奶山羊乳腺血流量检测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
(目的)在反刍动物,很多需要获得有关乳汁合成同时测量乳腺吸收乳汁前体和它们在乳汁中成分的数据的研究,在这些研究中就需要测量乳腺血流量。目前泌乳反刍动物尤其是奶牛乳腺营养研究已成为动物营养研究中的热点,乳腺血流量是影响乳腺营养物质吸收、摄取和利用的关键因素之一,因此乳腺血流量的准确测定也具有切实的理论和实践意义。要深入乳汁的合成与分泌的生理生化上的研究,就要重新强调需要在有意识的动物上有一个准确可靠的方法来测量血流量。根据计量的原理,现在的流量计量手段分为容积法和速度法两类。本文使用的Transit-time超声血流量计测得的是容量流量。血流量测量方法有多种,包括连续热稀释法、安替比林吸收法、电磁感应法、多谱勒超声法、Transit-time超声血流量计法等。利用Transit-time超声血流量计是一种有效准确可靠的方法。(方法)本文以奶山羊乳腺为研究对象,利用Transit-time超声血流量计对不同条件下乳腺血流量的检测及其准确性进行了评估。(结果)结果发现结扎阴部外静脉可防止阴部外静脉血逆流进入乳房并对血流量的影响不显著(P>0.05);营养对血流量影响缓慢而极显著(P<0.01);挤奶对血流量影响不显著(P>0.05),而躺卧能使血流量极显著增加(P<0.01);增加饲喂次数可以减小血流量的波动进而使检测更为准确,增加饲喂次数后乳腺血流量01:00到12:00逐渐降低之后逐渐升高,产奶量和血流量平均值也会趋于正相关,白天血流量一般比夜间低。(结论)由此可见,结扎阴部外静脉能有效防止阴部外静脉逆流且不影响乳腺血流量的检测;为保证检测结果的准确性,术后至少恢复一个月时间再进行乳腺血流量检测,以减小手术应激及疼痛等影响;营养对乳腺血流量有很大影响,当营养供给减少时,乳腺血流量可能会因为优先供给维持能量而减小并会在一天内出现显著下降;挤奶能引起奶山羊乳腺血流量的波动,但不显著;躺卧能极显著增加乳腺血流量,为得到准确的乳腺血流量必须保证在羊站立的姿势下进行检测;每天饲喂次数增加到12次时乳腺血流量从01:00到12:00逐渐降低之后逐渐升高,波动也小,产奶量和乳腺血流量平均值趋于正相关,结果更为准确;饲喂次数减小到每天三次时,6:00和18:00饲喂后2~3小时后乳腺血流量到达峰值,而中午12时的表现不明显,血流量变化无规律可循,在这种情况下不易检测到准确的乳腺血流量;在增加饲喂次数的条件下检测乳腺血流量会更为准确,缩短饲喂间隔时间有助于减小营养吸收对乳腺血流量的影响;本研究结果可以为泌乳反刍动物乳腺血流量检测标准的制定提供参考依据。
(Objective) In ruminants, quantitative data can be obtained regarding milk synthesis by simultaneously measuring mammary absorption of milk precursors and their appearance in milk components. In these types of experiments, measurement of the mammary blood flow is required. The mammary nutrition research in lactating ruminants, especially in dairy cows, has become a hot spot of animal nutrition research at present, and mammary blood flow is one of the key factors that affect the absorption, uptake and utilization of mammary nutrients, therefore, the accurate measurement of mammary blood flow has the theoretical and practical significance. Increasing interest in the physiology and biochemistry of milk synthesis and removal has reemphasized the need for an accurate and reliable method for measuring mammary blood flow in conscious animals. According to the principle of measurement, the present flow measurement methods are divided into two types of volumetric method and speed method. The Transit-time ultrasonic blood flow measurement used in this article is the capacity flow. There are many methods for measuring blood flow, including continuous thermodilution, antipyrine absorption method, electromagnetic induction method, Doppler ultrasound method, Transit-time ultrasonic blood flow meter method etcetera. Using Transit-time ultrasonic blood flow meter is an effective method for accurate and reliable. (Method) This article took the mammary gland of dairy goats as the object and the Transit-time ultrasonic blood flow meter was used to assess the measurement of mammary blood flow and the accuracy under different conditions. (Result) The results showed that external pudendal vein ligation could effectively prevent external pudendal vein blood refluxed into the mammary vein and did not affect the mammary blood flow (P>0.05); The effect of nutrition on mammary blood flow was slow but significant (P<0.01); Milking had little effect on mammary blood flow (P>0.05), but lying could increase mammary blood flow significantly (P<0.01); Increasing the feeding times could reduce mammary blood flow fluctuations and enhance the rate of accuracy of measuring mammary blood flow, the mammary blood flow was decreased gradually from 01:00 to 12:00 o'clock and then increased, at the same time the milk yield was in a positive correlation with the average of the blood flow; Blood flow during the day generally lower than during the night. (Conclusion) In conclusion, the external pudendal vein ligation can effectively prevent the blood flow measurement from inaccuracy; Nutrition has a great effect on the mammary blood flow, when the nutrient supply was decreased, mammary blood flow may be decreased significantly in one day because of the nutrition supplied to body's maintenance energy firstly; Milking can cause fluctuations in mammary blood flow of the dairy goats, but not significantly; Lying can increase blood flow significantly, in order to obtain the accurate mammary gland blood the goats should have to be measured in the standing postures; When the feeding times increased to 12 times in one day, the mammary blood flow reduced gradually from 01:00 to 12:00 and then increased gradually, the fluctuation is also small, the milk production and the mean value of mammary blood flow tends is being related, the result is more accurate; When the feeding times reduced to 3 times in one day, after feeding 2 to 3 hours at 6:00 and 18:00 the mammary blood flow arrives at the peak value, and the peak value is not significant after which at 12:00, there is no variation in the blood flow change, in this case it is not easy to measure mammary blood flow accurately; The measurement of mammary blood flow will be more accurate under the conditions of increasing the feeding times, reduce the feeding interval time can help to reduce the absorption nutrient effect on mammary blood flow; The results of this study can provides the reference for the standards of the measurement of the mammary blood flow on the lactating ruminant animals.
引文
王俊锋,李兵,李海燕等。真胃梯度酪蛋白钠灌注对奶山羊泌乳性能和乳腺组织氨基酸吸收利用的影响[J].动物营养学报,2007,19(4):333-343
    Altura B M. Chemical and humoral regulation of blood flow through the precapillary sphincter[J]. Microvase. Res, 1971. 3(4):361-84
    Altura B M. Humoral, hormonal, and myogenic mechanisms in microcirculatory regulation[J]. Microcirculation 1978. Page 431
    Amaral S L, Michelini L C. Validation of Transit-time Flowmetry for Chronic Measurements of Regional Blood Flow in Resting and Exercising Rats[J]. Brazilian Journal of Medical and Biological Research,1997,30:897-908
    Avasthi PS, Greene ER, Voyles WF, et al. A Comparisoim of echo-Doppler and eletrommanetic renal bold flow measurements[J]. J Ultrasound Med,1984,3:213-8
    Barnes R J, Comline R S, Dobson A, et al. An Implantable Transit-time Ultrasonic Blood Flow Meter. Journal of Physiology, 1983, 345:2-3.
    Barry J M, Bartley W, Linzell J L, and D S Robinson. The uptake from the blood of triglyceride fatty acids of chylomicrons and low density lipoproteins by the mammary gland of the goat[J]. Biochem. J, 1963, 89:6
    Beck N F, Tucker G H A, and Oxender W D. Mammary arterial and venous concentrations of prolactin in lactating cows after milking or administration of thyrotropin-releasing hormone or ergocryptine[J]. Endocrinology, 1979, 104:111
    Bednarik J A, May C N. Evaluation of a Transit-time System for the Chronic Measurement of Blood FLow in Conscious Sheep[J], Journal of Applied Physiology, 1995,78(2):524-530
    Bequette B J, Backwell F R C, Crompton L A. Current concepts of amino acid and protein metabolism in the Mammary Gland of the Lactating Ruminant[J]. Journal of DairyScience, 1998, 81: 2 540–2 559.
    Bequette B J, Kyle C E, Crompton L A, et al. Insulin regulates milk production and mammary gland and hind-leg amino acid fluxes and blood flow in lactating goats[J]. J. Dairy Sci, 2001. 84:241–255.
    Bernabe J, Rulquin H, Caudal J P, et al. Estimation du debit sanguine mammaire chez la vache laitie`re par la thermodilution[J]. Nutr. Dev, 1988. 28:205–206.
    Bland JM, Atlman DG. Statistical methods for assessing agreement between two methods of clinical measurement[J]. Lancet, 1986, 8:307-310
    Burkart DJ, Johnson CD, Morton MJ, et al. Volumetric flow rates in the portal venous system: measurement with cine phase-contrast MR imaging[J]. AJR, 1993,160:1113-1118
    Burvenich C, and G Peeters. Effect of intramammary infusion of colchicine on mammary blood flow in lactating goats[J]. Z. Tierphysiol. Tierernaehr. Futtermittelkd, 1980.44:211.
    Burvenich C, and Peeters G. Effect of prostaglandin synthetase inhibitors on mammary blood flow during experimentally induced mastitis in lactating goats[J]. Arch. Int. Pharmacodyn. Ther, 1982,258:128.
    Butron RG, Gorewit R. Ultrasonic flowmetry uses wide-beam transit-beam technique[J]. Med Electronics 1984,15(2):68-73
    Cant J P, and McBride B W. Mathematical analysis of the relationship between blood flow and uptake of nutrients in the mammary glands of a lactating cow[J]. J. Dairy Res, 1995. 62:405–422.
    Caruolo E V. Scanning electron microscope visualization of the mammary gland secretory unit and of myoepithelial cells[J]. J. Dairy Sci, 1980. 63:1987.
    Charbon G A, and F. Van der Mark. 1981. Use of electromagnetic flow meters for study of splanchnic blood flow. Measurement of blood flow. D. N. Granger and G. Bulkley, ed. Williams and Wilkins, Baltimore, MD.
    Chatwin A L, Linzell J L, and Setchell B P. Cardiovascular changes during lactation in the rat[J]. J. Endocrinol, 1969. 44:247
    Christensen K, Nielsen M O, and Jarlov N. The excretion of prostacyclin (PGI2) in milk and its possible role as a vasodilator in the mammary gland of goats[J]. Comp. Biochem. Physiol, 1989. 93A477.
    Christensen K, Nielsen MO, Bauer R. Evaluation of mammary blood flow measurements in lactating goats using the ultrasound Doppler principle[J]. Comp Biochem Physiol, 1989. 92(3): 385-392.
    Dauzat M, Layrargues GP. Portal vein blood flow measurements using pulsed Doppler and electromagnetic flowmetry in dogs: a comparative study[J]. Gastroenterology, 1989,96:913-919
    Davicco M J, Buffet J, Durand D, et al. Parathyroid hormone-related peptide may increase mammary blood flow[J]. J. Bone Miner. Res. 1993,8:15-19.
    DAVIS S R and COLLIER R J. Mammary Blood Flow and Regulation of Substrate Supply for Milk Synthesis[J] J Dairy Sci, 1985, 68:1 041-1 058
    Davis S R and Collier R J. Mammary blood flow and regulation of substrate supply f a milk symhesis[J]. J. Dairy Sci, 1985. 68:1041.
    Davis S R, and Bickerstaffe R. Mammary glucose uptake in the lactating ewe and the use of methionine arterio-venous difference for the calculation of mammary blood flow[J]. Aust. J. Biol. Sci, 1978. 31:133
    Davis S R, Farr V C, and Prosser C G. Dosedependent effects of oxytocin on the microcirculation in the mammary gland of the lactating rat. 1995. Page 267 in Intercellular Signalling in the Mammary Gland. C. J. Wilde, C. H. Knight, and M. Peaker, ed. Plenum Press, London, England.
    Davis S R. Collier R J, McNamara J P, et al. Effects of thyroxine and growth bormone treatment of dairy cows on milk yield, cardiac output, and mammary blood flow[J]. J.Anim. Sci, 1988. 66:70.
    Dawson T M, Bredt D S, Fotuhi M, et al. Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues[J]. Proc. Natl. Acad. Sci. USA, 1991. 88:7797.
    Deane CR, Besarab A, Ross R.et al. Hemodialysis access viability: study with sequential US volume flow measurements. Radiology[J], 1994,193(s):232
    Delamaire E and Guinard-Flament J. Increasing Milking Intervals Decreases the Mammary Blood Flow and Mammary Uptake of Nutrients in Dairy Cows[J]. Journal of Dairy Science, 2006, 89: 3 439–3 446.
    Dhondt G, Burvenich C, and Peeters G. Mammary blood flow during experimental Escbericbia coli endotoxin induced mastitis in goats and cows[J]. J. Dairy Res, 1977. 44:433.
    Dhondt G, Houvenaghel A, Peeters G, et al. Effect of prostaglandins F2a and E2 on milk ejection, blood pressure and blood flow through the mammary artery in the cow[J]. Prostaglandins, 1977. 13:1185.
    Dhondt G, Houvenaghel A, Peeters G, et al. Influence of vasoactive hormones on mammary arterial blood in lactating cows[J]. Arch. Int. Pharmacodyn, 1973. 201:195-196.
    Dobson A, Sellers A F, and Mcleod F D. Performance of a cuff-like blood flow-meter in vivo[J]. J. Appl. Physiol, 1966. 21:1642
    Drost C J, Thomas G G, and Sellers A F. 1979. In vivo validation of the Transit-time ultrasonic volume flow meter. Page 220 in Proc. 7th New England (North east) Bioeng. Conf. Ctr. Biomed Eng.,R. P. I. Troy, NY.
    Drost C J. Vessel diameter-independent volume flow measurements using ultrasound[J]. Proc. San Diego Biomed. Symp, 1978. 17:299
    Eisemann J H, Huntington G B, and Ferrell C L. Blood Flow to Hindquarters of Steers Measured by Transit Time Ultrasound and Indicator Dilution[J]. Journal of DairyScience, 1987,70:1385-1390.
    Fleet I R and Mepham T B. 1983. Physiological methods used in the study of mammary gland substrate utilisation in ruminants. Page 469 in Biochemistry of Lactation. T. B. Mepham, ed. Elsevier, Amsterdam, The Netherlands.
    Fleet I R, Davis A J, Richardson M, et al. The stimulation of mammary blood flow by oxytocin and the potential role of locally released nitric oxide in the goat[J]. J. Reprod. Fertil, 1993. 11:104.
    Forsberg F, Liu JB, Russell KM, et al. Volume flow estimation using time domain correlation and ultrasonic flowmetry[J]. Ultrasound Med Biol, 1995,21(8):1037-45
    Fujiwara T and Uehara Y. The cytoarchitecture of the wall and the innervation pattern of the microvessels in the rat mammary gland: a scanning electron microscope observation[J]. Am. J. Anat, 1984. 170:39.
    Fung Y C. 1997. Blood flow in the lung. Pages 333–438 in Biomechanics Circulation, 2nd ed. Springer-Verlag, New York, NY.
    Goewit R C and Aromando M. Mechanisms involved in the adrenalin-induced blockade of milk ejection in dairy cattle[J]. Proc. Soc. Exp. Boil. Med, 1985. 180:340
    Goewit R C, Wachs E A. Sagi R, et al. Current concepts on the role of oxytocin in milk ejection[J]. J. Dairy Sci, 1983. 66:2236.
    GOREWIT R C, Aramondo M C, and Bristol D C. Measuring bovine mammary gland blood flow using a Transit-time ultrasonic flow probe[J]. Journal of Dairy Science, 1989, 72: 116-119.
    Gorewit R C, Bristol D G, Aromando M, et al. Mammary Blood Flow of Cows Measured by Ultrasonic and Electromagnetic Flow Meter[J]. Journal of Dairy Science, 1984. Vol. 67 sup., p. 159
    Gorewit R C. Method for determining oxytocin in unextracted sera. Characterization in lactating cattle. Proc. Soc. Exp. Biol. Med, 1979. 160:80.
    Graf G C, and Lawson D M. Factors affecting intramammary pressures[J]. J. Dairy Sci, 1968. 51:1672
    Grant D A, Franzini C, Wild J. Continuous Measurement of Blood Flow in the Superior Sagittal Sinus of the Lamb[J], American Journal of Physiology, 1995. Vol. 269, p. R274-279
    Guinard-Flament J, and Rulquin H. Effect of once vs. twice daily milking on mammary blood flow (MBF) in dairy cows[J]. Livest. Prod. Sci, 2001. 51:180.
    Haddy F J, and Scott J B. 1978. Active hyperemia, reactive hyperemia, and autoregulation of blood flow. Page 531 in Microcirculation. G. Kaley and B M. Altura, ed. University Park Press, Baltimore, MD.
    Haddy F J, Scott J B. Role of transmural pressure in local regulation of blood flow through kidney[J]. Amer. J. Physiol, 1965. 208:825
    Harrington K, Deane C, Campbells. Measurement of volume flow with time domain and M-mode imaging: in virto and in vivo validation studies[J]. J Ultrasound Med, 1996,15(10):715-720
    Hartman J, Koerner J, Lancaster L, et al. In Vivo Calibration of a Transit-time Ultrasound System for Measuring Ascending Aorta Volume Flow[J]. The Pharmacologist, 1985 Vol. 27, No. 3, p. 217
    Hartman J, Olszanski D A, Hullinger, T.G.et al. In Vivo Validation of a Transit-time Ultrasonic Volume Flow Meter[J], Journal of Pharmacological and Toxicological Methods, 1994. Vol. 31, No. 3, p. 153-160
    Henderson A J, and Peaker M. The effects of colchicine on milk secretion, mammary metabolism and blood flow in the goat[J]. Q. J. Exp. Physiol, 1980. 65:367.
    Heyman MA, Payre BD, Hoffman JIE. Blood flow and radionuclide-labeled particleds[J]. Prog cardiovase Dis, 1977,20:55-79
    Houvenaghel A, Peters G, and Verschooten F. Influences of manual udder stimulation andoxytocin on mammary artery blood flow in lactating cows[J]. Arch. Int. Pharmacodyn, 1973. 205:124.
    Houvenaghel A. Action of catecholamines on blood flow through the mammary gland in unanesthetized lactating small ruminants[J]. Arch. Int. Pharmacodyn, 1970. 186:190
    Jakobsen K E. Mikkelsen O, and Nielsen M O. Studies on responses to potassium, noradrenaline, serotonin, histamine and prostaglandin F2cr of isolated pudental arteries from non-lactating goats[J]. Comp Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol, 1994. 109: 167.
    Kensinger M H, Collier R J, Wilcox C J, et al. Variability of resting mammary blood flow in non-lactating Holstein cows[J]. J. Dairy Sci, 1983. 66:1742.
    Knappertz VA, Tegeler CH, Myers LG. Clinical cerebrovascular applications of arterial ultrasound volume flow rate estimetes[J]. J Neuroimaging, 1996,6(1):1-7
    Kronfeld D S. 1969. Biosynthesis of milk constituents atlactogenesis. Page 109 in Lactogenesis. M. Reynolds and S. J. Folley, ed. Univ. Pennsylvania Press, Philadelphia.
    Labussiere J, and Combaud J F. Effets des prostaglandins El, E2, Fla et F2a sur rejection du lait de brebis soumises ou non au clampage de leur vascularization ovarienne. 1991. Page 12 in Proc. 4th Symp. Machine Milking of Small Ruminants. Min. Agric., Tel-Aviv, Israel.
    Lacasse P and Prosser C G. Mammary Blood Flow Does Not Limit Milk Yield in Lactating Goats[J]. Journal of Dairy Science, 2003, 86:2 094–2 097.
    Lacasse P, and Prosser C G. Characteristics and distribution of nitric oxide synthase in the lactating mammary gland of goats and cows[J]. J. Dairy Sci, 1995. 78(Suppl. 1):191.(Abstr.)
    Lacasse P, and Prosser C G. Nitric oxide secretion by mammary epithelial cells in culture[J]. J. Dairy Sci, 1995. 78(Suppl.l): 191.(Abstr.)
    Lacasse P, Block E, Couture Y, et al. Bovine growth hormone and the local production ofprostacyclin I2 on mammary blood flow in dairy cows[J]. Proceeding of the New-Zealand Society of Animal Production, 1994. 54:111–114.
    Lacasse P. Farr V C.Davis S R, et al. Local Secretion of Nitric Oxide and the Control of Mammary Blood Flow[J]. Journal of Dairy Science, 1996, 79: 1 369-1 374.
    Lee W, Bendick P, Best AM, et al. Time-domain ultrasonography during pregnancy[J]. J Ultrasound Med, 1994,13:457-463
    Levy DJ, Westra SJ, Sayre J, et al. Validation of volume flow measurements in blood vessels with quantification color velocity imaging using a physiologic model of the circulation[J]. Acad Radiol 1996,3(5):383-388
    Linzell J L, and Mount L E. Variations in the direction of venous blood flow in the mammary region of the sheep and goat[J]. Nature (London) 1954. 176:37–38.
    Linzell J L. Mammary blood flow and methods of identifying and measuring precursors of milk. Pages 143–220 in Lactation: a comprehensive treatise. The Mammary Gland/Devel- Journal of Dairy Science, 1974. Vol. 83, No. 10, 2000 opment and Maintenance Vol. 1. B. L. Larson and V.R. Smith, eds. Acad. Press, London, UK.
    Linzell J L. Mammary-gland blood flow and oxygen, glucose and volatile fatty acid uptake in the conscious goat[J]. J. Physiol, 1963. 153:492
    Linzell J L. Measurement of venous flow by continuous thermodilution and its application to measurement of mammary blood flow in the goat[J]. Circ. Res, 1966. 18:745–754.
    LINZELL J L. The measurement of udder blood flow in the conscious goat[J] . Journal of Physiology, 1957. 137: 75-76.
    Lomax M A, and Baird G D. Blood flow and nutrient exchange across the liver and gut of the dairy cows[J]. Br. J. Nutr, 1983. 49:481–496.
    Lough D C, Beede D L and Wilcox C J. Effects of Feed Intake and Thermal Stress on Mammary Blood Flow and Other Physiological Measurements in Lactating Dairy Cows[J]. Journal of Dairy Science, 1990, 73: 325-332.
    Lundell A, Bergqvist E, Mattson E. et al. Volume Blood Flow Measurements with a Transit Time Flowmeter: An In Vivo and In Vitro Variability and Validation Study[J], Clin Physiology, 1993. 13: 547-557.
    Maltz E, Blatchford D R, and Peaker M. Effects of frequent milking on milk secretion and mammary blood flow in the goat[J]. Q. J. Exp. Physiol, 1984. 69:127–132.
    Mao W, and Caruolo E V. Effect of lactose content and milking interval on mammary blood flow[J]. J. Dairy Sci, 1973. 56:729.
    Marks MP, Pelc NJ, Ross M, et al. Determination of cerebral blood flow with phase-contrast cine MR imaging techniques: evaluation of normal subjects and patients with arteriovenous malformations[J]. Rsdiology, 1992,182:467-476
    Maulik D, Kadado T, Downing G, et al. In vitro validation of time domain velocity and flow measurement technique[J]. J Ultrasound Med, 1995,14(12):939-947
    McBride G E., and Christopherson R J. Effects of adrenaline, oxytocin and 2-br-α-ergocriptine on mammary blood flow in the lactating ewe[J]. Can. J. Anim. Sci, 1986. 66:983–993.
    McGuire M A, Collier R J. Beede D K, et al. Effects of acute thermal stress on mammary blood flow in early lactation[J]. J. Dairy Sci, 1985. 68(Suppl. 1):166. (Abstr).
    Meier P, and Zierler K L. On the theory of the indicatordilution method for measurement of blood flow and volume[J]. J. Appl. Physiol, 1954. 6:731–740.
    Neutze S A, Oddy V H., Gooden, J.M. et al. Calibration of An Ultrasonic Blood Flow Meter in the Sheep[J]. Proceedings of the Nutrition Society of Australia, 1989. Vol. 14, p.146
    Nielsen M O, Fleet I R, Jakobsen K, et al. The local differential effect of prostacyclin, prostaglandin E2 and prostaglandin Fg, on mammary blood flow of lactating goats[J]. J. Endocrinol, 1995. 145:585.
    Nielsen M O, Jakobsen K and Anderson P H. Validity of mammary blood flow measurements relying on manual clamping of the pudendal vein[J]. Livest. Prod. Sci, 1993, 35:179–180.
    Nielsen M O. Nyborg S. Jakobsen K, et al. Mammary uptake and excretion of prostanoids in relation to mammary blood flow and milk yield during pregnancy-lactation and somatotropin treatment in dairy goats[J]. Domestic Animal Endocrinology, 2004, 27: 345–362.
    Nishinakagawa H. Anatomical studies on the vascular system cif the mammary gland of mammals[J]. Bull. Fac. Agric. Kagoshima Univ, 1970. 20:l.
    Pavek K, Boska D and Selecky F V. Measurement of cardiac output by thermodilution with constant rate injection of indicator[J]. Circulation Res, 1964. 15: 311.
    Peaker M. The effect of raised intramammary pressure on mammary function in the goat in relation to the cessation of lactation[J]. J. Physiol, 1980. 301:415
    Pearl S L, Downey H F and Lepper T L. Intramammary pressure and mammary blood flow in lactating goats[J]. Journal of Dairy Science, 1973, 56: 1 319-1 323.
    Peeters G, Coussens R, and Sierens G. Physiology of the nerves in the bovine mammary gland[J]. Arch. Int. Pharmacodyrt, 1949. 79:75.
    Peeters G, Houvenaghel A, Roets E, et al. Verschooten. Electromagnetic blood flow recording and balance of nutrients in the udder of lactating cows[J]. J. Anim. Sci, 1979. 48:1133.
    Picker O, Schindler A, Scheeren T W. Accuracy and Reproducibility of Long-Term Implanted Transit-time Ultrasound Flow Probes in Dogs[J], Intensive Care Medicine, 2000. Vol. 26, No. 5, p. 601-607
    Picot P, Embree P. Quantitative volume flow estimation using velocity profiles[J]. IEEE Trans Ultrason Ferroelec Freq Control, 1994,41:340-345
    Prosser C G and Davis S R. Milking frequency alters the milk yield and mammary blood flow response to intra-mammary infusion of insulin-like growth factor-I in the goat[J]. J. Endocrinol, 1992. 135:311–316.
    Prosser C G, Davis S R, Farr V C, et al. Regulation of blood flow in the mammary microvasculature[J]. J. Dairy Sci, 1996. 79:1184–1197.
    Prosser C G, Davis S R, Farr V C,et al. Effects of close-arterial (external pudic) infusion of insulin-like growth factor-I1 on milk yield and mammary blood flow in lactating goats. J. Endocrinol, 1994. 142:93.
    Prosser C G, Farr V C and Davis S R. Increased mammary blood flow in the lactating goat induced by parathyroid hormone—related protein[J]. Exp. Physiol, 1994. 79:565.
    Prosser C G, Fleet I R, and Corps A N. Increased secretion of insulinllike growth factor-I into milk of cows treated with recombinantly-derived bovin growth hormone[J]. J. Dairy Res, 1989. 56:17–26.
    Prosser C G, Fleet I R, Corps A N, et al. Heap. Increase in milk secretion and mammary blood flow by intra-arterial infusion of insulin-like growth factor-I into the mammary gland of the goat[J]. J. Endocrinol, 1990. 126:437–443.
    Rajczyk Z K, Sweeting A, Lean I J, et al. Postural effects on mammary blood flow and nutrient uptake. Proc. Nutr. Soc. Aust, 1995. 19:119.(Abstr.)
    Rasmussen F. The mammary blood flow in the cow as measured by the antipyrine absorption method[J]. Acta Vet. Scand, 1965. 6:135-149.
    Ratcliffe W A, Thompson G E, Care A D, et al. Production of parathyroid hormone-related protein by the mammary gland of the goat[J]. J. Endocrinol, 1992. 133:87.
    Redisch W, Tangco F F, and R L deC H. Saunders. Part II; Pathologic Alterations in Peripheral Blood Flow. 1957. Pages 46–55 in Peripheral Circulation in Health andDisease. Grune& Stratton, New York, NY.
    Remond D, Ostigues M I, Isserty A, et al. Technical Note: Measuring Portal Blood Flow in Sheep Using An Ultrasonic Transit Time Flow Probe[J], Journal of Animal Science, 1998. Vol. 76, No. 10, p. 2712-1216
    Renaudeau D, Lebreton Y, Noblet J. et al. Measurement of blood flow through the mammary gland in lactating sows: methodological aspects[J]. Journal of Animal Science, 2002, 80: 196-201.
    Reynolds M, Linzell J L, and Rasmussen F. Comparison of four methods for measuring mammary blood flow in conscious goats[J]. American Journal of Physiology, 1968, 274: 1 415.
    Richardson P D I, and Granger N. Capillary filtration co-efficient as a measure of perfused capillary density. 1981. Page 321 in Measurement of Blood Flow: Applications to the Splanchnic Circulation. D. N. Granger and G. B. Bulkley, ed. Williams & Wilkins, Baltimore, MD.
    Rubertsson S, Arvidsson D, Wiklund L. et al. Comparison of Blood Flow Measurement in the Portal Vein and Pulmonary Artery Using Transit-time Ultrasound Flowmetry and Thermodilution Techniques[J], Surgical Research Communications, 1993. Vol. 13, p. 309-316
    Rulquin H, and Caudal J P. Effects of lying or standing on mammary blood flow and heart rate of dairy cows[J]. Ann. Zootechnol, 1992. 41:101.
    Sagi R, Gorewit R C, and Wilson D B. Role of exogenous oxytocin in eliciting milk ejection in dairy cows[J]. J. Dairy Sci, 1980. 63:2006.
    Sanisoglu I, Guden M, Balci C. et al. Comparison of intraoperative Transit-time flow measurement with early postoperative magnetic resonance flow mapping in off-pump coronary artery surgery[J], Tex Heart Inst J, 2003. 30(1): 31-7. (2751AH)
    Sapirstein L A. Regional blood flow by fractional distribution of indicators[J]. Amer. J. Physiol, 1958. 193:161
    Sapirstein L A. The indicator fractionation technique for the study of regional blood flow[J]. Gastroenterology, 1967. 52:365
    Schmidt G H. Neural control of lactation. 1971. Pages 131-132 in Biology of lactation. G. W.Salisbury, ed. W. H. Freemen and Co. San Francisco, CA.
    Setchell B P and Linzell J L. Soluble indicator techniques for tissue blood flow measurement using esrubidium chloride, urea, antipyrine (phenazone) derivatives or 3H water[J]. Clin. Exp. Pharmacol. Physiol, 1974. (Suppl.)l:15.
    Shiraishi H, Silverman N H, Rudolph, A.M. Accuracy of Right Ventricular Output Estimated by Doppler Echocardiography in the Sheep Fetus[J]. American Journal of Obstetrics & Gynecology, 1993. Vol. 168, p. 947-953
    Sokol G M, Leichty ER A, Boyle DW. Comparison of Steady-State Diffusion and Transit Time Ultrasonic Measurements of Umbilical Blood Flow in the Chronic Fetal Sheep Preparation[J], American Journal of Obstetrics, Gynecology, 1996. Vol. 174, No.5, p. 1456-1460
    Stelwagen K, Davis S R, Farr V C, et al. Mammary epithelial cell tight junction integrity and mammary blood flow during an extended milking interval in goats[J]. J. Dairy Sci, 1994. 77:426–432.
    Thivierge M C. Petitclerc D Bernier J F. et al. External Pudic Venous Reflux into the Mammary Vein in Lactating Dairy Cows[J]. Journal of Dairy Science, 2000, 83: 2 230–2 238.
    Umans J G and Levi R. Nitric oxide in the regulation of blood flow and arterial pressure[J]. Annu. Rev. Physiol, 1995. 57:771
    Vilardi J, Powers R J. Relationship of Temperature and Hematocrit to the Accuracy of Flow Measurement by Transit Time Ultrasound[J]. ELSO Extracorporeal Life Support Organization, 1989. Vol. 1, p. 23
    Vladimirova A D. Mammary blood fow of cows[J]. 2h Obshch. Biol. Mask, 1955. 16:141.
    Waites G M H and Setchell B P. Changes in blood flow and vascular permeability of the testis, epididymis and accessory reproductive organs of the rat after the administration of cadmium chloride[J]. J. Endocrinol, 1966. 34:329.
    Ward D G, Rajczyk Z, Lean I J, et al. Characterisation of blood flow and substrate concentration in major veins draining the mammary gland of lactating dairy cattle. 1993. Page 650 in Proc. XV Int. Congr. Nutr., Adelaide, South Australia, Australia. (Abstr.)
    Welch W J, Deng X, Snellen H, et al. Validation of Miniature Ultrasonic Transit-time Flow Probes for Meaurement of Renal Blood Flow in Rats[J], American Journal of Physiology, 1995. Vol. 268, No. 1, Pt. 2, p. F175-178
    Westra SJ, Levy DJ, Chalonpka JC, et al. Carotid artery volume flow: in vivo measurement with time-domain processing US[J]. Radiology, 1997,202:725-9
    Wong D H, Watson T, Gordon I L, et al. Comparison of Changes in Transit Time Ultrasound, Esophageal Doppler and Thermodilution Cardiac Output after Changes in Preload, Afterload, and Contractility in Pigs[J], Anesthesiology Analogs, 1991. Vol. 72, p. 584-588

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700