高通量反渗透复合膜制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水通量是反渗透膜最重要的性能参数之一。水通量越高,意味着处理同量液体的能耗越低。本文采用界面聚合法,以聚砜超滤膜为支撑层,将间苯二胺(MPD)和均苯三甲酰氯(TMC)分别作为水相和有机相单体制备了聚酰胺反渗透复合膜,并在225psi和25℃下测定了复合膜处理2000ppm NaCl水溶液时的水通量和截留率。本文主要从优化制膜工艺条件的角度研究了提高复合膜水通量的方法,并讨论了复合膜分离性能和活性分离层结构之间的关系。
     首先制备了水相含有不同浓度DMSO的复合膜,并使用SEM观察了复合膜的表面和断面形貌。结果表明,随着水相DMSO的浓度增加,复合膜的水通量增加,截留率降低。当水相DMSO浓度为2wt%时,复合膜同时有着较佳的水通量和截留率,分别为47.7 L.m-2.h-1和98.7%。
     制备了水相含有不同浓度阴离子表面活性剂十二烷基硫酸钠(SDS)的复合膜,采用SEM和AFM观察了复合膜的表面和断面形貌。结果表明,当水相中SDS浓度低于0.2wt%时,复合膜的水通量随SDS浓度的增加呈线性下降,而当SDS浓度达到0.2wt%后,复合膜的水通量趋于稳定。通过测定SDS在水相溶液中的临界胶束浓度,以及研究MPD在有机相中的扩散发现,水相中SDS胶束的形成使MPD在水相有机相界面处的浓度增加,进而使反应区内MPD浓度增加,导致活性分离层更加致密,故使复合膜水通量降低。
     考察了界面聚合反应时间对复合膜分离性能以及活性分离层结构的影响,发现随着反应时间的延长,复合膜的水通量先降低后趋于稳定,而截留率先升高后逐渐达到定值。结合复合膜断面的SEM图片,解释了反应时间影响活性分离层厚度和复合膜分离性能的机理。通过AFM对比了不同反应时间下复合膜表面的粗糙度,发现反应时间越短,膜表面的粗糙度越低。
     最后,本文对聚酰胺-聚苯胺纳米复合反渗透膜的制备进行了初步探索。
     经过对制膜工艺条件的优化,反渗透复合膜的水通量得到了很大的提高,复合膜综合性能最佳时的水通量和截留率分别为97.8 L.m-2.h-1和97.0%。
Water flux is one of the most important performance indicators of reverse osmosis membrane. Higher water flux indicates lower energy cost when the membrane is treating the same volume of feed solution. In this paper, polyamide thin film composite (TFC) reverse osmosis (RO) membrane was prepared by interfacically polymerizing m-phenylenediamine (MPD) and trimesoyl chloride (TMC) on top of a polysulfone substrate to form an ultrathin active layer. The separation performance of the membrane, i.e. water flux and salt rejection, were evaluated under operating pressure of 225 psi using 2000 ppm sodium chloride solution. The membrane preparation conditions were optimized to improve the water flux of the composite membrane. Relationships between membrane performance and active layer structure were also studied.
     Firstly, composite membranes were prepared by adding different amount of dimethyl sulfoxide (DMSO) in the polyamine solution. Surface and cross section of the top active layer were studied by SEM. Membrane testing results showed that water flux increased while salt rejection decreased with increasing DMSO concentration. Good water flux and salt rejection (47.7 L.m-2.h-1 and 98.7%) were obtained when concentration of DMSO in the polyamine solution was 2wt%.
     In addition, composite membranes were prepared by adding different amount of anionic surfactant sodium dodecyl sulfate (SDS) in the polyamine solution. Membrane surface structure was studied by SEM and AFM. Testing results showed that water flux decreased in a linear fashion before SDS concentration reached 0.2wt%, and leveled off afterwards. By determining critical micelle concentration (CMC) of SDS in the polyamine solution and studying diffusion of MPD in the organic phase, it was found that the formation of SDS micelles led to higher concentration of MPD in the water-hexane interface as well as the reaction zone, which resulted in formation of denser active layer and decreased water flux.
     Impacts of reaction time on separation performance as well as active layer structure of the composite membranes were also studied. It was found that with increasing reaction time, water flux decreased and then leveled off while salt rejection increased before staying constant. How increasing reaction time led to changes in ultrathin film thickness as well as composite membrane separation performance was explained by comparing SEM images of membrane cross sections. By studying SEM and AFM images of composite membrane surface, it was found that membrane surface become rougher with increasing reaction time.
     Finally, preparation of polyamide-polyaniline thin film nanocomposite reverse osmosis membrane was explored in this paper.
     Very high water flux as well as acceptable salt rejection (97.8 L.m-2.h-1 and 97.0%) were obtained after optimizing membrane preparation conditions described above.
引文
[1] V. Gewin, Industry lured by the gains of going green, Nature, 2005, 436: 173-173
    [2] C. Fritzmann, J. Lowenberg, T. Wintgens, T. Melin, State-of-the-art of reverse osmosis desalination, Desalination, 2007, 216: 1-76
    [3]天津大学物理化学教研室编,物理化学(上册),北京:高等教育出版社,2001
    [4] T. Y. Cath, A. E. Childress, M. Elimelech, Forward osmosis: Principles, applications, and recent developments, Journal of Membrane Science, 2006, 281: 70-87
    [5] J. Mulder, Basic principles of membrane technology, Kluwer Academic Publishers, 1997
    [6] S. Loeb and S. Sourirajan, High flow porous membranes for separation of water from saline solutions, U.S. Patent 3.133.132, 1964
    [7] R. J. Petersen, Composite reverse osmosis and nanofiltration membranes, Journal of Membrane Science, 1993, 83: 81-150
    [8] J. E. Cadotte, Interfacially synthesized reverse osmosis membrane, U.S. Patent 4.277.344, 1981
    [9]王晓琳,丁宁,反渗透和纳滤技术与应用,北京:化学工业出版社,2005
    [10]朱长乐,膜科学与技术,北京:高等教育出版社,2003
    [11] B-H Jeong, E. M. V. Hoek, Y. Yan, A. Subramani, X. Huang, G.. Hurwitz, A. K. Ghosh, A. Jawor, Interfacial polymerization of thin film nanocomposites: Anew concept for reverse osmosis membranes, Journal of Membrane Science, 2007, 294: 1-7
    [12] K. Yoon, B.S. Hsiao, B. Chu, High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds, Journal of Membrane Science, 2009, 326: 484-492
    [13] E. L. Wittbecker, P. W. Morgan, Interfacial Polycondensation. I, Journal of Polymer Science, 1959, XL, 289-297
    [14] P. W. Morgan, S. L. Kwolek, Interfacial Polycondensation. II. Fundamentals of Polymer Formation at Liquid Interfaces, Journal of Polymer Science, 1959, XL, 299-327
    [15] V. Freger, Kinetics of film formation by interfacial polycondensation, Langmuir, 2005,21: 1884-1894
    [16] J. E. Cadotte, Polyethyleneimine reverse osmosis membranes, U.S. Patent 4.039.440, 1977
    [17] V. Freger, Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization, Langmuir, 2003, 19: 4791-4797
    [18] J.J. Zupancic, R. J. Swedo, Chlorine-resistant semipermeable membranes, U.S. Patent 4.661.254, 1987
    [19]潘祖仁,高分子化学(增强版),北京:化学工业出版社,2007
    [20] S. Y. wak, S. G.. Yung, S. H. Kim, Structure-Motion-Performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films, Environmental Science and Technology, 2001, 35: 4334-4340
    [21] J. E. Tomaschke, Amine monomers and their use in preparing interfacially synthesized membranes for reverse osmosis and nanofiltration, U.S. Patent 5.922.203, 1999
    [22] M. Liu, D. Wu, S. Yu, C. Gao, Influence of the polyacyl chloride structure on the reverse osmosis performance, surface properties and chlorine stability of the thin-film composite polyamide membranes, Journal of Membrane Science, 2009, 326:205-214
    [23] Zhou. Y, Yu. S, Liu. M, Gao. C, Polyamide thin film composite membrane prepared from m-phenylenediamine and m-phenylenediamine-5-sulfonic acid, Journal of Membrane Science, 2006, 270: 162-168
    [24] T. Uemura, Y. Himeshima, M. Kurihara, Interfacially synthesized reverse osmosis membrane, U.S. Patent 4.761.234, 1988
    [25]赵卷,界面聚合法制备分离CO2固定载体复合膜,博士学位论文,天津大学,2006
    [26] J. Zhao, Z. Wang, J. Wang, S. Wang, Influence of heat-treatment on CO2 separation performance of novel fixed carrier composite membranes prepared by interfacial polymerization, Journal of Membrane Science, 2006, 283: 346-356
    [27] A.K. Ghosh, B.H, Jeong, X. Huang, E.M.V. Hoek, Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties, Journal of Membrane Science, 2008, 311: 34-45
    [28] M. Liu, S. Y, J. Tao, C. Gao, Preparation, structure characteristics and separation properties of thin-film composite polyamide-urethane seawater reverse osmosis membrane, Journal of Membrane Science, 2008, 325: 947-956
    [29] D. Mukherjee, A. Kulkarni, W.N. Gill, Chemical treatment for improved performance of reverse osmosis membranes, Desalination, 1996, 104: 239-249
    [30] A. Kulkarni, D. Mukherjee, W.N. Gill, Flux enhancement by hydrophilization of thin film composite reverse osmosis membranes, Journal of Membrane Science, 1996, 114: 39-50
    [31] G. Kang, M. Liu, B. Lin, Y. Cao, Q. Yuan, A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly (ethylene glycol), Polymer, 2007, 48: 1165-1170
    [32] S. Belfer, Y. Purinson, R. Fainshtein, Y. Radchenko, O. Kedem, Surface modification of commercial composite polyamide reverse osmosis membranes, Journal of Membrane Science, 1998, 139: 175-181
    [33] J. Gilron, S. Belfer, P. Vaisanen, M. Nystrom, Effects of surface modification on antifouling and performance properties of reverse osmosis membranes, Desalination, 2001, 140: 167-179
    [34] V. Freger, J. Gilron, S. Belfer, TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study, Journal of Membrane Science, 2002, 209: 283-292
    [35] C. Y. Tang, Y-N. Kwon, J. O. Leckie, Probing the nano- and micro- scales of reverse osmosis membranes-A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements, Journal of Membrane Science, 2007, 287: 146-156
    [36] Y. Zhou, S. Yu, C. Gao, X. Feng, Surface modification of thin film composite polyamide membranes by electrostatic self deposition of polycations for improved resistance, Separation and purification technology, 2009, 66: 287-294
    [37] Z. Fan, Z. Wang, N. Sun, J. Wang, S. Wang, Performance improvement of polysulfone ultrafiltration membrane by blending with polyaniline nanofibers, Journal of Membrane Science, 2008, 320: 363-371
    [38] T.T. Moore, R. Mahajan, D.Q. Vu, W.J. Koros, Hybrid membrane materials comprising organic polymers with rigid dispersed phases, AIChE Journal, 2004,50:311-321
    [39] P. Jha, J.D. Way, Carbon dioxide selective mixed-matrix membranes formulation and characterization using rubbery substituted polyphosphazene, Journal of Membrane Science, 2008, 324: 151-161
    [40] C.M. Zimmerman, A. Singh, W.J. Koros, Tailoring mixed matrix composite membranes for gas separations, Journal of Membrane Science, 1997, 137: 145-154
    [41] C.L. Jadav, P. Singh, Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties, Journal of Membrane Science, 2009, 328:257-267
    [42]应用,北京,化学工业出版张玉忠,郑领英,高从堦,液体分离膜技术及社,2004
    [43] B. Tang, Z Huo, P. Wu, Study on a novel polyester composite nanofiltration membrane by interfacial polymerization of triethanolamine (TEOA) and trimesoyl chloride (TMC) I. Preparation, characterization and nanofiltration properties test of membrane, Journal of Membrane Science, 2008, 320: 198-205
    [44] A.L. Ahmad, B.S. Ooi, J.P. Choudhury, Preparation and characterization of co-polyamide thin film composite membrane from piperazine and 3,5-diaminobenzoic acid, Desalination, 2003, 158: 101-108
    [45] S. Verissimo, K.-V. Peinemann, J. Bordado, Influence of the diamine structure on the nanofiltration performance, surface morphology and surface charge of the composite polyamide membranes, Journal of Membrane Science, 2006, 279: 266-275
    [46] P.R. Buch, D. J. Mohan, A.V.R. Reddy, Preparation, characterization and chlorine stability of aromatic-cycloaliphatic polyamide thin film composite membranes, Journal of Membrane Science, 2008, 309: 36-44
    [47] Y-C. Chiang, Y-Z. Hsub, R-C. Ruaan, C-J. Chuang, K-L. Tung, Nanofiltration membranes synthesized from hyperbranched Polyethyleneimine, Journal of Membrane Science, 2009, 326: 19-26
    [48] X-Z. Wei, L-P. Zhu, H-Y. Deng, Y-Y. Xu, B-K. Zhu, Z-M. Huang, New type of nanofiltration membrane based on crosslinked hyperbranched polymers, Journal of Membrane Science, 2008, 323: 278-287
    [49] J. Jegal, S.G. Min, K-H. Lee, Factors affecting the interfacial polymerization ofpolyamide active layers for the formation of polyamide composite membranes, Journal of Applied Polymer Science, 2002, 86: 2781-2787
    [50] A.W. Mohammad, N. Hilal, M.N.A. Seman, A study on producing composite nanofiltration membranes with optimized properties, Desalination, 2003, 158: 73-78
    [51] J. R. McCutcheon, R. L. McGinnis, M. Elimelech, A novel ammonia-carbon dioxide forward (direct) osmosis desalination process, Desalination, 2005, 174: 1-11
    [52] R.E. Kravath, J.A. Davis, Desalination of seawater by direct osmosis, Desalination, 1975, 16: 151-155
    [53] G.D. Mehta, S. Loeb, Performance of: Permasep B-9 and B-10 membranes in various osmotic regions and at high osmotic pressures, Journal of Membrane Science, 1979, 4: 335-349
    [54] J. R. McCutcheon, M. Elimelech, Influence of membrane support layer hydrophilicity on water flux in osmotically driven membrane processes, Journal of Membrane Science, 2008, 318: 458-466
    [55] K. Y. Wang, T-S. Chung, J-J. Qin, Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process, Journal of Membrane Science, 2007, 300: 6-12
    [56] J. R. McCutcheon, M. Elimelech, Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis, Journal of Membrane Science, 2006: 284, 237-247
    [57] N.N. Li, M.A. Kuehne, R.J. Petersen, High flux reverse osmosis membrane, U.S. Patent 6.162.358, 2000
    [58]叶宪曾、张新祥,仪器分析教程,北京:北京大学出版社,2007
    [59] S-Y. Kwak, S.G. Jung, Y.S. Yoon, D.W. IHM, Details of surface features in aromatic polyamide reverse osmosis membranes characterized by scanning electron and atomic force microscopy, Journal of Polymer Science, 1999, 37: 1429-1440
    [60] Y. Jin, Z. Su, Effects of polymerization conditions on hydrophilic groups in aromatic polyamide thin films, Journal of Membrane Science, 2009, 330: 175-179
    [61] S.K. Sikdar, C. Park, Y.D. Yeboah, Catalyzed interfacial polycondensation polycarbonate process, U.S. Patent 4.515.936, 1985
    [62] M. Hirose, K. Ikeda, Composite reverse osmosis membrane, U.S. Patent 5.674.398, 1997
    [63] M. Hirose, H. Ito, M. Maeda, K. Tanaka, Highly permeable composite reverse osmosis membrane, method of producing the same, and method of using the same, U.S. Patent 5.614.099, 1997
    [64] M. Hirose, K. Ikeda, Method of producing high permeable composite reverse osmosis membrane, U.S. Patent 5.576.057, 1996
    [65] J.E. Tomaschke, I. E. Ary, Interfacially synthesized reverse osmosis membranes and processes for preparing the same, U.S. Patent 5.254.261, 1993
    [66] L. li, S. Zhang, X. Zhang, G. Zheng, Polyamide thin film composite membranes prepared from 3,4',5-biphenyl triacyl chloride, 3,3',5,5'-biphenyl tetraacyl chloride and m-phenylenediamine, Journal of Membrane Science, 2007, 289: 258-267
    [67] R.F. Fibiger, J-Y Koo, D J. Forgach, Robert J. Petersen et al. Novel polyamide reverse osmosis membranes, U.S. Patent 4.859.384, 1989
    [68]赵国玺,表面活性剂物理化学,北京:北京大学出版社,1984
    [69] K. Holmberg, B. Jonsson, B. Kroberg, B. Lindaman, Surfactants and polymers in aqueous solution, John Wiley & Sons, Ltd., 2002
    [70] E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, 1997
    [71] X-L. Huang, J-Z. Zhang, Surfactant-sensitized malachite green method for trace determination of orthophosphate in aqueous solution, Analytica Chimica Acta, 2006, 580: 55-67
    [72] K. Motomura, M. Aratono, N. Matubayasi, R. Matuura, Thermodynamic studies on adsorption at interfaces: III. Sodium dodecyl sulfate at water/hexane interface, Journal of Colloid and Interface Science, 1978, 67: 247-254
    [73]肖进新,赵振国,表面活性剂应用原理,北京:化学工业出版社,2003
    [74] S.H. Kim, S-Y. Kwak, T. Suzuki, Positron Annihilation Spectroscopic evidence to demonstrate the flux-enhancement mechanism in morphology-controlled thin film composite (TFC) membrane, Environmental Science and Technology, 2005, 39: 1764-1770
    [75] Y. Zhou, S. Yu, M. Liu, C. Gao, Preparation and characterization ofpolyamide-urethane thin-film composite membranes, Desalination, 2005, 180: 189-196
    [76] R. N. Wenzel, Resistance of solid surfaces to wetting by water, Industrial & Engineering Chemistry, 1936, 28: 988-994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700