Czochralski法晶体生长中复杂流动结构及其稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Czochralski(Cz)熔体晶体生长方法是最常见的单晶生长方法之一,而晶体生长过程中熔体流动稳定性将直接影响晶体材料的制备质量。由于Cz法晶体生长过程中驱动流体流动的力包括浮力、热毛细力、旋转离心力及Coriolis力等,并且各驱动力相互耦合,使得流体流动极其复杂。尽管目前对Cz法晶体生长过程中复杂流动的研究已有不少的报道,但不同学者间研究结果差异大、甚至相互矛盾,其复杂流动的机理仍不清楚。因此,本文以Cz法晶体生长中的复杂流动为研究对象,采用数值模拟和实验观测相结合的方法分别研究了不同驱动力作用下的流动特征,综合分析了各驱动力相互耦合时的流动规律,得到了各驱动力单独或相互耦合作用下流动转变的临界条件,绘制了流动稳定性区域图,获取了流动失稳后各种流型的演变规律,讨论了液池深宽比、半径比、热毛细雷诺数(ReT)以及坩埚和晶体旋转雷诺数(Rec, Res)等对复杂流动的影响,揭示了流动失稳的物理机制,所得结论对丰富和发展复杂流动动力学理论有着重要的学术意义,同时可为完善晶体生长工艺、提高晶体质量提供重要的理论指导。主要研究内容及获得的结果如下:
     首先,通过数值模拟研究了Cz结构液池内仅有坩埚和晶体旋转驱动的流动特征,得到了不同旋转条件下的速度场分布,讨论了液池深宽比和半径比对流动结构的影响。结果表明,当旋转雷诺数超过某一临界值时,流动将转变为三维时相关的振荡流动;流动失稳后在流体自由表面上所形成的周向速度振荡波的波数、周向传播方向以及传播速度等都与晶体及坩埚旋转速度的相对大小有关;当晶体和坩埚反向旋转时,流动失稳的物理机制为剪切不稳定性;Cz结构浅液池内当晶体单独旋转或与坩埚同向旋转时,流动失稳的机理为椭圆不稳定性;深液池内当晶体单独旋转时流动的失稳主要是由离心力不稳定性造成的,而当坩埚和晶体同向旋转时流动不稳定性的物理机制为椭圆不稳定性;当液池深宽比一定,在不同的半径比及旋转雷诺数下,发现了从椭圆形到三角形、从四边形至八边形等多种不稳定流动结构。
     其次,分析了Cz结构浅液池内低Prandtl数流体热毛细力、旋转离心力和Coriolis力共同作用驱动的流体流动规律。结果表明,当坩埚单独旋转时,流动转变的临界热毛细雷诺数(ReT,c)随着Rec的增加先增加后减小;当晶体和坩埚同向旋转时,在相同Rec下,ReT,c随着Res的增加而减小;另外,晶体和坩埚反向旋转时,流动将经历二次转变;当旋转驱动的强制对流较强时,流动处于不稳定状态,随着热毛细力的增大,旋转对流强度被削弱,流动转变为稳定状态;当ReT进一步增大、热毛细对流占主导地位时,流动再次失稳,转变为不稳定流动;第一次失稳的机理是旋转对流产生的剪切不稳定性,第二次流动转变是由温度和速度振荡不一致激发的。
     然后,研究了Cz结构深液池内浮力、热毛细力、旋转离心力和Coriolis力耦合作用驱动的复杂流动机理。研究发现,浮力能促进流动失去稳定性。当ReT较大时,热毛细-浮力对流增强,流动失稳的物理机制为Rayleigh-Bénard流动不稳定性。当各驱动力对流动的影响相当时,其流动失稳的机理为斜压不稳定性。
     此外,通过数值模拟讨论了具有液封的Cz结构浅液池内旋转对热毛细对流的影响,获得了流动稳定性区域图。结果发现,当坩埚单独旋转时,ReT,c随坩埚旋转速度的增加而增加;当晶体单独旋转时,ReT,c呈先减小后增大的趋势;当晶体和坩埚反向旋转时,相同Res下坩埚旋转速度越高,ReT,c越小,而当Rec相同时,ReT,c随着Res的增加先减小后增大;当流动失稳后,流场内呈现出多胞振荡结构,且振荡流胞总是在晶体-液封流体边界处产生,然后传向坩埚侧壁,传播过程中振荡逐渐减弱;流动不稳定机理为热流体波不稳定性。另外,研究还发现,坩埚的旋转对液封Cz结构液池内流动的不稳定性有促进作用,而晶体旋转能在一定程度上抑制不稳定性的发生。
     最后,采用纹影法对Cz结构液池内硅油失稳后的耗散结构进行了可视化研究。结果表明,当液层较浅时,流动失稳后主要表现为螺纹状的热流体波结构,不同温差条件下,可能出现单列波、双列波甚至多列波相互叠加的结构;当温差增加到一定值时,螺旋状波纹发生变形,特别是对于小半径比结构,两列螺旋波变形叠加形成与Bénard涡胞相似的六边形蜂窝状结构;当液层厚度在58mm时,温度波动呈现出径向条纹结构;随着液池旋转速度的增加,流动逐渐由非稳态振荡结构转变为稳态的轴对称结构,且液层厚度越大,液池旋转对流动不稳定性的抑制作用越大。
The Czochralski (Cz) crystal growth technology is one of the most importantmethods for producing single crystals, where both the crucible containing the melt andthe crystal growing at the melt surface are rotated in opposite directions to smooth theirregular heating. Thus, the forces that can drive the flow include the thermocapillary,buoyancy, centrifugal and Coriolis forces. These forces interact on different scalesmaking the Cz crystal growth process difficult to be controlled and characterized, andseveral flow instabilities may be triggered. These flow instabilities have a direct impacton the quality of the growing single crystal, such as the undesired creation of striations.Up to now, it appears that how the rotation influences the thermal and flow fields, thedetails about the complex flow driven by the combination of buoyancy andthermocapillary forces, Coriolis and centrifugal forces have not been investigatedsystematically, and the mechanisms of flow instabilities remain puzzling, although lotsof works have been reported on the flow behaviors during Cz crystal growth process.
     In this thesis, both numerical simulations and experiments are performed tocontribute further to the understanding of the complex flow during Czochralski crystalgrowth process. The critical conditions for the onset of flow instabilities are obtained,and the stability diagrams are mapped. Meanwhile, the effects of the aspect ratio, radiusratio, thermocapillary Reynolds number (ReT), as well as the rotation Reynolds number(Rec, Res) are presented. In addition, the mechanisms of flow instabilities are alsodiscussed. The results obtained herein can not only make progress in hydrodynamics butalso provide some new theoretical bases for the optimization of crystal growthtechnology. The main results are as follows:
     Firstly, the characteristics of the three-dimensional flow driven by the rotation ofcrucible and crystal are investigated by numerical simulation. Results show that whenthe rotation Reynolds number is small, the basic flow is axisymmetric and steady.However, when the rotation Reynolds number exceeds a critical value, the flow willundergo a transition to a three-dimensional oscillatory flow, which is characterized bythe velocity fluctuation waves travelling in the azimuthal direction. The propagatingdirection and velocity of the waves, as well as the wave number, are dependent on therotation rate and directions of the crucible and crystal. When the crystal counter rotateswith crucible, the mechanism of the flow transition is the shear instability. In the shallow Cz configuration, when the crystal rotates only or co-rotates with crucible, theelliptic instability is responsible for the flow transition. However, in the deepconfiguration, when the crystal co-rotates with crucible, the flow instability is ellipticinstability, and centrifugal instability is the origin of the flow transition for the case ofcrystal rotation only. In addition, the characteristics of flow also show an importantdependence on the radius ratio. Various polygonal flow patterns are presented atdifferent radius ratio.
     Secondly, the fundamental characteristics of the three-dimensional flow of lowPrandtl number fluid induced by crucible and/or crystal rotation and the surface tensiongradient during Czochralski crystal growth process are investigated through a series ofunsteady three-dimensional numerical simulations. The results indicate that the criticalthermocapillary Reynolds number varies with the rotation of crucible and crystal. Whenthe crucible rotates only, the critical thermocapillaty Reynolds number, ReT,c, decreasesfirst and then increases with the increase of Rec. If the crystal co-rotates with crucible,the ReT,cincreases with the increase of Rec, and the higher Resresults in a lower ReT,catthe same Rec. In particular, when the crystal counter-rotates with the crucible, threedifferent flow states are observed and mapped with different ReT. If the rotation-inducedflow is strong, the flow field is already located in the unstable state, as the increasinginfluence of the thermocapillary force, the flow strength is weakened, and the3-Dunsteady flow will transit to stable state. If ReTincreases further, the flow driven by thethermocapillary force is dominant and will lose its stability again, and then transit toanother unstable state.
     In addition, the flow driven by the coupled buoyancy and thermocapillary forces,Coriolis and centrifugal forces are discussed. It is indicated that the effect of buoyancyforce can instabilize the flow. For a high ReT, the thermocapillary-buoyancy convectionis dominant, thus the origin of the flow instability is Rayleigh-Bénard instability. Whenthe effects of the driving forces are comparable, the mechanism of the flow transitionhas been proved to be the baroclinic instability.
     Furthermore, the combined effects of temperature gradient and counter rotation ofcrucible and crystal on the flow instability in a liquid-encapsulated Czochralskiconfiguration are investigated through a series of direct numerical simulations. Resultsshow that when the ReTexceeds a threshold value, the unsteady multi-cellular structuresare developed. The oscillatory flow behaves as fluctuation waves propagating from thecrystal/fluid interface to the crucible sidewall. The amplitudes of the velocity and temperature fluctuations decrease with the increase of crystal rotation rate, but increasewith the crucible rotation rate. The critical conditions for the onset of flow instabilityare obtained. The stability diagram indicates that the rotation of crucible has adestabilizing effect on the flow, but the crystal rotation can depress the flow instabilitywhen the crystal rotation Reynolds number exceeds a certain value.
     Finally, the temperature filed of the complex flow in the Cz configuration isinvestigated experimentally by schlieren technique. For the shallow liquid layer, thetemperature disturbance pattern on the free surface is characterized by the curvedspokes. For the different temperature difference, two groups of hydrothermal waveswith different wave numbers are travelling in the opposite directions, especially for thecase of small radius ratio configuration, the typical Bénard cells are observed. When thedepth of liquid layer locates in the range of5~8mm, with the increase of temperaturedifference, the temperature disturbance transits from the straight spoke pattern to the"flower bud typed" pattern. When the depth is greater than8mm, the temperature profileon the surface is represented as striated pattern. In addition, the rotation of crucible hasmore serious inhibition to the flow instability with the higher depth.
引文
[1] Kakimoto K, Imaishi N, Convective instability in crystal growth[J]. Annual Review of HeatTransfer,2002,12(12):187-221.
    [2] Schwabe D, Buoyant-thermocapillary and pure thermocapillary convective instabilities inCzochralski systems[J]. Journal of Crystal Growth,2002,237–239:1849-1853.
    [3]胡文瑞,徐硕昌,微重力流体力学[M].北京:科学出版社,1999.
    [4] Li Y R, Imaishi N, Peng L, Wu S Y, Hibiya T, Thermocapillary flow in a shallow moltensilicon pool with Czochralski configuration[J]. Journal of Crystal Growth,2004,266(1–3):88-95.
    [5] Li Y R, Quan X J, Peng L, Imaishi N, Wu S Y, Zeng D L, Three-dimensional thermocapillary-buoyancy flow in a shallow molten silicon pool with Cz configuration[J]. InternationalJournal of Heat and Mass Transfer,2005,48(10):1952-1960.
    [6] Custer J S, Polman A, Van Pinxteren H M, Erbium in crystal silicon: Segregation and trappingduring solid phase epitaxy of amorphous silicon[J]. Journal of Applied Physics,1994,75(6):2809.
    [7] Greenspan H P, The theory of rotating fluids[M]. London: Cambridge university press,1969.
    [8] Lappa M, Rotating Thermal Flows in Natural and Industrial Processes[M]. New York:JohnWiley&Sons,2012.
    [9] Noir J, Cebron D, Le Bars M, Sauret A, Aurnou J M, Experimental study of libration-drivenzonal flows in non-axisymmetric containers[J]. Physics of the Earth and Planetary Interiors,2012,204:1-10.
    [10] Hewitt R E, Hazel A L, Clarke R J, Denier J P, Unsteady flow in a rotating torus after asudden change in rotation rate[J]. Journal of Fluid Mechanics,2011,688:88-119.
    [11] Zandbergen P J, Dijkstra D, Von Kármán swirling flows[J]. Annual Review of FluidMechchanics,1987,19:465-491.
    [12] Lilly D K, On the instability of Ekman boundary layer flow [J]. Journal of the AtmosphericSciences,1966,23(5):17-33.
    [13] Gauthier G, Gondret P, Moisy F, Rabaud M, Instabilities in the flow between co-andcounter-rotating disks[J]. Journal of Fluid Mechanics,2002,473:1-21.
    [14] Gauthier G, Gondret P, Rabaud M, Axisymmetric propagating vortices in the flow between astationary and a rotating disk enclosed by a cylinder[J]. Journal of Fluid Mechanics,1999,386:105-126.
    [15] Humphrey J A C, Gor D, Experimental-observations of an unsteady detached shear-layer inenclosed corotating disk flow[J]. Physics of Fluids,1993,5(10):2438-2442.
    [16] Wu S C, Tsai Y S, Chang Y M, Chen Y M, Typical flow between enclosed corotating disksand its dependence on Reynolds number[J]. Journal of Chinese Institute of Engineers,2006,29(5):841-850.
    [17] Jarre S, LeGal P, Chauve M P, Experimental study of rotating disk flow instability.2. Forcedflow[J]. Physics of Fluids,1996,8(11):2985-2994.
    [18] Jarre S, LeGal P, Chauve M P, Experimental study of rotating disk instability.1. Naturalflow[J]. Physics of Fluids,1996,8(2):496-508.
    [19] Lingwood R J, An experimental study of absolute instability of the rotating-disk boundary-layer flow[J]. Journal of Fluid Mechanics,1996,314:373-405.
    [20] Lopez J M, Flow between a stationary and a rotating disk shrouded by a co-rotatingcylinder[J]. Physics of Fluids,1996,8(10):2605-2613.
    [21] Mizushima J, Sugihara G, Miura T, Two modes of oscillatory instability in the flow between apair of corotating disks[J]. Physics of Fluids,2009,21(1):014101.
    [22] Poncet S, Serre E, Le Gal P, Revisiting the two first instabilities of the flow in an annularrotor-stator cavity[J]. Physics of Fluids,2009,21(6):064106.
    [23] Savas, Circular waves on a stationary disk in rotating flow[J]. Physics of Fluids,1983,26(12):3445-3448.
    [24] Schouveiler L, Le Gal P, Chauve M P, Stability of a traveling roll system in a rotating diskflow[J]. Physics of Fluids,1998,10(11):2695-2697.
    [25] Schouveiler L, Le Gal P, Chauve M P, Instabilities of the flow between a rotating and astationary disk[J]. Journal of Fluid Mechanics,2001,443:329-350.
    [26] Schouveiler L, Le Gal P, Chauve M P, Takeda Y, Spiral and circular waves in the flowbetween a rotating and a stationary disk[J]. Experiments in Fluids,1999,26(3):179-187.
    [27] Schouveiler L, LeGal P, Chauve M P, Takeda Y, Experimental study of the stability of theflow between a rotating and a stationary disk[J]. Advances in Turbulences VI,1996,36:385-388.
    [28] Serre E, Bontoux P, Vortex breakdown in a cylinder with a rotating bottom and a flatstress-free surface[J]. International Journal of Heat and Fluid Flow,2007,28(2):229-248.
    [29] Serre E, del Arco E C, Bontoux P, Annular and spiral patterns in flows between rotating andstationary discs[J]. Journal of Fluid Mechanics,2001,434:65-100.
    [30] Serre E, Tuliszka-Sznitko E, Bontoux P, Coupled numerical and theoretical study of the flowtransition between a rotating and a stationary disk[J]. Physics of Fluids,2004,16(3):688-706.
    [31] San’kov P I, Smirnov E M, Stability of viscous flow between rotating and stationary disks[J].Fluid Dynamics,1991,26(6):857-864.
    [32] Lopez J M, Weidman P D, Stability of stationary endwall boundary layers duringspin-down[J]. Journal of Fluid Mechanics,1996,326:373-398.
    [33] Gelfgat A Y, BarYoseph P Z, Solan A, Stability of confined swirling flow with and withoutvortex breakdown[J]. Journal of Fluid Mechanics,1996,311:1-36.
    [34] Gelfgat A Y, BarYoseph P Z, Solan A, Steady states and oscillatory instability of swirling flowin a cylinder with rotating top and bottom[J]. Physics of Fluids,1996,8(10):2614-2625.
    [35] Spohn A, Mory M, Hopfinger E J, Experiments on vortex breakdown in a confined flowgenerated by a rotating disc[J]. Journal of Fluid Mechanics,1998,370:73-99.
    [36] Stevens J L, Lopez J M, Cantwell B J, Oscillatory flow states in an enclosed cylinder with arotating endwall[J]. Journal of Fluid Mechanics,1999,389:101-118.
    [37] Gelfgat A Y, Bar-Yoseph P Z, Solan A, Three-dimensional instability of axisymmetric flow ina rotating lid-cylinder enclosure[J]. Journal of Fluid Mechanics,2001,438:363-377.
    [38] S rensen J N, Naumov I V, Okulov V L, Multiple helical modes of vortex breakdown[J].Journal of Fluid Mechanics,2011,683:430-441.
    [39] Naumov I V, Okulov V L, S rensen J N, Diagnostics of spatial structure of vortex multipletsin a swirl flow[J]. Thermophysics and Aeromechanics,2010,17(4):551-558.
    [40] Lopez J M, Marques F, Instabilities and inertial waves generated in a librating cylinder[J].Journal of Fluid Mechanics,2011,687:171-193.
    [41] Lopez J M, Rotating and modulated rotating waves in transitions of an enclosed swirlingflow[J]. Journal of Fluid Mechanics,2006,553:323-346.
    [42] S rensen J N, Naumov I, Mikkelsen R, Experimental investigation of three-dimensional flowinstabilities in a rotating lid-driven cavity[J]. Experiments in Fluids,2006,41(3):425-440.
    [43] Okulov V L, Naumov I V, S rensen J N, Self-organized vortex multiplets in swirling flow[J].Technical Physics Letters,2008,34(8):675-678.
    [44] S rensen J N, Gelfgat A Y, Naumov I V, Mikkelsen R F, Experimental and numerical resultson three-dimensional instabilities in a rotating disk-tall cylinder flow[J]. Physics of Fluids,2009,21(5):054102.
    [45] Lopez J M, Three-dimensional swirling flows in a tall cylinder driven by a rotating endwall[J].Physics of Fluids,2012,24(1):014101.
    [46] Br ns M, Voigt L K, S rensen J N, Topology of vortex breakdown bubbles in a cylinder witha rotating bottom and a free surface[J]. Journal of Fluid Mechanics,2001,428:133-148.
    [47] Lo Jacono D, Nazarinia M, Br ns M, Experimental vortex breakdown topology in a cylinderwith a free surface[J]. Physics of Fluids,2009,21(11):111704.
    [48] Cogan S J, Ryan K, Sheard G J, Symmetry breaking and instability mechanisms in mediumdepth torsionally driven open cylinder flows[J]. Journal of Fluid Mechanics,2011,672:521-544.
    [49] Drazin P G, Reid W H, Hydrodynamic stability[M]. London: Cambridge Univrsity Press,1981.
    [50] Andereck C D, Liu S S, Swinney H L, Flow regimes in a circular couette system withindependently rotating cylinders[J]. Journal of Fluid Mechanics,1986,164:155-183.
    [51] Pfister G, Schulz A, Lensch B, Bifurcations and a route to chaos of an one-vortex-state intaylor-couette flow[J]. European Journal of Mechanics B-Fluids,1991,10(2):247-252.
    [52] Marques F, Lopez J M, Onset of three-dimensional unsteady states in small-aspect-ratioTaylor-Couette flow[J]. Journal of Fluid Mechanics,2006,561:255-277.
    [53] Abshagen J, Heise M, Hoffmann C, Pfister G, Direction reversal of a rotating wave inTaylor-Couette flow[J]. Journal of Fluid Mechanics,2008,607:199-208.
    [54] Dutcher C S, Müller S J, Spatio-temporal mode dynamics and higher order transitions in highaspect ratio Newtonian Taylor-Couette flows[J]. Journal of Fluid Mechanics,2009,641:85-113.
    [55] Kanda I, A laboratory study of two-dimensional and three-dimensional instabilities in aquasi-two-dimensional flow driven by differential rotation of a cylindrical tank and a disc onthe free surface[J]. Physics of Fluids,2004,16(9):3325-3340.
    [56] Mununga L, Hourigan K, Thompson M C, Leweke T, Confined flow vortex breakdowncontrol using a small rotating disk[J]. Physics of Fluids,2004,16(12):4750-4753.
    [57] Tan B T, Liow K Y S, Mununga L, Thompson M C, Hourigan K, Simulation of the control ofvortex breakdown in a closed cylinder using a small rotating disk[J]. Physics of Fluids,2009,21(2):024104.
    [58] Munakata T, Tanasawa I, Onset of oscillatory flow in a Czochralski growth melt and itssuppression by magnetic field[J]. Journal of Crystal Growth,1990,106(4):566-576.
    [59] Ozoe H, Toh K, Inoue T, Transition mechanism of flow modes in Czochralski convection[J].Journal of Crystal Growth,1991,110(3):472-480.
    [60] Kishida Y, Tanaka M, Esaka H, Appearance of a baroclinic wave in Czochralski siliconmelt[J]. Journal of Crystal Growth,1993,130(1-2):75-84.
    [61] Tokuhiro A, Takeda Y, Measurement of flow phenomena using the ultrasonic velocity profilemethod in a simulated Czochralski crystal puller[J]. Journal of Crystal Growth,1993,130(3-4):421-432.
    [62] Seidl A, McCord G, Müller G, Leister H J, Experimental observation and numericalsimulation of wave patterns in a Czochralski silicon melt[J]. Journal of Crystal Growth,1994,137(3-4):326-334.
    [63] Miyano T, Inami S, Shintani A, Kanda T, Hourai M, Dynamical behaviour of Czochralskimelts and its influence on crystal growth[J]. Journal of Crystal Growth,1996,166(1-4):469-475.
    [64] Togawa S, Chung S I, Kawanishi S, Izunome K, Terashima K, Kimura S, Density anomalyeffect upon silicon melt flow during Czochralski crystal growth I. Under the growthinterface[J]. Journal of Crystal Growth,1996,160(1-2):41-48.
    [65] Togawa S, Chung S I, Kawanishi S, Izunome K, Terashima K, Kimura S, Density anomalyeffect upon silicon melt flow during Czochralski crystal growth II. Time-topical flow structureunder the growth interface[J]. Journal of Crystal Growth,1996,160(1-2):49-54.
    [66] Choi J I, Kim S, Sung H J, Nakano A, Koyama H S, Transition flow modes in Czochralskiconvection[J]. Journal of Crystal Growth,1997,180(2):305-314.
    [67] Choi J I, Sung H J, Suppression of temperature oscillation in Czochralski convection bysuperimposing rotating flows[J]. International Journal of Heat and Mass Transfer,1997,40(7):1667-1675.
    [68] Lee Y S, Chun C H, Experiments on the oscillatory convection of low Prandtl number liquidin Czochralski configuration for crystal growth with cusp magnetic field[J]. Journal of CrystalGrowth,1997,180(3-4):477-486.
    [69] Lee Y S, Chun C H, Experiments on the oscillatory convection of low Prandtl number liquidin Czochralski crystal growth under an axial magnetic field[J]. Journal of Crystal Growth,1999,198-199(1):147-153.
    [70] Lee Y S, Chun C H, Effects of axial magnetic field on the oscillatory convection coupled withcrucible rotation in Czochralski crystal growth[J]. Advances in Space Research,1999,24(10):1375-1378.
    [71] Hintz P, Schwabe D, Convection in a Czochralski crucible–Part2: rotating crystal[J]. Journalof Crystal Growth,2001,222(1-2):356-364.
    [72] Hintz P, Schwabe D, Wilke H, Convection in a Czochralski crucible–Part1: non-rotatingcrystal[J]. Journal of Crystal Growth,2001,222(1-2):343-355.
    [73] Schwabe D, Sumathi R R, Wilke H, An experimental and numerical effort to simulate theinterface deflection of YAG[J]. Journal of Crystal Growth,2004,265(3-4):440-452.
    [74] Suzuki T, Temperature fluctuations in a LiNbO3melt during crystal growth[J]. Journal ofCrystal Growth,2004,270(3-4):511-516.
    [75] Schwabe D, Sumathi R R, An intermittent transition to chaotic flow by crystal rotation duringCzochralski growth[J]. Journal of Crystal Growth,2005,275(1-2): e15-e19.
    [76] Son S S, Yi K W, Experimental study on the effect of crystal and crucible rotations on thethermal and velocity field in a low Prandtl number melt in a large crucible[J]. Journal ofCrystal Growth,2005,275(1-2): e249-e257.
    [77] Son S S, Yi K W, Characteristics of thermal fluctuation in a low Pr number melt at a largecrucible for Czochralski crystal growth method[J]. Journal of Crystal Growth,2005,275(1-2):e259-e264.
    [78] Hibiya T. A T, Sumiji M., Nakamura S., Interfacial Fluid Dynamics and Transport Process[M].New York: Springer,131-155,2003.
    [79] Brandle C D, Simulation of fluid flow in Gd3Ga5O12melts[J]. Journal of Crystal Growth,1977,42(0):400-404.
    [80] Jones A D W, An experimental model of the flow in Czochralski growth[J]. Journal of CrystalGrowth,1983,61(2):235-244.
    [81] Jones A D W, Spoke patterns[J]. Journal of Crystal Growth,1983,63(1):70-76.
    [82] Jones A D W, Flow in a model Czochralski oxide melt[J]. Journal of Crystal Growth,1989,94(2):421-432.
    [83] Nakamura S, Eguchi M, Azami T, Hibiya T, Thermal waves of a nonaxisymmetric flow in aCzochralski-type silicon melt[J]. Journal of Crystal Growth,1999,207(1–2):55-61.
    [84] Tanaka M, Hasebe M, Saito N, Pattern transition of temperature distribution at Czochralskisilicon melt surface[J]. Journal of Crystal Growth,1997,180(3-4):487-496.
    [85] Whiffin P A C, Bruton T M, Brice J C, Simulated rotational instabilities in molten bismuthsilicon oxide[J]. Journal of Crystal Growth,1976,32(2):205-210.
    [86] Lee Y S, Chun C H, Effects of a cusp magnetic field on the oscillatory convection coupledwith crucible rotation in Czochralski crystal growth[J]. Journal of Crystal Growth,1999,197(1-2):307-316.
    [87] Rappl P H O, Matteo Ferraz L F, Scheel H J, Barros M R X, Schiel D, Hydrodynamicsimulation of forced convection in Czochralski melts[J]. Journal of Crystal Growth,1984,70(1-2):49-55.
    [88] Kakimoto K, Eguchi M, Watanabe H, Hibiya T, Natural and forced convection of moltensilicon during Czochralski single crystal growth[J]. Journal of Crystal Growth,1989,94(2):412-420.
    [89] Kakimoto K, Eguchi M, Watanabe H, Hibiya T, Flow instability of molten silicon in theCzochralski configuration[J]. Journal of Crystal Growth,1990,102(1-2):16-20.
    [90] Koichi K, Masahito W, Minoru E, Taketoshi H, The Coriolis force effect on molten siliconconvection in a rotating crucible[J]. International Journal of Heat and Mass Transfer,1992,35(10):2551-2555.
    [91] Watanabe M, Eguchi M, Kakimoto K, Baros Y, Hibiya T, The baroclinic flow instability inrotating silicon melt[J]. Journal of Crystal Growth,1993,128(1-4):288-292.
    [92] Yi K W, Kakimoto K, Eguchi M, Watanabe M, Shyo T, Hibiya T, Spoke patterns on moltensilicon in Czochralski system[J]. Journal of Crystal Growth,1994,144(1-2):20-28.
    [93] Gorbunov L, Klyukin A, Pedchenko A, Feodorov A, Melt flow instability and vortexstructures in Czochralski growth under steady magnetic fields[J]. Energy Conversion andManagement,2002,43(3):317-326.
    [94] Nam P O, Yi K W, Simulation of the thermal fluctuation according to the melt height in a CZgrowth system[J]. Journal of Crystal Growth,2010,312(8):1453-1457.
    [95] Nam P O, Son S S, Yi K W, The effect of polycrystalline rod insertion in a low Prandtlnumber melt for continuous Czochralski system[J]. Journal of Crystal Growth,2010,312(8):1458-1462.
    [96] Fein J S, Pfeffer R L, Experimental-study of effects of Prandtl number on thermal convectionin a rotating, differentially heated cylindrical annulus of fluids[J]. Journal of Fluid Mechanics,1976,75(13):81-112.
    [97] Lee Y S, Chun C H, Prandtl number effect on traveling thermal waves occurring inCzochralski crystal growth[J]. Advances in Space Research,1999,24(10):1403-1407.
    [98] Son S S, Nam P O, Yi K W, The effect of crystal rotation direction on the thermal and velocityfields of a Czochralski system with a low Prandtl number melt[J]. Journal of Crystal Growth,2006,292(2):272-281.
    [99] Smith M K, Davis S H, Instabilities of dynamic thermocapillary liquid layers.1. convectiveinstabilities[J]. Journal of Fluid Mechanics,1983,132:119-144.
    [100] Smith M K, Davis S H, Instabilities of dynamic thermocapillary liquid layers.2. surface-wave instabilities[J]. Journal of Fluid Mechanics,1983,132:145-162.
    [101] Smith M K, Instability mechanisms in dynamic thermocapillary liquid layers[J]. Physics ofFluids,1986,29(10):3182-3186.
    [102] Laure P, Roux B, Synthesis of the results obtained by a stability analysis of the convectivemotions in a horizontal cavity of large extent[J]. Comptes rendus de l'Académie dessciences,1987,305(13):1137-1143.
    [103] Laure P, Roux B, Linear and non-linear analysis of the Hadley Circulation[J]. Journal ofCrystal Growth,1989,97(1):226-234.
    [104] Roux B, Benhadid H, Laure P, Numerical-simulation of oscillatory convection insemiconductor melts[J]. Journal of Crystal Growth,1989,97(1):201-216.
    [105] Roux B, Benhadid H, Laure P, Hydrodynamical regimes in metallic melts subject to ahorizontal temperature-gradient[J]. European Journal of Mechanics B-Fluids,1989,8(5):375-396.
    [106] Laure P, Roux B, Benhadid H, Nonlinear study of the flow in a long rectangular cavitysubjected to thermocapillary effect[J]. Physics of Fluids A-Fluid Dynamics,1990,2(4):516-524.
    [107] Benz S, Hintz P, Riley R J, Neitzel G P, Instability of thermocapillary-buoyancy convection inshallow layers. Part2. Suppression of hydrothermal waves[J]. Journal of Fluid Mechanics,1998,359:165-180.
    [108] Riley R J, Neitzel G P, Instability of thermocapillary-buoyancy convection in shallow layers.Part1. Characterization of steady and oscillatory instabilities[J]. Journal of Fluid Mechanics,1998,359:143-164.
    [109] Garnier N, Normand C, Effects of curvature on hydrothermal waves instability of radialthermocapillary flows[J]. Comptes Rendus De L Academie Des Sciences Serie Iv PhysiqueAstrophysique,2001,2(8):1227-1233.
    [110] Zebib A, Thermocapillary instabilities with system rotation[J]. Physics of Fluids,1996,8(12):3209-3211.
    [111] Le Cunff C, Zebib A, Thermocapillary-Coriolis instabilities in liquid bridges[J]. Physics ofFluids,1999,11(9):2539-2545.
    [112] Shi W Y, Ermakov M K, Imaishi N, Effect of pool rotation on thermocapillary convection inshallow annular pool of silicone oil[J]. Journal of Crystal Growth,2006,294(2):474-485.
    [113] Shi W Y, Li Y R, Ermakov M K, Imaishi N, Stability of Thermocapillary Convection inRotating Shallow Annular Pool of Silicon Melt[J]. Microgravity Science and Technology,2010,22(3):315-320.
    [114] Gelfgat A Y, Three-dimensional stability calculations for hydrodynamic model of Czochralskigrowth[J]. Journal of Crystal Growth,2007,303(1):226-230.
    [115]李友荣,刘玉珊,石万元,环形液池内低Pr数流体热毛细对流的线性稳定性[J].重庆大学学报,2009,32(12):1403-1407.
    [116] Li Y R, Liu Y S, Shi W Y, Peng L, Stability of Thermocapillary Convection in Annular Poolswith Low Prandtl Number Fluid[J]. Microgravity Science and Technology,2009,21(1):283-287.
    [117]石万元,李友荣,彭岚, Pr数对环形浅液池热毛细对流的影响[J].工程热物理学报,2011,32(2):250-254.
    [118] Shi W, Liu X, Li G, Li Y-R, Peng L, Ermakov M K, Imaishi N, Thermocapillary ConvectionInstability in Shallow Annular Pools by Linear Stability Analysis[J]. Journal ofSuperconductivity and Novel Magnetism,2010,23(6):1185-1188.
    [119] Li Y R, Wang S C, Wu C M, Steady thermocapillary-buoyant convection in a shallow annularpool. Part1: Single layer fluid[J]. Acta Mechanica Sinica,2011,27(3):360-370.
    [120] Rojo J C, Derby J J, On the formation of rotational spoke patterns during the Czochralskigrowth of bismuth silicon oxide[J]. Journal of Crystal Growth,1999,198-199, Part1:154-160.
    [121] Sim B C, Zebib A, Effect of free surface heat loss and rotation on transition to oscillatorythermocapillary convection[J]. Physics of Fluids,2002,14(1):225-231.
    [122] Derby J J, Xiao Q, Some effects of crystal rotation on large-scale Czochralski oxide growth:analysis via a hydrodynamic thermal-capillary model[J]. Journal of Crystal Growth,1991,113(3-4):575-586.
    [123] Gelfgat A Y, Rubinov A, Bar-Yoseph P Z, Solan A, Numerical study of three-dimensionalinstabilities in a hydrodynamic model of Czochralski growth[J]. Journal of Crystal Growth,2005,275(1-2): e7-e13.
    [124] Zeng Z, Chen J, Mizuseki H, Shimamura K, Fukuda T, Kawazoe Y, Three-dimensionaloscillatory convection of LiCaAlF6melts in Czochralski crystal growth[J]. Journal of CrystalGrowth,2003,252(4):538-549.
    [125] Li Y R, Peng L, Wu S Y, Shi W Y, Effect of crystal rotation on thermocapillary flow in ashallow molten silicon pool[J]. Microgravity Science and Technology,2007,19(3-4):163-164.
    [126] Liu L, Kakimoto K,3D global analysis of Cz–Si growth in a transverse magnetic field withvarious crystal growth rates[J]. Journal of Crystal Growth,2005,275(1-2): e1521-e1526.
    [127] Liu L, Kakimoto K, Effects of crystal rotation rate on the melt–crystal interface of a Cz-Sicrystal growth in a transverse magnetic field[J]. Journal of Crystal Growth,2008,310(2):306-312.
    [128] Nam P O, O S K, Yi K W,3-D time-dependent numerical model of flow patterns within alarge-scale Czochralski system[J]. Journal of Crystal Growth,2008,310(7-9):2126-2133.
    [129] Gunzburger M, Ozugurlu E, Turner J, Zhang H, Controlling transport phenomena in theCzochralski crystal growth process[J]. Journal of Crystal Growth,2002,234(1):47-62.
    [130] Jing C J, Imaishi N, Sato T, Miyazawa Y, Three-dimensional numerical simulation of oxidemelt flow in Czochralski configuration[J]. Journal of Crystal Growth,2000,216(1-4):372-388.
    [131] Jing C J, Tsukada T, Hozawa M, Shimamura K, Ichinose N, Shishido T, Numerical studies ofwave pattern in an oxide melt in the Czochralski crystal growth[J]. Journal of Crystal Growth,2004,265(3-4):505-517.
    [132] Kumar V, Basu B, Enger S, Brenner G, Durst F, Role of Marangoni convection inSi–Czochralski melts. Part II:3D predictions with crystal rotation[J]. Journal of CrystalGrowth,2003,255(1-2):27-39.
    [133] Li Y R, Xiao L, Wu S Y, Imaishi N, Effect of pool rotation on flow pattern transition of siliconmelt thermocapillary flow in a slowly rotating shallow annular pool[J]. International Journalof Heat and Mass Transfer,2008,51(7-8):1810-1817.
    [134] Shi W Y, Imaishi N, Hydrothermal waves in differentially heated shallow annular pools ofsilicone oil[J]. Journal of Crystal Growth,2006,290(1):280-291.
    [135] Peng L, Li Y R, Shi W Y, Imaishi N, Three-dimensional thermocapillary-buoyancy flow ofsilicone oil in a differentially heated annular pool[J]. International Journal of Heat and MassTransfer,2007,50(5-6):872-880.
    [136] Villers D, Platten J K, Thermal convection in superposed immiscible liquid layers[J]. AppliedScientific Research,1988,45(2):145-152.
    [137] Prakash A, Peltier L, J., Fujita D, Convection in a two-layer fluid system[J]. AIAA paper,1991,91-0313.
    [138]胡良,刘秋生,刘方,张璞,姚永龙,实践五号卫星两层流体Marangoni对流和热毛细对流研究[J].中国空间科学学会实践五号卫星空间探测与试验成果学术会议论文集,2002:84-90.
    [139] Someya S, Munakata T, Nishio M, Flow observation in two immiscible liquid layers subjectto a horizontal temperature gradient[J]. Journal of Crystal Growth,2002,235:626-632.
    [140]张嘉锋,周炳红,康琦,胡良,刘秋生,两层不混溶液体中Bénard-Marangoni对流的实验研究[J].第五届全国流动显示学术会议论文集,2002:260-266.
    [141] Simanovskii I, Georis P, Nepomnyashchy A, Legros J C, Oscillatory instability in multilayersystems[J]. Physics of Fluids,2003,15(12):3867-3870.
    [142] Doi T, Koster J N, Thermocapillary convection in2immiscible liquid layers withfree-surface[J]. Physics of Fluids A-Fluid Dynamics,1993,5(8):1914-1927.
    [143] Madruga S, Perez-Garcia C, Lebon G, Convective instabilities in two superposed horizontalliquid layers heated laterally[J]. Physical Review E,2003,68(4):041607.
    [144] Madruga C, Pérez-garcía G L, Instability in two-layers subject to a horizontal temperaturegradient[J]. Theoretical and computational fluid dynamics,2004,18:277-284.
    [145] Li Y R, Wang S C, Wu S Y, Peng L, Asymptotic solution of thermocapillary convection inthin annular two-layer system with upper free surface[J]. International Journal of Heat andMass Transfer,2009,52(21-22):4769-4777.
    [146] Li Y R, Zhang W J, Peng L, Wu S Y, Thermal Convection in an Annular Two-Layer SystemUnder Combined Action of Buoyancy and Thermocapillary Forces[J]. Journal ofSuperconductivity and Novel Magnetism,2010,23(6):1219-1223.
    [147] Li Y R, Wang S C, Wu C M, Steady thermocapillary-buoyant convection in a shallow annularpool. Part2: Two immiscible fluids[J]. Acta Mechanica Sinica,2011,27(5):636-648.
    [148]莫东鸣,环形双层液池内热毛细对流的线性稳定性分析[D].重庆:重庆大学,2012.
    [149] Liu Q S, Chen G, Roux B, Thermogravitational and thermocapillary convection in a cavitycontaining two superposed immiscible liquid layers[J]. International Journal of Heat and MassTransfer,1993,36(1):101-117.
    [150] Nepomnyashchy A A, Simanovskii I B, Combined action of anticonvective andthermocapillary mechanisms of instability[J]. Physics of Fluids,2002,14(11):3855-3867.
    [151] Nepomnyashchy A A, Simanovskii I B, Influence of buoyancy on thermocapillary oscillationsin a two-layer system[J]. Physical Review E,2003,68(2):026301.
    [152] Nepomnyashchy A A, Simanovskii I B, Convective flows in a two-layer system with atemperature gradient along the interface[J]. Physics of Fluids,2006,18(3):032105.
    [153] Gupta N R, Haj-Hariri H, Borhan A, Thermocapillary flow in double-layer fluid structures:An effective single-layer model[J]. Journal of Colloid and Interface Science,2006,293(1):158-171.
    [154] Gupta N R, Haj-Hariri H, Borhan A, Thermocapillary convection in double-layer fluidstructures within a two-dimensional open cavity[J]. Journal of Colloid and Interface Science,2007,315(1):237-247.
    [155] Li Y R, Zhang W J, Wang S C, Two-Dimensional Numerical Simulation of ThermocapillaryConvection in Annular Two-Layer System[J]. Microgravity Science and Technology,2008,20(3-4):313-317.
    [156] Li Y R, Zhang W J, Wu C M, Thermocapillary-Buoyancy Convection in Annular Two-layerSystem with a Radial Temperature Gradient[J]. Microgravity Science and Technology,2011,23(1):9-14.
    [157]周小明,黄护林,大尺度环形液池中双层热毛细对流不稳定性[J].工程热物理学报,2011,32(7):1195-1198.
    [158] Fontaine J P, Randriamampianina A, Bontoux P, Numerical-simulation of flow structures andinstabilities occurring in a liquid-encapsulated czochralski process[J]. Physics of FluidsA-Fluid Dynamics,1991,3(10):2310-2331.
    [159] Koai K, Seidl A, Leister H J, Müller G, K hler A, Modelling of thermal fluid flow in theliquid encapsulated Czochralski process and comparison with experiments[J]. Journal ofCrystal Growth,1994,137(1-2):41-47.
    [160] Faiez R, Asadian M, Modeling of convective interactions and crystallization front shape inGaAs/LEC growth process[J]. Journal of Crystal Growth,2009,311(3):688-694.
    [161]凌芳,开口圆形液池内热毛细对流及其失稳机理分析[D].重庆:重庆大学,2007.
    [162]张文杰,环形双层液体内热对流过程的二维数值模拟[D].重庆:重庆大学,2010.
    [163] Kerswell R R, Elliptical instability[J]. Annual Review of Fluid Mechanics,2002,34:83-113.
    [164] Crochet M J, Wouters P J, Geyling F T, Jordan A S, finite-element simulation of czochralskibulk flow[J]. Journal of Crystal Growth,1983,65(1-3):153-165.
    [165] Brandle C D, simulation of fluid-flow in Gd3GA5O12melts[J]. Journal of Crystal Growth,1977,42:400-404.
    [166] Vizman D, Eichler S, Friedrich J, Müller G, Three-dimensional modeling of melt flow andinterface shape in the industrial liquid-encapsulated Czochralski growth of GaAs[J]. Journalof Crystal Growth,2004,266(1-3):396-403.
    [167] J. B B, Three-dimensional instability of elliptic flow[J]. Physics Review Letter,1986,57(17):2160-2163.
    [168] Craft T, Iacovides H, Launder B, Zacharos A, Some swirling-flow challenges for turbulentCFD[J]. Flow Turbulence and Combustion,2008,80(4):419-434.
    [169]王瑜,石万元,旋转对环形浅液池热毛细对流稳定性影响的实验研究[J].中国工程热物理学会传热传质会议论文集,2012.
    [170] Bénard H, Les tourbillons cellulaires dans une nappe liquide [J]. Rev. Gén. Sci. Pures et appl.,1900,11:1261-1271&1309-1328.
    [171]曾丹苓,工程非平衡热力学[M]北京:科学出版社,1991.
    [172] Benz S, Schwabe D, The three-dimensional stationary instability in dynamic thermocapillaryshallow cavities[J]. Experiments in Fluids,2001,31(4):409-416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700