing the gas sensing characteristics of tin dioxide films deposited by spray pyrolysis: understanding and possibilities of control Thin Solid Films[J]. 2001, 391(2): 167-175.
    [41]周彩荣,李秋红,王海峰.甲基磺酸亚锡的热分析研究[J].高校化学工程学报, 2006, 20(4): 669-675.
    [42] Y. Wang, Q. Mua, G. Wang. Sensing Characterization to NH3 of Nanocrystalline Sb-doped SnO_2 Synthesized by a Nonaqueous Sol-gel Route[J]. Sensors and Actuators B: Chemical, 2010, 145(2): 847-853.
    [43]潘丽华.二氧化锡基材料的气敏性能及催化性能关系研究[D].郑州:郑州大学, 2006: 5-10.
    [44] N. Barsana, D. Kozieja, U. Weimar. Metal Oxide-based Gas Sensor Research:How to[J]. Sensors and Actuators B: Chemical, 2007, 121(1): 18-35.
    [45]李泉,曾广赋,席时权.二氧化锡气敏材料的研究进展[J].应用化学, 1994, 11(6): 1-6.
    [46] M. S. H. Abadi, M. Gholizadeha, A. Salehi. Modeling and Simulation of a MOSFET Gas Sensor with Platinum Gate for Hydrogen Gas Detection[J]. Sensors and Actuators B: Chemical, 2009, 141(1): 1-6.
    [47] K. Okamura, T. Ishiji, M. Iwaki. Electrochemical Gas Sensor Using a Novel Gas Permeable Electrode Modified by Ion Implantation[J]. Surface and Coatings Technology, 2007, 201(19): 8116-8119.
    [48] S. Tamuraa, I. Hasegawaa, N. Imanaka. Nitrogen Oxides Gas Sensor Based on Al3+ Ion Conducting Solid Electrolyte[J]. Sensors and Actuators B: Chemical, 2008, 130(1): 46-51.
    [49] N. Yamazoe,K. Shimanoe. New Perspectives of Gas Sensor Technology[J]. Sensors and Actuators B: Chemical, 2009, 138 (1):100-107.
    [50] E. Austin, A. Brakela, M. N. Petrovich, et al. Fibre Optical Sensor for C2H2 Gas Using Gas-filled Photonic Bandgap Fibre Reference Cell[J]. Sensors and Actuators B: Chemical, 2009, 139(1): 30-34.
    [51] R. Arsata, X. F. Yu, Y. X. Li, et al. Hydrogen Gas Sensor Based on Highly Ordered Polyaniline Nanofibers[J]. Sensors and Actuators B: Chemical, 2009, 137(2): 529-532.
    [52] F. Selampinar, L. Toppare, U. Akbulut, et al. A Conducting Composite of Polypyrrole II. as a Gas Sensor[J]. Synthetic Metals, 1995, 68(2): 109-116.
    [53] E. R. Leite, I. T. Weber, E. Longo, et al. A New Method to Control Particle Size and Particle Size Distribution of SnO_2 Nanoparticles for Gas Sensor Applications[J]. Advanced Materials, 2000, 12(13): 965-968.
    [54] J. Xu, Q. Pan, Y. Shun, et al. Grain Size Control and Gas Sensing Properties of ZnO Gas Sensor[J]. Sensors and Actuators B: Chemical, 2000, 66(1-3): 277-279.
    [55] J. Chen, L. Xu, W. Li, et al.α-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications[J]. Advanced Materials, 2005, 17(5): 582-586.
    [56] B. Y. Wei, M. C. Hsub, P. G. Su, et al. A Novel SnO_2 Gas Sensor Doped withCarbon Nanotubes Operating at Room Temperature[J]. Sensors and Actuators B 2004, 101(1-2): 81-89.
    [57] S. Rani, C. S. Roy, M. C. Bhatnagar. Effect of Fe Doping on the Gas Sensing Properties of Nano-Crystalline SnO_2 Thin Films[J]. Sensors and Actuators B: Chmecal, 2007, 122(1): 204–210.
    [58] C. Xu, J. Tamaki, N. Miura, et al. Grain Size Effects on Gas Sensitivity of Porous SnO_2-based Elements[J]. Sensors and Actuators B: Chmecal, 1991, 3(2): 147-155.
    [59] N. S. Baik, G. Sakai, N. Muira. Preparation of Stabilized Nanosized Tin Oxide Particles by Hydrothermal Treatment[J]. Journal of the American Ceramic Society, 2000, 83 (12): 2983–2987.
    [60] J. Ding, T. J. McAvoy, R. E. Cavicchi, et al. Surface State Trapping Model for SnO_2-based Microplate Sensor[J]. Sensors and Actuators B: Chemical, 2001,77(3): 597-613.
    [61] N. Yamazoe, J. Tamaki, N. Miura. Role of Hetero-junctions in Oxide Semiconductor Gas Sensors[J]. Materials Science and Engineering B, 1996, 41(1): 178-181.
    [62] V. Brynzari, G. Korotchenkov, S. Dmitriev. Simulation of Thin Gilm Gas Sensor Kinetics[J]. Sensors and Actuators B: Chemical, 1999, 61 (1-3): 143-153.
    [63] N. Matsunaga, G. Sakai, K. Shimanoe, et al. Formulation of Gas Diffusion Dynamics for Thin Film Semiconductor Gas Sensor Based on Simple Reaction-diffusion Equation[J]. Sensors and Actuators B: Chemical, 2003, 96(1-2): 226-233.
    [64] K. Darcovich, F. F. Garcia, C. A. Jeffrey, et al. Coupled Microstructural and Transport Effects in N-type Sensor Response Modeling for Thin Layers[J]. Sensors and Actuators A: Physical, 2008, 147(2): 378-386.
    [65] H. Lu, W. Ma, J. Gao, et al. Diffusion-reaction Theory for Conductance Response in Metal Oxide Gas Sensing Thin Films. Sensors and Actuators B: Chemical, 2000, 66(1-3): 228-231.
    [66] Z. Wen, Q. Wang, Q. Zhang. In Situ Growth of Mesoporous SnO_2 on Multiwalled Carbon Nanotubes: A Novel Composite with Porous-Tube Structure as Anode forLithium Batteries[J]. Advanced Functional Materials. 2007, 17 (15): 2772-2778.
    [67] Y. Jia, X. Chen, Z. Guo, et al. In Situ Growth of Tin Oxide Nanowires, Nanobelts, and Nanodendrites On the Surface of Iron-Doped Tin Oxide/Multiwalled Carbon Nanotube Nanocomposites[J]. Journal of Physical Chemistry C, 2009, 113(48): 20583-20588.
    [68] Y. M. yung, D. M. Jang, Y. J. Chou. Nonenzymatic Amperometric Glucose Sensing of Platinum, Copper Sulfide, and Tin Oxide Nanoparticle-Carbon Nanotube Hybrid Nanostructures[J]. Journal of Physical Chemistry C, 2009, 113(4): 1251-1259.
    [69] G. Lu, L. E. Ocola, J. Chen. Room-Temperature Gas Sensing Based on Electron Transfer between Discrete Tin Oxide Nanocrystals and Multiwalled Carbon Nanotubes[J]. Advanced Materials, 2009, 21 (24): 2487-2491.
    [70] E. Comini, G. Faglia, G. Sberveglieri, et al. Stable and Highly Sensitive Gas Sensors Based on Semiconducting Oxide Nanobelts[J]. Applied Physical Letters, 2002, 81 (10): 1869-1871.
    [71] J. Andrei, A. Yuecel, Z. Maria, et al. New SnO_2 Nano-clusters Obtained by Sol-gel route, Structural Characterization and Their Gas Sensing Applications[J]. Journal of Sol-Gel Science and Technology, 2003, 26(1-3): 483-488.
    [72] O. K. Tan, W. Zhu, Q. Yan, et al. Size effect and gas sensing characteristics of nanocrystalline x SnO_2-(1-x)-α-Fe_2O_3 ethanol sensors[J]. Sensors and Actuators B, 2000, 65(1-3): 361-365.
    [73] S. K. Koh, H. J. Jung, S. K. Song, et al. Sensor Having Tin Oxide Thin Film for Detecting Methane Gas and Propane Gas and Process for Manufacturing[P]. US: 6059937, 2000.
    [74] J. Zhao, L. H. Huo, S. Gao, et al. Alcohols and Acetone Sensing Properties of SnO_2 Thin Films Deposited by Dip-coating[J]. Sensors and Actuators B, 2006, 115 (1): 460-464.
    [75] A. Rothschild, Y. Komem. Numerical Computation of Chemisorption Isotherms for Device Modeling of Semiconductor Gas Sensors[J]. Sensors and Actuators B, 2003, 93 (1-3): 362-369.
    [76] J. D. Prades, A. Cirera, J. R. Morante, et al. Ab Initio Study of NOx Compounds Adsorption on SnO_2 Surface[J]. Sensors and Actuators B: Chemical, 2007, 126 (1): 62-67.
    [77] Z. Jin, Y. Su, Y. Duan. Development of a Polyaniline-based Optical Ammonia Sensor[J]. Sensors and Actuators B: Chemical, 2001, 72(1): 75-79.
    [78] A. A. Athawale, M. V. Kulkarni. Polyaniline and Its Substituted Derivatives as Sensor for Aliphatic Alcohols[J]. Sensors and Actuators B: Chemical, 2000, 67(1-2): 173-177.
    [79] A. Choudhury. Polyaniline/silver Nanocomposites: Dielectric Properties and Ethanol Vapour Sensitivity[J]. Sensors and Actuators B: Chemical, 2009, 138(1): 318-325.
    [80] J. Kim, S. Sohn, J. Huh. Fabrication and Sensing Behavior of PVF2 Coated polyaniline Sensor for Volatile Organic Compounds[J]. Sensors and Actuators B: Chemical, 2005, 108(1-2): 409-413.
    [81] L. Li, Z. Qin, X. Liang. Facile Fabrication of Uniform Core-Shell Structured Carbon Nanotube-Polyaniline Nanocomposites[J]. Journal of Physical Chemistry C, 2009, 113(14): 5502-5507.
    [81] H. Hong, C. Kwon, S. Kim, et al. Portable Electronic Nose System with Gas Sensor Array and Artificial Neural Network[J]. Sensors and Actuators B, 2000, 66(1-3): 49-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700