多孔SnO_2纳米材料与CNTs基复合纳米材料的制备及其气敏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类对自身生存环境要求的提高,人类对有毒和可燃气体的检测、监控、报警的要求也就越来越高。而有毒气体和可燃气体的检测则依赖于高品质的气敏传感器的开发。如何从根本上改善气敏传感器的灵敏度与选择性,实现对待测物的低检测极限和定性识别依然是目前传感器研究的热点之一。气敏材料是气敏传感器的核心部件,因此气敏材料的合成及其气敏性能的研究显得越发重要。纳米材料的出现以及纳米科技的发展为传感器性能的改善提供了新的契机。近年来,具有多孔结构的半导体氧化物纳米材料以及碳纳米管(CNTs)基复合材料因其具有更大的活性表面积而倍受关注。因此合成具有多孔结构的半导体氧化物纳米材料与CNTs基复合纳米材料来制作气敏元件,对提高传感器敏感性能具有非常重要的意义。针对以上问题,本文主要研究了以几个部分:
     (1)采用一种简单的溶剂热途径,使用DMF与水的混合物作为溶剂,通过改变DMF与水的体积比,制备了多孔的SnO2纳米片、纳米球与空心核壳球状结构。分别采用透射射电镜(TEM)、红外光谱(FT-IR)、比表面积孔径分析仪和X射线衍射(XRD)等分析测试手段对样品的形貌、晶相组成及微观结构特征进行了表征。气敏性能测试表明3种结构的气敏材料,都展示了较好的气敏性能,其中SnO2纳米片则展示了对乙醇蒸汽较好的选择性,SnO2多孔球则显示了对丙酮、甲苯、四氢呋喃和二氯甲烷蒸汽更高的灵敏度,而SnO2空心核壳结构显示对乙醇,甲醇蒸汽最高的灵敏度。
     (2)采用简单的阳离子表面活性剂诱导原位聚合方法成功制备了新颖的具有针状结构的聚苯胺(PANI)包覆多壁碳纳米管(MWCNTs)的分级纳米结构材料。分别采用红外光谱(FT-IR)、紫外可见(UV-Vis)、扫描电镜(SEM)、透射电镜(TEM)、热重(TG)、气敏测试等分析测试手段对PANI/MWCNT的组成、形貌、微观结构特征、热稳定性和气敏测性能进行了表征和测试。结果表明,在MWCNTs上均匀包覆了约20nm厚的针状PANI,该材料制备的气敏元件在室温下对NH3的灵敏度,重复性明显好于单纯PANI,灵敏度也高于相关文献报道合成的非针状PANI包覆的PNAI/MWCNT。
     (3)使用硫代乙酰胺,醋酸镉为原料在60℃条件下,通过超声辅助湿法合成了CdS/MWCNT纳米复合物。采用扫描电镜(SEM)、透射电镜(TEM)、X射线能谱(EDS)、选区电子衍射(SAED)和X射线衍射(XRD)等分析测试手段对样品的形貌、晶相组成及微观结构特征进行了表征。结果表明:CdS纳米粒子为立方相的,均匀的包覆在多壁碳纳米管(MWCNTs)上,厚度约为30-40nm。气敏性能测试,表明该材料对乙醇蒸汽展示高的灵敏度与好的选择性。
In recent years, with the fast development of science and technology, it provides tremendous convenience to human beings. But at the same time, it has seriously polluted the enviroment. Owing to the toxic and flammable gases threat to our health and wealth, human beings call for a high-qualiy environment. So it becomes more and more important in the study of gas sensor to detect and inspect the toxic and flammable gases. Recently nanomaterials and nanotechnology provide new opportunities for improving the performance of gas sensors.
     In the past several decades, the sensing properties of porous nanomaterials semiconductor metal oxide nanomaterials and CNT-basd nanocomposites have been widely investigated. Owing to the existence of the large activated surface areas, it could cause the detected gas samples to easily diffuse and interact with sensing materials. Therefore, the syntheses of porous nanomaterials and CNT-basd nanocomposites would be of importance for improving gas sensing properties. Aiming at solving the problem mentioned above, the follows:
     (1) Porous nanosheets, nanospheres and hollow core-shell nanosperes of SnO2 have been prepared via a solvethermal approach in DMF/water solution by changing the ratio of DMF to total mixture volume. These nano-materials have been thoroughly characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and nitrogen adsorption-desorption. The gas-sensing properties of samples were studied. Results show all the SnO2-based gas sensors are realized the detection of organic vapors with high sensitivity and short response-recovery time. But the obtained SnO2 porous nanosheet exhibit high selectivetity to ethanol vapor and the SnO2 hollow core-shell structures exhibit high sensitivity to ethanol and methanol vapors, while the SnO2 porous nanospheres exhibit high sensitivity to acetone, toluene, tetrahydrofuran and dichloromethane vapors.
     (2) We described here a simple approach to the synthesis of hierarchical polyaniline/multiwalled carbon nanotube (MWCNT) nanocables by in situ chemical polymerization directed by the cationic surfactant cetyltrimethylammonium bromide (CTAB). Morphological and structural characteristics, thermal stability, as well as gas-sensing properties of the hybrid nanocomposites were characterized by using various techniques; including Fourier transform infrared spectroscopy (FT-IR), UV-visible absorption spectra (UV-vis), scanning electron microscopy (SEM), transmission electronmicroscopy (TEM), thermogravimetric analyzer and gas-sensing measurement. The results indicate that the as-prepared PANI/MWCNT is uniform with needle-like PANI shell with the thickness as about 20nm. The sensors based on PANI/MWCNT nanocomposites and pure PANI was tested for ammonia gas. The results show that the as-prepared PANI/MWCNT nanocomposites sensors have higher sensitivity and repeatability, and better response/reproducibility towards ammonia at room temperature. Compare with reported PANI/MWCNT with no needle-like PANI, the as-prepared PANI/MWCNT also exhibits the higher sensitivity.
     (3) A convenient method of sonochemical route in an aqueous solution is reported to synthesize CdS/MWCNT with thioacetamide and cadmium acetate as raw materials at 60℃. The obtained samples are characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS) and selected area electon diffraction (SAED). The results indicate that the as-prepared CdS/MWCN are uniform with cubic CdS shell thickness of about 30-40 nm. The applications in gas sensors for the SnO2 nanomaterials reveal that the obtained CdS/MWCNT nanocomposites exhibit high sensitivity and better selectivity to ethanol vapors.
引文
[1]刘迎春,叶湘滨.现代新型传感器原理与应用.北京:国防工业出版社,2000.286-305
    [2]刘正勇,张耀华.半导体氧化物气敏传感器测试新原理和方法.传感器学报,2000,6(2):106-108
    [3]徐甲强,韩建军,孙雨安等,半导体气敏传感器敏感机理的研究进展.传感器与微系统,2006,25(11):5-8
    [4]官德斌,杨亚杰,刘学涌等.一种新型有机气敏材料的成膜和低温气敏性能.传感技术学报,2009,22(1):19-22
    [5]林金阳.基于霍耳效应的气敏传感器的研制:[硕士学位论文],福州:福州大学,2006
    [6]马丽杰.日本气敏传感器产业化发展现状.云南大学学报(自然科学版),1997,19(2):211-216
    [7]王玉田,孟宗,刘卫东.环境监测与光纤传感器.世界科技研究与发展,2001,23(6):15-17
    [8]李平,余萍,肖定全.气敏传感器的近期进展.功能材料,1999,30(2):126-128
    [9]李晶晶,李冬梅,赵以贵等.常见气体声表面波传感器的研究进展.传感器世界,2009,3:6-10
    [10]王焕新,胡平,王晓华等.氧化铈掺杂对氧化铟气敏特性的影响.稀土,2007,28(2):1-6
    [11]徐海军,何新秀,曾英.富氧尾气中NOx催化净化的研究进展.环境污染治理技术与设备,2002,3(4):29-34
    [12]顾长志,孙良彦,张彤等.一种新型结构的LB膜化学场效应晶体管的气敏特性研究.半导体学报,1994,15(4):272-275
    [13]田敬明Pt/InP肖特基二极管气敏特性的研究.半导体学报,1996,17(7):529-532
    [14]赵义芬,赵鹤云,吴兴惠.金属氧化物半导体气敏材料的研究进展.传感器世界,2009.01:6-11,20
    [15]Maekawa T, Tamaki J, Miura N, Yamazoe N. Sensing behavior of CuO-loaded SnO2 element for H2S detection. Chem Lett,1991,4:575-578
    [16]Matsushima S, Maekawa T, Tamaki J, et al. Role of additives on alcohol sensing by semiconductor gas sensor. Chem Lett,1989,5:845-848.
    [17]Tamaki J, Maekawa T, Matsushima S, et al. CuO-SnO2 element for highly sensitive and selective detection of H2S. Sensors and Actuators B,2005,9(3): 197-203
    [18]张纯禹.现代优化计算方法在材料最优化设计中的应用.材料科学与工程学报,2003,21(1):44-47
    [19]Kong J, Franklin N R, Zhou C W, et al. Nanotube Molecular Wires as Chemical Sensors. Science,2000,287(5453):622-625
    [20]Varghese O K, Kichambre P D, Gong D, et al. Gas sensing characteristics of multi-wall carbon nanotubes. Sens. Actuators B,2001,81(1):32~41
    [21]Nguyen L H, Phi T V, Phan P Q, et al. Synthesis of multi-walled carbon nanotubes for NH3 gas detection.Physica E,2007,37(1~2):54~57
    [22]Suehiro J Y, Zhou G B, Hara M. Detection of partial discharge in SF6 gas using a carbon nanotube-based gas sensor. Sensors and Actuators B,2005,105(2):164~ 169
    [23]郭淼,潘敏,陈金霞,等.室温下镀钯多壁碳纳米管对苯的气敏响应特性.分析化学,2006,34(12):1755-1758
    [24]Modi A, Koratkar N, Lass E, et al. Miniaturized gas ionization sensors using carbon nanotubes. Nature,2003,424 (6945):171-174
    [25]Qi P F, Vermesh O, Grecu M, et al. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett,2003,3(3):347-351
    [26]Bekyarova E, Davis M, Burch T, Itkis M E, et al. Chemically functionalized single-walled carbon nanotubes as ammonia sensors. J. Phys. Chem. B,2004, 108(197):17-20
    [27]Zhang T, Mubeen S, Bekyarova E, et al. Poly(m-aminobenzene sulfonic acid) functionalized single-walled carbon nanotubes based gas sensor. Nanotechnology, 2007,18(16):165504-165507
    [28]Wei B Y, Hsub M C, Su P G, et al. A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature. Sensors and Actuators B,2004,101 (1-2):81-89
    [29]Chen Y J, Zhu C L, Wang T H. The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures. Nanotechnology, 2006,17(12):3012-3017
    [30]SGnchez M, Guirado R, Rinc M E. Multiwalled carbon nanotubes embedded in sol-gel derived TiO2 matrices and their use as room temperature gas sensors Mater. Sci. Mater.Electron,2007,18(11):1131-1136.
    [31]Bittencourt C, Felten A, Espinosa E H. et al. WO3 films modified with functionalised multi-wall carbon nanotubes:Morphological, compositional and gas response studies. Sensors and Actuators B,2006,115(1):33-41
    [32]Kong J, Chapline M G, Dai H J. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv. Mater.,2001,13(14):1384-1386
    [33]Kumar M K and Ramaprabhu S. Nanostructured Pt functional-ized multiwalled carbon nanotube based hydrogen sensor.J. Phys. Chem. B.2006 110(33) 11291-11298
    [34]S Peng, K Cho. Ab Initio Study of Doped Carbon Nanotube Sensors. Nano Lett.,2003,3 (4):513-5171
    [35]Zhang YM, Zhang D J, Liu C B. Novel Chemical Sensor for Cyanides: Boron-Doped Carbon Nanotubes. J. Phys. Chem. B,2006,110(13):4671-4674
    [36]L Bai, Zhou Z. Computational study of B-or N-doped single-walled carbon nanotubes as NH3 and NO2 sensors. Carbon,2007,45 (10):2105-21101
    [37]施利毅等.纳米材料.上海:华东理工大学出版社,2007
    [38]Yamazoe N, Sakai G, Shimanoe K. Oxide semiconductor gas sensors. Catalysis Surveys from Asia,2003,7(1):63-74
    [39]Devi G S, Hyodo T, Shimizu Y, et al. Synthesis of mesoporous TiO2-based powders and their gas-sensing properties. Sens. Actuators B,2002,87(15): 112-129
    [40]Kim J H, Kim S H, Shiratori S. Fabrication of nanoporous and hetero-structure thin flm via a layer-by-layer self assembly method for a gas sensor. Sens. Actuators B,2004,102(2):241-247
    [41]Hyodo T, Nishida N, Shimizu Y, et al. Preparation and gas-sensing properties of thermally stable mesoporous SnO2. Sens. Actuators B,2002,83(1-3):209-215
    [42]Jin Z H, Zhou H J, Jin Z L, et al. Application of nano-crystalline porous tin oxide thin film for CO sensing. Sens. Actuators B,1998,52(1-2):188-194
    [43]Hyodo T, Sasahara K, Shimizu Y, et al. Preparation of macroporous SnO2 films using PMMA microspheres and their sensing properties to NO2 and H2. Sens. Actuators B,2005,106(2):58-590
    [44]Xu C, Tamaki J, Miura N, Yamazoe N. Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators B,1991,3(2):147-155
    [45]Chappel S, Zaban A. Nanoporous SnO2 electrodes for dye-sensitized solar cells: improved cell performance by the synthesis of 18 nm SnO2 colloids. Sol. Energ. Mat. Sol. C.,2002,71(2):141-152.
    [46]Park Mi S, Wang G X, Kang Y M, et al. Preparation and Electrochemical Properties of SnO2 Nanowires for Application in Lithium-Ion Batteries. Angew. Chem. Int. Ed,2007,46(5):750-753
    [47]Wang Y D, Djerdj I, Antonietti M, et al. Polymer-Assisted Generation of Antimony-Doped SnO2 Nanoparticles with High Crystallinity for Application in Gas Sensors. Small,2008,4(10):1656-1660
    [48]Wen Zh H, Wang G, Lu W, et al. Enhanced Photocatalytic Properties of Mesoporous SnO2 Induced by Low Concentration ZnO Doping. Cryst.Growth Des.,2007,7(3):1722-1725
    [49]Xu C N, Tamaki J, Miura N, et al. Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators B,1991,3(2):147-155
    [50]Li L L, Zhang W M, Yuan Q, et al. Room Temperature Ionic Liquids Assisted Green Synthesis of Nanocrystalline Porous SnO2 and Their Gas Sensor Behaviors. Cryst. Growth Des,2008,8(5):4165-4172
    [51]Xi G Ch, He Y T, Zhang Q, et al. Synthesis of Crystalline Microporous SnO2 via a Surfactant-Assisted Microwave Heating Method:A General and Rapid Method for the Synthesis of Metal Oxide Nanostructures. J. Phys. Chem C,2008, 112(31):11645-11649
    [52]Fujihara S, Maeda T, Ohgi H, et al. Hydrothermal Routes To Prepare Nanocrystalline Mesoporous SnO2 Having High Thermal Stability. Langmuir, 2004,20(15):6476-6481
    [53]Yamazoe N, Sakai G, Shimanoe K. Oxide semiconductor gas sensors. Catal. Surv. Asia,2003,7(1):63-75
    [54]Mizsei J. How can sensitive and selective semiconductor gas sensors be made? Sens. Actuators B,1995,140(2-3):173-176
    [55]Lee J H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens. Actuators B,2009,140(1):319-336
    [56](a) Chandra D, Mukherjee N, Mondal A, et al. Design and Synthesis of Nanostructured Porous SnO2 with High Surface Areas and Their Optical and Dielectric Properties. J. Phys. Chem C,2008,112(28):8668-8674. (b) Zhao Q, Gao Y, Bai X, et al. Facile synthesis of SnO2 hollow nanospheres and applications in gas sensors and electrocatalysts. Eur. J. Inorg.Chem.,2006, 2006(8):1643-1648. (c) Deng D, Lee J Y. Hollow Core-Shell Mesospheres of Crystalline SnO2 Nanoparticle Aggregates for High Capacity Li+ Ion Storage. Chem. Mater.,2008,20:1841-1846. (d) Liu J P, Li Y Y, Huang X T, et al. Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. J.Mater Chem.2009,19(18):1859-1864.(e) Lai M, Lim J H, Mubeen S Y. et al. Size-controlled electrochemical synthesis and properties of SnO2 nanotubes, Nanotechnology.2009,20(18):185602/1-185602/6.
    [57]Fan W G, Song Sh Y, Feng J, et al. Facile Synthesis and Optical Property of Porous Tin Oxide and Europium-Doped Tin Oxide Nanorods through Thermal Decomposition of the Organotin. J. Phys. Chem C,2008,112(50):19939-19944
    [58]Smatt J H, Schuwer N, Jarn M, Lindner W, Linden M. Synthesis of micrometer sized mesoporous metal oxide spheres by nanocasting. Micropor. Mesopor. Mat. 2008,112(1-3):308-318
    [59]Qia Q, Zhang T, Liu L, et al. Improved NH3, C2H5OH, and CH3COCH3 sensing properties of SnO2 nanofibers by adding block copolymer P123. Sens. Actuators B,2009,141(1):174-178
    [60]Cullity B D. Elements of X-ray Diffraction,2nd ed, Addison-Wesley:Menlo Park, CA.,1978
    [61]Tsierkezos N G, Schrolder D, Schwarz H. Gas-Phase Solvation Behavior of Ni(Ⅱ) in Water/N,N-Dimethylformamide Mixtures. J. Phys. Chem A.,2003,107(45): 9575-9581
    [62]Fujiwara H, Murakoshi K, Wada Y, et al. Observation of Adsorbed N,N-Dimethylformamide Molecules on Colloidal ZnS Nanocrystallites. Effect of Coexistent Counteranion on Surface Structure. Langmuir,1998,14(15): 4070-4073
    [63]Jacob M M E, Arof A K. FTIR studies of DMF plasticized polyvinyledene fluoride based polymer electrolytes. Electrochim. Acta,2000,45(10):1701-1706
    [64]Wang Zh X, Huang B Y, Lu Zh H, et al. Vibrational spectroscopic studies of interactions between LiClO4 and the plasticizer dimethylformamide. Solid State Ionics,1996,92(3-4):265-271
    [65]Gua F, Wang Sh F, Song Ch F, et al. Synthesis and luminescence properties of SnO2 nanoparticles. Chem. Phys. Lett.2003,372(3-4):451-454
    [66]Maria C F C F, Paula P. P, Alcidio A, Inorganic Ion Exchanger Based On Tin Oxide For Heavy Metals Separation.2005 International Nuclear Atlantic Conference-INAC 2005 Santos, SP, Brazil, August 28 to September 2,2005
    [67]Guarlno G, Ortona O, Sartorlo R, et, al. Diffusion, Viscosity, and Refractivity Data on the Systems Dimethylformamide-Water and N-Methylpyrrolidone-Water at 5℃. Journal of chemical and engineering data,1985,30(3):366-368.
    [68]Wang X, Li Y D. Solution-based synthetic strategies for 1-D nanostructures. Inorg.Chem,2006,45(19):7522-7534
    [69]Ostwald W. Studien uber die Bildung und Umwandlung fester Korper. Z. Phys. Chem,1897,22:289-330
    [90]Ostwald W. Uber die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberfiachenspannung fester Korper. Z. Phys. Chem., 1900,34:495-503
    [91]Gregg S J, Sing K S W. Adsorption, surface Area, and Porosity[M]. London: Academic Press,1982
    [92]Sing K S W, Everett D H, Haul R A W, et al. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure & Appl. Chem,1985,57(4):603-619
    [93]Xu J Q, Wang D, Qin L P, et al. SnO2 nanorods and hollow spheres:Controlled synthesis and gas sensing properties. Sens. Actuators B,2009,137(2):490-495
    [94]Tiemann M. Porous Metal Oxides as Gas Sensors. Chem. Eur. J,2007,13(30): 8376-8388
    [95]Sakai G, Matsunaga N, Shimanoe K, et al. Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sens. Actuators B,2001, 80(2):125-131
    [96]Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354(6348): 56-58
    [97]Shin H C, Liu M L, Sadanadan B, et al. Electrochemical insertion of lithium into multiwalled carbon nanotubes prepared by catalytic decomposition. J Power Sources,2002,112(1):216-221
    [98]Rajalakshmib N, Ryub H, Shaijumona M M, et al. Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material. J Power Sources,2005,140(2):250-257
    [99]Tans S J, Verschueren A R, Dekker C. Roomtemperature transistor based on a single carbon nanotube. Nature,1998,393(6680):49-52
    [100]Bonard J M, Kind H, Stockli T, et al. Field emission from carbon nanotubes:the first five years. SolidState Electron,2001,45(6):893-914
    [101]Canobre Sheila C, Almeida D A L, Polo F C, et al. Synthesis and characterization of hybrid composites based on carbon nanotubes. Electrochim Acta,2009,54(26):6383-6388
    [102]Long Y, Yin Z, Chen Z. Low Temperature Magnetoresistance Studies on Composite Films of Conducting Polymer and Multiwalled Carbon Nanotubes. J Phys Chem C.,2008,112(30):11507-11512
    [103]Qian D, Dickey E C, Andrews R, et al. Load transfer and deformation mechanisms in carbon nanotubepolystyrene composites. Appl Phys Lett,2000, 76(20):2868-2870
    [104]Baughman R H, Zakhidov A A,de Heer W A. Carbon nanotubesthe route toward applications. Science,2002,297(5582):787-792
    [105]Chen G Z, Shaer M S P, Coleby D, et al. Carbon nanotube and polypyrrole composites:coating and doping. Adv Mater,2000 12 (7),522-526
    [106]Kakarla R R, Byung C S, Chi H Y, et al. Coating of multiwalled carbon nanotubes with polymer nanospheres through microemulsion polymerization. J Colloid Interf Sci,2009,340(2):160-165
    [107]Konyushenko E N, Stejskala J, Trchova M, et al. Multiwall carbon nanotubes coated with polyaniline. Polymer,2006,47(16):5715-5723
    [108]Hea L, Jiaa Y, Menga F, et al. Gas sensors for ammonia detection based on polyanilinecoated multiwall carbon nanotubes. Mat Sci Eng B, Mat Sci Eng B, 2009,163(2):76-81
    [109]Sivakkumar S J, Kim D W. Polyaniline/carbon nanotube composite cathode for rechargeable lithium polymer batteries assembled with gel polymer electrolyte. J Electrochem Soc,2007,154(2):A134-A139
    [110]Sivakkumar S R, MacFarlane D R, Forsyth M, Kim D W. Ionic Liquid-Based Rechargeable Lithium Metal-Polymer Cells Assembled with Polyaniline/Carbon Nanotube Composite Cathode. J Electrochem Soc,2007,154(9):A834-838
    [111]Phang S W, Tadokoro M, Watanabe J, et al. Synthesis characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO2 nanoparticles and carbon nanotubes. Synthetic Met,2008,158(6):251-258
    [112]Vaithilingam S, Muthukaruppan A. Pt and Pt Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation. Electrochem Commun,2007,9(5):1145-1153
    [113]Vaithilingam S, Muthukaruppan A. Ethylene glycol oxidation on Pt and PtRu nanoparticle decorated polythiophene/multiwalled carbon nanotube composites for fuel cell applications. Nanotechnology,2008,19(4):045504/1-045504/8
    [114]Yoo K P, Kwon K H, Min N K, et al. Effects of O2 plasma treatment on NH3 sensing characteristics of multiwall carbon nanotube/polyaniline composite films. Sensor Actuat B:Chem,2009,143(1):333-340
    [115]Ko J M, Ryu K S, Kim S, et al. Supercapacitive properties of composite electrodes consisting of polyaniline, carbon nanotube, and RuO2. J Appl Electrochem,2009,39(8):1331-1337
    [116]Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science,1996,271(5251):933-938
    [117]Huang J, Kaner R B. A General Chemical Route to Polyaniline Nanofibers, J Am Chem Soc,2004,126 (3):851-854
    [118]Zhang X T, Zhang J, Wang R M, et al. Cationic surfactant directed polyaniline/CNT nanocables:synthesis, characterization, and enhanced electrical properties. Carbon,2004,42(8-9):1455-1461
    [119]Choudhury A. Polyaniline/silver nanocomposites:Dielectric properties and ethanol vapour sensitivity. Sensor Actuat B:Chem,2009,138(1):318-325
    [120]Srivastavaa S, Sharmaa S S, Agrawala S, et al. Study of chemiresistor type CNT doped polyaniline gas sensor. Synth. Met,2010,160(5-6):529-534
    [121]KulszewiczBajer I, Sobczak J, Hasik M, et al. Spectroscopic studies of polyaniline protonation with poly(alkylene phosphates). Polymer,1996,37(1): 25-30
    [122]Reddy K R, Lee K P,Kim J Y, et al. Selfassembly and graft polymerization route to monodispersed Fe3O4@SiO2polyaniline coreshell composite nanoparticles:physical properties. Nanosci. Nanotechno,2008,8(11):5632-5639
    [123]Czerw R, Guo Z, Ajayan P M, et al. Organization of Polymers onto Carbon Nanotubes:A Route to Nanoscale Assembly. Nano Lett,2001,1(8):423-427
    [124]Gao M, Huang S M, Dai L M, et al. Aligned coaxial nano wires of carbon nanotubes sheathed with conducting polymers. Angew Chem Int Ed,2000, 39(20):3664-3667
    [125]Chen R J, Zhang Y G, Wang D W, et al.Noncovalent sidewall functionalization of singlewalled carbon nanotubes for protein immobilization. Am Chem Soc, 2001,123(16):3838-3839
    [126]Cao Y, Smith P, Heeger A. Spectroscopic studies of polyaniline in solution and in spincast films. Synth Met,1989,32(3):263-281
    [127]王会才.高分子纳米复合气敏材料及气敏传感器:[博士学位论文],杭州:浙江大学,2007
    [128]Tchmutin I A, Ponomarenko A T, Krinichnaya E P, et al. Electrical properties of composites based on conjugated polymers and conductive fillers. Carbon, 2003,41(7):1391-1395
    [129]Kukla A L, Shirshov Y M, Piletsky S A. Ammonia sensors based on sensitive polyaniline films. Sensor Actuat B Chem,1996,47(3):135-140
    [130]Tian W, Yang L M, Xu Y Z, et al. Sugar interaction with metal ions. FTIR study on the structure of crystalline galactaric acid and its K+, NH4+, Ca2+, Ba2+, and La3+ complexes. Carbohyd Res,2000,324(1):45-52
    [131]Ma L L, Sun H Z, Zhang Y G, et al. Preparation, characterization and photocatalytic properties of CdS nanoparticles dotted on the surface of carbon nanotubes. Nanotechnology,2008,19(11):115709~115716
    [132]Yu D Sh, Chen Y J, Li B J, et al. Fabrication and characterization of PbS/multiwalled carbon nanotube heterostructures. Appl. Phys. Lett,2007, 90(16):161103/1~161103/3
    [133]Du J M, Fu L, Liu Zh, et al. Facile Route to Synthesize Multiwalled Carbon Nanotube/Zinc Sulfide Heterostructures:Optical and Electrical PropertiesJ. Phys. Chem. B,2005,109(40):12772~12776
    [134]Lee H, Yoon S W, Kim E J, et al. In-Situ Growth of Copper Sulfide Nanocrystals on Multiwalled Carbon Nanotubes and Their Application as Novel Solar Cell and Amperometric Glucose Sensor Materials. Nano Letters,2007, 7(3):778~784
    [135]Lu G H, Ocola L E. Chen J H. Room-Temperature Gas Sensing Based on Electron Transfer between Discrete Tin Oxide Nanocrystals and Multiwalled Carbon Nanotubes. Adv. Mater,2009,21(24):2487~2491
    [136]Ghasempour R, Iraji zad A. Hybrid multiwalled carbon nantubes and trioxide tungsten nanoparticles for hydrogen gas sensing. J.Phys.D:Appl.Phys,2009, 42(16):165105/1~165105/7
    [137]Olek M, Biisgen T, Hilgendor M, et al. Quantum Dot Modified Multiwall Carbon Nanotubes. J. Phys.Chem. B,2006,110(26):12901~12904
    [138]Moghaddam M J, Taylor S, Gao M, et al. Highly Efficient Binding of DNA on the Sidewalls and Tips of Carbon Nanotubes Using Photochemistry. Nano Lett, 2004,4(1):89~93
    [139]Banerjee S, Wong S S. Synthesis and Characterization of Carbon Nanotube-Nanocrystal Heterostructures. Nano Lett,2002,2(3):195~200.
    [140]Ziegler K J, Gu Z, Peng H, Flor E L, et al. Controlled oxidative cutting of single-walled carbon nanotubes. J. Am. Chem. Soc,2005,127(12):1541~1547
    [141]Liu B, Lee J Y. Ordered alignment of CdS nanocrystals on MWCNTs without surface modification. J. Phys. Chem. B,2005,109(59):23783~23786
    [142]Sasaki H, Shibayama K, Ichimura M, et al. Preparation of (Bi,Sb)2S3 semiconductor films by photochemical deposition method. J. Cryst. Growth, 2002,237(9):2125~2129
    [143]Tsai C T, Chun D S, Chen G L, et al. Studies of grain size effects in sputtered CdS thin films. J. Appl. Phys,1996,79(12):9105~9109
    [144]Britt J, Ferekides C. Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett,1993,62(21):2851/1~2851/2
    [145]Laila S-H-I, Bernhard B, Itamar W. Efficient generation of photocurrents by using CdS/carbon nanotube assemblies on electrodes. Angew. Chem. Int. Ed, 2005,44(1):78~83
    [146]Wang X F, Zhou Y, Xu J J, et al. Signal-on electrochemiluminescence biosensors based on CdS-carbon nanotube nanocomposite for the sensitive detection of choline and acetylcholine. Adv. Funct. Mater,2009,19(9):1444~ 1450
    [147]Robel I, Bunker B A, Kamat P V. Single-Walled Carbon Nanotube-CdS nanocomposite as light harvesting assembly. Adv. Mater,2005,17(20):2458~ 2463
    [148]Oded O, Ran T V; Ilina B, et al. Photoelectrochemical cells based on bis-aniline-crosslinked CdS nanoparticle-carbon nanotube matrices associated with electrodes. Journal of Materials Chemistry,2009,19(2),7650~7655
    [149]Yang Y, Shi J L, Chen H R, et al. Enhanced third-order optical nonlinearities of Au-CdS core-shell nanoparticles embedded in BaTiO3 thin films. Chem. Lett, 2002,31(5):694-695
    [150]An G, Na N, Zhang X R, et al. SnO2/carbon nanotube nanocomposites synthesized in supercritical fluids:highly efficient materials for use as a chemical sensor and as the anode of a lithium-ion battery. Nanotechnology, 2007,18(4):435707/1~435707/7
    [151]Yongbin Z, Haijing L, Feng W, et al. A simple route to synthesize carbon-nanotube/cadmium-sulfide hybrid heterostructures and their optical properties. J.Solid State Chem,2009,182(4):875-880
    [152]Wang G Z, Wang Y W, Chen W, et al. A facile synthesis route to CdS nanocrystals at room temperature. Mater. Lett,2001,48(5):269-272
    [153]Gao T, Li Q H, Wang T H. Sonochemical synthesis, optical properties, and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites. Chem. Mater,2005,17(4):887-892
    [154]Fu L, Liu Z, Liu M, et al. Beaded cobalt oxide nanoparticles along carbon nanotubes:towards more highly integrated electronic devices. Adv. Mater,2005, 17(6):217-221
    [155]Hagfeldtt A, Gratzel M. Light-Induced Redox Reactions in Nano-crystalline Systems. Chem Rev,1995,95(1):49-68
    [156]Zhao Y B, Liu H J, Wang F, et al. A simple route to synthesize carbon-nanotube/cadmium-sulfide hybrid heterostructures and their optical properties.Journal of Solid State Chemistry,2009,182(4):875~880
    [157]姚建曦.CdS/有机物纳米复合材料的制备及其发光性能的研究:[博士学位论文],杭州:浙江大学,2003
    [158]Lee Y J, Gray J L. Numerical modeling of graded band gap CIGS solar cells. Proceedings of the Twenty-Second IEEE PVSC,1991,1151~1155
    [159]Ago H, Kugler T, Cacialli F, et al. Work functions and surface functional groups of multiwall carbon nanotubes. J. Phys. Chem. B,1999,103(38):8116~8121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700