铝胁迫下大豆根冠粘液分泌特性和耐铝机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸性土壤在全球分布广泛,由此引发的铝毒问题被认为是酸性土壤中限制作物生长最重要的因素,严重影响酸性土壤上作物的生产力。铝毒的原初效应是抑制植物的根系伸长,进而抑制植物对水分和养分的吸收。植物对铝的外部排斥机制是其耐铝的机制之一,通过外部排斥机制能使大量的铝被拒之于根表之外免遭其毒害。根尖粘液是主要由根冠细胞和边缘细胞分泌的高分子物质,其在植物外部排拆铝中所起的作用逐渐受到重视。本文采用两种不同铝耐型的大豆(Glycine max L.)浙春3号(铝敏感性品种)、浙秋2号(铝耐性品种)为材料,采用悬空培养法培养收集根冠粘液,分析粘液多糖的单糖组成和铝胁迫下大豆根尖粘液分泌量、主要成分等基本的生物学特性变化,研究根冠粘液结合铝的能力以及阻止铝进入根尖的贡献大小,以及粘液中结合铝的主要物质和根尖生理特性,揭示根冠粘液在大豆根际排斥铝的作用和机理,有望为植物铝毒及耐铝机制和遗传改良研究探索新途径。
     研究结果如下:
     (1)建立了采用三氟乙酸水解豌豆根尖粘液中的多糖,衍生化后用气相色谱分离测定6种单糖的分析方法。实验表明,根尖粘液用三氟乙酸水解并乙酰化,采用OV-17石英毛细管柱(35m×0.32 mm×0.33μm)为色谱柱,利用气相色谱法对6种单糖进行分离测定,6种糖全部达到基线分离,总分析时间为42 min。用保留时间定性,外标法定量。方法相线性范围为0.0025~2.5 mg/mL,各标准曲线相关系数r>0.9991。检出限0.0216~0.1578μg/mL,加样回收率为96.7%~107.4%。实验结果表明本法是一种有效测定逆境胁迫下植物根尖粘液中糖类物质组成的方法。
     (2)通过悬空培养法对大豆进行培养,收集根尖粘液,研究铝胁迫下粘液的分泌特性。结果表明:铝胁迫诱导根尖粘液分泌,耐铝大豆浙秋2号粘液产生量高于铝敏感大豆浙春3号。粘液中含有较高含量的糖类、蛋白质、氨基酸、有机酸等物质,这些成分在浙秋2号中的含量普遍高于浙春3号。400μmol/L Al处理下,浙春3号和浙秋2号的蛋白质含量分别达到对照的4.7倍、3.9倍;氨基酸含量达对照的8.0倍、5.2倍,总有机酸含量是对照的7.0倍、3.9倍;粘液的pH呈弱碱性,在铝毒下变化较小。上述结果表明,铝毒胁迫下,糖类物质是粘液中响应最大的成分,可能是粘液中响应铝毒的主要物质。
     (3)对大豆根尖粘液糖类含量及组成成分进行测定,结果表明:多糖是粘液中的主要成分,占粘液成分的90%。铝胁迫引起总糖含量显著增加,浙春3号和浙秋2号经400μmol/L铝处理后总糖含量分别增加了218.2%、88.1%。粘液中的多糖主要由木糖、半乳糖、阿拉伯糖、葡萄糖、盐藻糖和甘露糖6种单糖组成。铝胁迫下其中葡萄糖和木糖的含量较高且对铝胁迫的响应程度大,可作为大豆根尖粘液多糖响应铝胁迫的标志性单糖。
     (4)采用悬空培养条件下去除和保留根根尖粘液法,分别测定根相对伸长率,根尖、根尖细胞壁和粘液中的铝含量以及PME活性。结果表明:保留根尖粘液时,浙春3号和浙秋2号的根相对伸长率平均比相同铝浓度处理下去除粘液处理组分别高15.8%和21.6%,表明粘液显著缓解铝毒对大豆根系生长的抑制作用。根尖保留粘液缓解铝胁迫引起的PME活性增加,浙秋2号的PME活性低于浙春3号。400μmol/L铝处理下浙秋2号粘液吸收了49.5%的铝,而浙春3号仅14.2%。尽管粘液结合了大量的铝,但是毒害形态的单核铝含量非常低,粘液单核铝仅占总铝含量的0.06%~1.16%。荧光染色结果表明根尖吸收的铝在细胞壁上的积累,保留粘液处理组的根尖荧光强度明显低于去除粘液处理组。细胞壁的铝含量测定结果也表明,去除根尖粘液后细胞壁上的铝含量显著增加。上述结果表明,根尖保留粘液能抑制铝进入根尖,减少铝与细胞壁的结合;推测粘液能够将毒害形态铝结合形成稳定的结合物或者非毒害形态,降低铝对根生长的抑制作用,缓解了铝毒害。
     (5)采用悬空培养条件下去除和保留根根尖粘液法,分别测定根尖细胞壁成分含量变化和根尖呼吸酶活性。去除根尖粘液引起细胞壁果胶、半纤维素1和半纤维素2增加;铝耐型的浙秋2号去除根尖粘液后各成分含量增长率较高,最高达239.4%(果胶)、194.8%(半纤维素1)和759.3%(半纤维素2),表明粘液显著缓解由铝胁迫引起的大豆根尖细胞壁多糖组分的增加。粘液对呼吸酶活性影响结果显示,去除粘液后H~+-ATPase和Ca~(2+)-ATPase活性显著下降,浙春3号和浙秋2号的H~+-ATPase最低分别仅为保留粘液组的84.1%、68.8%,Ca~(2+)-ATPase活性最低分别仅为保留粘液组的65.2%、45.7%。上述结果暗示粘液能有效降低铝引起的细胞壁多糖含量,减少细胞壁上能与铝结合的结构,降低了细胞壁对铝的结合能力;同时稳定根尖呼吸酶活性,促进根尖细胞正常伸长。
     (6)采用悬空培养法培养大豆,收集根冠粘液测定其中的果胶和酚类含量。粘液中还含有能结合金属阳离子的物质如果胶、酚类。铝处理下粘液中的果胶、酚类显著增加,400μmol/L铝处理下浙春3号和浙秋2号的果胶分别比对照增加293.8%和195.7%,酚类分别比对照增长215.6%、214.0%。铝胁迫下粘液中酸性磷酸酶活性显著增加,200μmol/L时活性最高,此时浙春3号和浙秋2号分别达对照的8.9倍、10.3倍,铝浓度继续增加,酶活性下降。粘液中果胶、酚类的增加提高了粘液结合铝的能力,酸性磷酸酶活性增加促进根尖的磷代谢,代谢产生的磷酸盐具有结合铝的能力,表明果胶、酚类和酸性磷酸酶对粘液结合铝的能力起到重要作用。
Aluminum(Al) toxicity is an important factor for crop production and quality in acid soil;it has become hot spots in plant stress physiology research.Al primarily affects root growth by interfering with processes critical for the regulation of growth in the root apex. The exclusion mechanism that excludes Al from entering root apex is considered one of the most important mechanisms of Al resistance.Mucilage layer is high molecular complex secreted from root cap and root border cells(BC),which is considered to play a major role to suffer the stress of Al.In this paper,two significantly different Al genotypes of soybean (Glycine max L.) were selected as material,such as Zhechun No.3(Al sensitive genotype) and Zheqiu No.2(Al tolerant genotype) which were respectively Al-tolerant genotype and Al-sensitivity genotype.Mucilage was collected from root tips of soybean which was grown in aeroponic culture for 24 h with Al supply.Monosaccharide content of polysaccharide,the mucilage secretion quality and its primary components were examined to evaluat its capacity in binding Al.Besides,the main effective compound and characteristic of root physiological were also analysed,in order to reveal the function and mechanism of mucilage on Al resistance.Explore some new pathways for Al toxicity, Al-resistant mechanism and genetic improvement.
     The main results were as follows:
     (1)A novel gas chromatography method was developed to determine six kinds of monosaccharide units hydrolyzed by trifluoroacetic acid from polysaccharide in pea root cap mucilage.The baseline separation of the monosaccharide units were achieved with a medium polar capillary column OV-17(35 m×0.32 mm×0.33μm).The total analysis time was 42 min.Retention times were used to identify the individual sugar in the chromatogram and external standard method was used for quantitative analysis.The linear range of the method was 0.0025~2.5 mg/mL and the correlation coefficient were over 0.9991.Minimum detectable limit at a signal-to-noise of 2:1 was 0.0216~0.1578μg/mL. The recovery ration of the six kinds of standard mono sugars was 96.7%~107.4%.The results indicated that this method was effective and quick in analyzing the components of sugars in the mucilage collected from plant root tips under adversity stress.
     (2) Mucilage was collected from soybean through areoponic culture to study its. characteristics.Results shown as follows,Al obviously enhanced mucilage secretion, especially in Zheqiu No.2.Abundant of sugar,protein,amino acid and organic acid composed main components of mucilage.All these were much higher in Zheqiu No.2 than in Zhechun No.3.The protein,amino acid and organic acid contents of Zhechun No.3 and Zheqiu No.2 were 4.7 and 3.9,8.0 and 5.2,7.0 and 3.9 times of control,respectively. Mucilage presented weak alkali and didn't show much varity under Al stress.These results revealed that sugar shown significant change under Al toxicity,which might be the main Al-response compound in mucilage.
     (3) Sugar composed almost 90%of soluble components in mucilage.Total sugar content in Zhechun No.3 and Zheqiu No.2 increased for 215.2%and 88.1%more than control under 400μmol/L Al treatments,respectively.The polysaccharides of sugar were mainly composed of six monosaccharides,which were the same as some other kinds of_ species.The monosaccharides variation of polysaccharide in mucilage might be characteristic reaction under Al stress.Xylose and glucose were the primary component and significantly response to Al toxicity which could use to be symbol monosaccharide to calculate Al tress grade.
     (4) Relative root elongation ratio,PME activities and Al content in root,mucilage and root cell wall of soybean were detected,which were cultred by earoponic culture.Relative root elongation ratio of Zhechun No.3 and Zheqiu No.2 increased for 15.8%and 21.6%on average when mucilage was kept on root.Mucilage also debased the increasing of PME activity which was much higher in Al-sensitive genotype.Most of Al was blocked outside the root by mucilage,49.5%of total Al was held back by mucilage of Zheqiu No.2,while its only 14.2%in Zhechun No.3.Monomeric Al was most toxicity form which shown only 0.06%~1.16%of total Al in mucilage,despite the large content of total Al in muciage. Morin fluorescence stain and cell wall Al content both shown that Al content siginificantly increased when mucilage was wipped off.Al binding capacity of mucilage could prevent Al from entering root tip and meristem of root cap,and then alleviated Al toxicity to root growth.
     (5) Root cell wall compositions and ATPase were also detected.Erase root mucilage significantly stimulate pectin and hemicelluloses production,especially in Zheqiu No.2. Pectin,hemicelluloses 1 and hemicelluloses 2 content reached 239.4%,194.8%and 759.3%that of control in Zheqiu No.2.If mucilage was wipped off,H~+-ATPase viability in Zhechun No.3 and Zheqiu No.2 reduced for 15.9%and 31.1%,respectively,Ca~(2+)-ATPase activity decreased 34.8%and 54.3%.Results indicated that Mucilage obviously alleviated the polysaccharide increasing of cell wall caused by Al stress,which decreased combination structure in cell wall,reduced Al content in cell wall.Meanwhile,mucilage stabilized ATPase activity which related to root antioxidant system.
     (6) Al bingding properties such as pectin and hydroxybenzene were also detected. Pectin content in Zhechun No.3 and Zheqiu No.2 were respectively 293.5%and 195.7% higher than control under 400μmol/L treatments,while hydroxybenzene increased 215.6% and 214.0%.Acid phosphatase activity(APA) also increased for 8.9 and 10.3 times more than control in Zhechun No.3 and Zheqiu No.2(200μmol/L).APA decreased when Al concentration kept rising.The results above indicated that the increasing of pectin and hydroxybenzene enhanced Al binding ability.At the same time,APA increased root Pi metabolize.The production phosphate can also bind Al.The results indicated that pectin and hydroxybenzene may be the main component which enabled mucilage binding ability, and AP also played important role in Al binding.
引文
[1] Kochian LV. Cellular mechanisms of aluminum toxicity and resistance in plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology. 1995, 46: 237-260.
    [2] Talor GJ. Current view of the aluminum stress response: The physiological basis of tolerance [J]. Current Plant Science in Biotechnology and Agriculture. 1991,10: 57-93
    
    [3] 熊毅,李庆魁.中国土壤[M]. 北京:科学出版社,1987,39-50
    [4] Foy CD. Plant adaptation to acid, aluminium-toxic soils [J]. Common Soil Science Plant Analysis. 1988,19: 511-566
    [5] Horst WJ, Wagner A, Marschner H. Mucilage protects root meristems from aluminium injury [J]. Zeitschrift für Pflanzenphysiologie. 1982. 109: 95-103
    [6] Zhao XW, Misaghi IJ, Hawes M C. Simulation of border cell production in response to increased carbon dioxide levels [J]. Plant Physiology. 2002, 122:181-188
    [7] Hawes MC, Brigham LA, Wen F, et al. Function of root border cells in plant health: Pioneers in the rhizosphere [J]. Annual Review of Phytopathology. 1998, 36: 311-327
    [8] Brigham L A, Woo H H, Wen F, et al. Merstem-specific suppression of mitosis and a global switch in gene expression in the root cap of pea by endogenous signals [J]. Plant Physiology. 1998,118: 1223-1231
    
    [9] Zhu YM, Pierson LSIII, Hawes MC. Induction of microbial genes for pathogenesis and symbiosis by chemical from root border cells [J]. Plant Physiology. 1997, 115: 1691-1698
    
    [10] Parker DR, Pedler JF. Probing the "malate hypothesis" of differential aluminum tolerance in wheat by using other rhizotoxic ions as proxies for Al [J]. Planta. 1998, 205: 389-396
    [11]Kinraide TB,Parker DR.Assessing the phytotoxicity of mononuclear hydroxy-aluminum[J].Plant·Cell Environment.1989,12:479-487
    [12]Larsen PB,Degenhardt J,Tai CY,et al.Aluminum-resistant arabidopsis mutantsthat exhibit altered patterns of aluminum accumalation and organic acid release from roots[J].Plant Physiology.1998,117:9-18
    [13]Miyasaka SC,Buta JG,Howell RK,et al.Mechanism of aluminum tolerance in snapbeans.Root exudation of citric acid[J].Plant Cell Physiology.1991,96:737-743
    [14]Delhaize E,Craig S,Beaton CD,et al.Aluminum tolerance in wheat(Triticum aestivm L.)[J].Plant Physiology.1993,103:685-693
    [15]Ryan PR,Delhaize E,Randall PJ.Characterization of Al-stimulated effiux of malate from the apices of Al-tolerant wheat roots[J].Planta.1995,196:103-110
    [16]Ma JF,Ryan PR,Delhaize E.Aluminum tolerance in plants and the complexing role of organic acids[J].Trends in Plant Science.2001,6:273-278
    [17]Ma JF,Zheng SJ,Li XF,et al.A rapid hydroponic screening for aluminum tolerance in barley[J].Plant and Soil.1997,191:133-137
    [18]Ma JF,Hiradate S,Nomoto K,et al.Internal detoxification mechanism of Al in Hydrangea.Identification of Al form in the leaves[J].Plant Physiology.1997,113:1033-1039
    [19]Zheng SJ,Ma JF,Matsumoto H.High aluminum resistance in buckwheat.I.Al-induced specific secretion of oxalic acid from root tips[J].Plant Physiology.1998,117:745-751
    [20]Ma JF,Takeda S,Yang ZM.Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale[J].Plant Physoilogy.2000,122:687-694
    [21]Zheng SJ,Ma JF,Matsumoto H.Continuous secretion of organic acid is related to aluminum resistance during relatively long-term exposure to aluminum stress[J].Plant Physiology,1998,103:209-214
    [22]Li XF,Ma JF,Matsumoto H.Pattern of Al-induced secretion of organic acid differs between rye and wheat[J].Plant Physiology.2000,123:1537-1543
    [23]黎晓峰.铝诱导黑麦的根尖分泌有机酸[J].广西农业生物科学.2002,21(2):78-82
    [24]张丽梅,贺立源,李建生.植物根系解铝毒分泌物[J].贵州农业科学,2005,33(3):88-90
    [25] De la Fuente JM, Ramirez-Rodriguez V, Cabrera-Pronce JL, et al. Aluminum tolerance in transgenic plants by alteration of citrate synthesis [J]. Science. 1997, 276: 1566-1568
    [26] Delhaize E, et al. Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux [J]. Plant Physiology. 2001,125,2059-2067
    [27] Parker DR, Pedler JF. Probing the "malate hypothesis" of differential aluminum tolerance in wheat by using other rhizotoxic ions as proxies for Al [J]. Planta. 1998, 205:389-396
    [28] Van Le H, Kuraishi S, Sakurai N. Aluminum-induced rapid root inhibition and changes in cell-wall components of squash seedlings [J]. Plant Physiology. 1994, 106: 971-976
    [29] Chang Y C, Yamamoto, Matsumoto H. Accumulation of aluminum in the cell wall pectin in cultured tobacco (Nicotiana tabacum L.) cells treated with a combination of aluminum and iron [J]. Plant Cell and Environment. 1999, 22: 1099-1017
    [30] Blarney FPC, Asher CJ, Kerven GL, et al. Factors affecting aluminum sorption by calcium pectate [J]. Plant Soil. 1993,149: 87-94
    
    [31] Wehl JB, Menzies NW, Blarney FPC. Model studies on the role of citrate, malate and pectin esterification on the enzymatic degradation of Al- and Ca-pectate gels: possible implications for Al-tolerance [J]. Plant Physiology and Biochemistry. 2003, 41: 1007-1010
    [32] Eticha D, Thé C, Welcker C, et al. Aluminum-induced callose formation in root apices: inheritance and selection trait for adaptation of tropical maize to acid soils [J]. Field Crop Research. 2005, 93: 252-263
    [33] Ma JF. Syndrome of Aluminum toxicity and Diversity of Aluminum Resistance in Higher Plants: International Review of Cytology [J]. Vol. 264: 225-252
    [34] Degenhardt J, Larsen PB, Howell SH, et al. Aluminum resistance in the Arabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH [J]. Plant Physiology. 1998,117, 19-27
    [35] Gabrielson KM, Cancel JD, Morua LF, et al. Identification of dominant mutations that confer increased aluminium tolerance through mutagenesis of the Al-sensitive Arabidopsis mutant, als3-l [J]. Journal of Experimental Botany. 2006, 57, 943-951
    
    [36] Barcelo J, Poschenrieder C. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: A review [J]. Environment Experimental Botany. 2002, 48, 75-92
    
    [37] Ofei-Manu P, Wagatsuma T, Ishikawa S, et al. The plasma membrane strength of the root-tip cells and root phenolic compounds are correlated with Al tolerance in several common woody plants [J]. Soil Science and Plant Nutrition. 2001, 47: 359-376
    [38] Kidd PS, Llugany M, Poschenrieder C, et al. The role of root exudates in aluminum resistance and silicon-induced amelioration of aluminum toxicity in three varieties of maize (Zea mays L.) [J]. Journal of Experimental Botany. 2001, 52,1339-1352
    [39] Hawes MC, Gunawardena Y, Miyasaka S, et al. The role of root border cells in plant defense [J]. Trends in Plant Science. 2000, 5(3): 128-133
    
    [40] Zhu Y M, Pierson L S III, Hawes M C. Induction of microbial genes for pathogenesis and symbiosis by chemicals from root border cells [J]. Plant Physiology. 1997, 115: 1691-1698
    [41] Bacic A, Moody S F, Clarke A E. Structure analysis of secreted root slime from maize (Zea mays L.) [J]. Plant Physiology, 1986, 80: 771-777
    
    [42] Bowles DJ, Northcote DH. The size and distribution of polysaccharides during their synthesis within the membrane system of maize root cells [J]. Planta. 1972, 128: 1133-1145
    [43] Chaboud A. Isolation, purification and chemical composition of maize root cap slime [J]. Plant and Soil. 1983, 73: 395-402
    
    [44] Chaboud A, Rougier M. Identification and localization of sugar components of rice (Oryza sativa L.) root cap mucilage [J]. Journal of Plant Physiology. 1984, 116, 323-330
    [45] Wright K, Northcote DH. The relationship of root-cap slimes to proteins [J]. Biochemistry. 1974,139: 525-534
    
    [46] Newman EI. The rhizosphere: carbon sources and microbial populations. In: Fitter, A.D. (Ed.), Ecological Interactions in Soil [M]. Blackwell Scientific Publications, London, pp. 1985, 107-122
    [47] Bowen GD, Rovira AD. The rhizosphere and its management to improve plant growth. In: Sparks, D.L. (Ed.), Advances in Agronomy (66) [M]. Academic Press, New York, pp. 1999,1-102
    [48] Lugtenberg BJJ, Kravchenko LV, Simons M. Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization [J]. Environmental Microbiology. 1999,1, 439-446
    [49] Gomes NCM., Heuer H, Schonfeld J, et al. Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis [J]. Plant and Soil. 2001, 232, 167-180
    [50] Baudoin E, Benizri E, Guckert A. Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting [J]. Applied Soil Ecology. 2002,19, 135-145
    [51] Baudoin E, Benizri E, Guckert A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere [J]. Soil Biology & Biochemistry. 2003, 35, 1183-1192
    [52] Griffiths BS, Ritz K, Ebblwhite N, et al. Soil microbial community structure: effects of substrate loading rates [J]. Soil Biology & Biochemistry. 1999. 31, 145-153
    [53] Nguyen C, 2003. Rhizodeposition of organic C by plant: mechanisms and controls [J]. Agronomie. 1999, 23, 375-396
    
    [54] Knee EM, Gong FC, Gao M, et al. Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source [J]. Molecular Plant-Microbe Interactions. 2000,14: 775-784
    [55] Baudoin E, Benizri E, Guckert A. Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting [J]. Applied Soil Ecology. 2002,19, 135 -145
    [56] Baudoin E, Benizri E, Guckert A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere [J]. Soil Biology & Biochemistry. 2003, 35, 1183-1192
    [57] Mounier E, Hallet S, Cheneby D, et al. Influence of maize mucilage on the diversity and activity of the denitrifying community [J]. Environmental Microbiology. 2004, 301-312
    [58] Lopez-Gutierrez JC, Philippot L, Martin-Laurent F. Impact of maize mucilage on atrazine mineralization and atzC abundance [J]. Pest Management Science. 2005, 61, 838-844
    [59] Smith S, Tiedje J M. The effect of roots on soil denitrification [J]. Soil Science Society of America Journal. 1979, 43: 951-955
    
    [60] Trolldenier G. Plant nutritional and soil factors in relation to microbial activity in the rhizosphere, with particular emphasis on denitrification [J]. Z Pfanzenernahr Boden. 1998,152:223-230
    [61] Mahmood T, Ali R, Malik KA, et al. Denitrification with and without maize plant (Zea mays L.) under irrigated field conditions [J]. Biology and Fertility of Soils. 1997, 24: 323-328
    
    [62] Brunei B, Janse JD, Laanbroek HJ, et al. Effect of transient oxic conditions on the composition of the nitrate-reducing community from the rhizosphere of Typha angustipholia [J]. Microbiol Ecology. 1992,24: 51-61
    
    [63] Nijburg J, Hendrikus J, Lannbroek HJ. The influence of Glyceria maxima and nitrate input on the composition and nitrate metabolism of the dissimilatory nitratereducing bacteria community [J]. FEMS Microbiology. 1997, 22: 57-63
    
    [64] Nijburg J, Coolen MJL, Gerards S, et al. Effects of nitrate availability and the presence of Glyceria maxima on the composition and activity of the dissimilatory nitrate-reducing bacteria community [J]. Applied and Environmental Microbiology. 1997,63:931-937
    
    [65] Philippot L. Denitrifying genes in Bacterial and Archeal genomes [J]. Biochimica et Biophysica Acta. 2002,1577: 355-376
    
    [66] Klemedtsson L, Svensson BH, Roswall T. Dinitrogen and nitrous oxide produced by denitrifcation and nitrification in soil with and without barley plants [J]. Plant and Soil. 1987,99:303-319
    [67] Tiedje JM. Biology of Anaerobic Microorganisms [M]. Zehnder, A.J., (ed.), New York: John Wiley & Sons, pp. 1988,179-244
    [68] Tisdall JM, Oades JM. Organic matter and water-stable aggregates in soils [J]. Journal of Soil Science. 1982, 33,141-163
    
    [69] Cheshire MV, Sparling GP, Mundie CM. Effect of periodates treatment of soil on carbohydrate constituents and soil aggregation [J]. Journal of Soil Science. 1983, 34, 105-112,
    
    [70] Amellal N, Burtin G, Bartoli F, et al. Colonization of wheat roots by an exopolysaccharide-producing Pantoea agglomerans strain and its effect on rhizosphere soil aggregation [J]. Applied and Environmental Microbiology. 1998, 64, 3740-3747
    
    [71] Gouzou L, Burtin G, Philippy R, et al. Effect of inoculation with Bacillus polymyxa on soil aggregation in the wheat rhizosphere: preliminary examination [J]. Geoderma. 1993,56,479-491
    [72] Chapman SJ, Lynch JM. Polysaccharise synthesis by capsular microorganisms in coculture with cellulytic fungi on straw and stabilization of soil aggregates [J]. Biology and Fertility of Soil. 1985, 1, 161-166 [73] Watt M, McCully ME, Jeffree CE. Plant and bacterial mucilages of the maize rhizosphere: comparison of their soil binding properties and histochemistry in a model system [J]. Plant and Soil. 1993,151,151-165
    
    [74] Guckert A., Breisch H, Reisenger O. Interface sol-racine-I Etude au microscope electronique des relations mucigel-argile-microorganismes [J]. Soil Biology and Biochemistry. 1975, 7,241-250
    [75] Vermeer J, McCully ME. The rhizosphere in Zea: new insight into its structure and development [J]. Planta. 1982,156,45-61
    [76] McCully ME, Canny MJ. Pathways processes of water and nutrient movement in roots [J]. Plant and Soil. 1988,111,159-170
    
    [77] Gochnauer MB, McCully ME, Labbe H. Different populations of bacteria associated with sheathed and bare regions of roots of field-grown maize [J]. Plant and Soil. 1989, 114,107-120
    
    [78] Watt M, McCully M E, Canny M J. Formation and stabilization of rhizosheaths of Zea Mays L. Effect of soil water content [J]. Plant Physiologyogy. 1994, 106, 179-186
    
    [79] McCully, M.E. Water efflux from the surface of field-grown grass roots. Obervation by cryo-scanning electron microscopy [J]. Physiologia Plantarum. 1995, 95, 217-224
    [80] Young IM. Biophysical interactions at the root-soil interface: a review [J]. Journal of Agricultural Science. 1998,130, 1-7
    [81] Czarnes S, Hiller S, Dexter AR, et al. Root: soil adhesion in the maize rhizosphere: the rheological approach [J]. Plant and Soil. 1999,211, 69-86
    [82] Horn R, Dexter AR. Dynamics of soil aggregation in an irrigated desert loess [J]. Soil and Tillage Research. 1989, 13, 253-266
    [83] Grant CD, Dexter AR. Generation of microcracks in mouldedi soils by rapid wetting [J]. Australian Journal of Soil Science. 1989, 27,169-182
    [84] Kuchenbuch R, Claassen N, Jungk A. Potassium availability in relation to soil moisture [J]. Plant and Soil. 1986, 95, 221-231
    [85] Horsts L, Bernd S, Norbert C. Root regulate ion transport in the rhizosphere to counteract reduced mobility in dry soil [J]. Plant and Soil. 2004, 260: 79-88
    [86] Jackson RB, MM Caldwell. The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics [J]. Ecology. 1993, 74:612-614
    [87] Bengough AG, Young IM. Root elongation of seedling peas through layered soil of different penetration resistances [J]. Plant and Soil. 1993,149,129-139
    [88] Iijima M, Higuchi T, Barlow PW, Bengough AG. Root cap removal increases root penetration resistance in maize (Zea mays L.) [J]. Journal of Experimental Botany. 2003,54,2105-2109
    
    [89] Bengough AG, McKenzie BM. Sloughing of root cap cells decreases the frictional resistance to maize (Zea mays L) root growth [J]. Journal of Experimental Botany. 1997, 48, 885-893
    
    [90] Kirby JM, Bengough AG. Influence of soil strength on root growth: experiments and analysis using a critical-state model [J]. European Journal of Soil Science. 2002, 53, 119-127
    [91] Guinel FC, McCully ME. Some water-related physical properties of maize root-cap mucilage [J]. Plant, Cell and Environment. 1986, 9,657-666
    [92] Read DB, Gregory PJ, Bell AE. Physical properties of axenic maize root mucilage [J]. Plant and Soil. 1999,211,87-91
    
    [93] Iijima M, Higuchi T, Barlow PW. Contribution of root cap mucilage and presence of an intact root cap in maize (Zea mays) to the reduction of soil mechanical impedance [J]. Annals of Botany. 2004, 94, 473-477
    
    [94] Mench M, Morel JL, Guekert A. Liaison du cadmium avec la fraction macromoleculaire soluble des exsudats racinaires du mais (Zea mays L.) [J]. Comptes Rendus de 1' Academie des Sciences Serie. 1985, 301:379-382
    [95] Mollenhauer HH, Whaley WG, Leech JH. A function of the Golgi apparatus in outer root cap cells [J]. Journal of Ultrastructure Research, 1961, 5: 193-200
    [96] Rougier M. Etude cytochimique de la secretion des polysaccharides végétaux à l'aide d'un material de choix: les cellules de la coiffe de Zea mays [J]. Journal of Microscopy. 1971,10: 67-82
    [97] Floyd RA, Ohlrogge AJ. Gel formation on nodal root surfaces of Zea mays. I. Investigations on the gel composition [J]. Plant and Soil, 1970, 33: 341-343
    [98] Foster RC. Fine structure of mucigel [J]. New Phytologist. 1982, 91: 727-740
    [99] Jenny H, Grossenbacher K. Root-soil boundary zones as seen in the electron microscope [J]. Soil Science Society of America Journal. 1963, 27, 273-277
    [100]Cortez J, Billes G Role des ions calcium dans la formation du mucigel de Zea mays [J]. Oecol plant. 1982, 17:67-68
    
    [101]Jones DD, Morre DJ. Golgi apparatus mediated polysaccharide secretion by outer root cap cells of Zea mays. II. Isolation and characterization of the secretory product [J]. Zeitschrift fur anorganische und allgemeine Chemie. 1967, 56:166-169
    [102]Wright K, Northcote DH. The relationship of root cap slimes to pectins [J]. The Journal of Biochemistry. 1976, 139:759-763
    [103]Paull RE, Johnson CM, Jones RL. Studies on the secretion of maize root cap slime. I. Some properties of the secreted polymer [J]. Plant Physiology. 1975, 56: 300-306
    [104] Morel JL, Mench M, Guckert A. Measurement of Pb~(2+), Cu~(2+) and Cd~(2+) binding with mucilage exudates from maize (Zea mays L.) roots [J]. Biology and Fertility of Soil. 1986,2:29-34
    
    [105]Rovira AD. Plant root exudates [J]. Botony Review. 1969, 35: 35 - 57
    [106]Brams EA. The mucilagenous layer of citrus roots. Its delineation in the rhizosphere and removal from roots [J]. Plant and Soil. 1969, 30: 105-108
    
    [107]Leppard GG, Ramamoorthy S. The aggregation of wheat rhizosphere fibrils and the accumulation of soil bound cations [J]. Canadian Journal of Botany. 1975, 53: 1729-1735
    [108]Miyasaka SC, Hawes MC. Possible role of root border cells in detection and avoidance of aluminum toxicity [J]. Plant Physiology. 2001, 125: 1978-1987
    [109] Li XF, Ma JF, Hiradate S, Matsumoto H. Mucilage strongly binds aluminum but does not prevent roots from aluminum injury in Zea mays [J]. Physiol Plantarum. 2000, 108:152-160
    [110] Moody SF, Clarke AE, Bacic A. Structural analysis of secreted slime from wheat and cowpea roots [J]. Phytochemistry. 1988, 27: 2857-2861
    
    [111]Archambault DJ, Zhang G, Taylor GJ. Accumulation of Al in root mucilage of an Al-resistant and an Al-sensitive cultivar of wheat [J]. Plant Physiology. 1996, 112: 1471-1478
    
    [112]Puthota V, Cruz-Ortega R, Johnson J, et al. An ultrastructural study of the inhibition of mucilage secretion in the wheat root cap by aluminium. In: Wright RJ, Baligar VC, Murrmann RP, eds. Plant-soil interactions at low pH [M]. Dordrecht, the Netherlands: Kluwer Academic Publishers. 1991, 779-787
    
    [113]Brigham LA, Hawes MC, Miyasaka SC. Avoidance of aluminum toxicity; role of root border cells [M]. In Plant Nutrition: Food security and seustainability of agro-ecosystems through basic and applied research, eds. Horst WJ, et al. 1998, 452-453
    
    [114] Miyasaka SC, Grunes DL. Root zone temperature and calcium effects on phosphorus, sulfur, and micronutrients in wheat forage [J]. Agronomy Journal. 1997, 89: 742-748
    [115]Hawes MC, Smith LY, Stephenson M. Root organogenesis from single cells released from the root cap of Medicago sp [J]. Plant Cell, Tissue and Ongan Cultufe. 1990, 3(27):303-308
    [116]Knudson L.Viability of detached root cap cells[J].American Journal of Botany.1919,6:309-310
    [117]应小芳,刘鹏,徐根娣.土壤中的铝及其植物效应的研究进展[J].生态环境.2003,12(2):237-239
    [118]De la Fuente JMR,Ram(?)rez-Rodr(?)guez V,Cabrera-Ponce JL.Aluminum tolerance in transgenic plants by alternation of citrate synthesis[J].Science.1997,276:1566-1568
    [119]Kochian LV,Hoekenga OA,Pi(?)ros MA.How do crop plants tolerate acid soil?Mechanisms of aluminum tolerance and phosphorous efficiency[J].Annual Review of Plant Biology.2004,55:459-493
    [120]Roy S S,Mittra B,Sharma S,et al.Detection of root mucilage using an anti-fucose antibody[J].Annals of Botany.2002.89:293-299
    [121]Zhang G,Taylor GJ.Effect of biological on kinetics of aluminum uptake by excised roots and purified cell wall material of aluminum-tolerant and aluminum-sensitive cultivars of Triticum aestivum L[J].Plant Physiology.1992,138:533-539
    [122]Lazof D B,Glodswith J G,Rufty T W,et al.Rapid uptake of aluminum into cells of intact soybean root tips.A microananlytical study using secondary ion mass spectrometry[J].Plant Physiology.1994,106:1107-1114
    [123]Gunse B,Poschenieder C,Barcelo J.Water transport properties of roots and cortical cells in proton-and Al-stressed maize varieties[J].Plant Physiology.1997,113:595-602
    [124]Huang J W,Shaff J E,Grunes D L,et al.Al effects on calcium fluxes at the root apex of Al-tolerant and Al-sensitive wheat cultivars[J].Plant Physiology.1992,98:230-237
    [125]Macklon AES,Sim A.Modifying effects of non-toxic levels of aluminum on the uptake into cells of the wheat root apex[J].Planta.1992,43:915-923
    [126]Suhayda CG,Haug A.Organic acids reduce aluminum toxicity in maize root membrances[J].Plant Physiology.1986,68:189-195
    [127]Samac D A,Tesfaye M.Plant improvement for tolerance to aluminum in acid soils-a review[J].Plant Cell,Tissue and Organ Culture.2003,75:189-207
    [128]Ma J F,Shen R F,Nagao S,Tanimoto E.Aluminum Targets Elongation cells by Reducing Cell Wall Extensibility in Wheat Roots[J].Plant Cell Physiology.2004, 45(3):583-589
    [129]杨志敏,汪谨.植物耐铝的生物化学与分子机理[J].植物生理与分子生物学学报,2003,29(5):361-366
    [130]肖凤娟,张欣杰.铝镁锌锰等金属离子与钙调素相互作用研究进展[J].河北省科学院学报.2003,20(2):163-167
    [131]孙元琳,申瑞玲,汤坚,等.当归多糖的水解特征及其水解产物分析[J].分析化学.2008,(3):348-352
    [132]De Ruiter G A,Schols H A.Carbohydrate analysis of water-Soluble uronic acid-containing polysaccharides with high-performance anion-exchange chromatography using methanolysis combined with TFA hydrolysis is superior to 4other methods[J].Analytical.Biochemistry.1992,207(1):176-185
    [133]Sievers A,Braun M,Monshausen GB.Chapter 3.The root cap:structure and function.In:Waisel Y,Eshel A,Kafkafi U,eds.Plant roots[M].New York,NY,USA:Marcel Dekker,2002,33-47
    [134]Iijima M,Sako Y,Rao T P.A new approach for the quantification of root-cap mucilage exudation in the soil[J].Plant and soil.2003,255:399-407
    [135]应小芳,刘鹏,徐根娣,等.大豆耐铝毒基因型筛选及筛选指标的研究[J].中国油料作物学报.2005,3:46-51
    [136]汤章城.现代植物生理学实验指南(第一版)[M].北京:科学出版社,1999:127
    [137]曹炜,索志荣.Folin-Ciocalteu比色法测定蜂蜜中总酚酸的含量[J].食品与发酵工业.2004,29(12):80-82
    [138]Osborna HMI,Locheya F,Mosleya L,et al.Analysis of polysaccharides and monosaccharides in the root mucilage of maize(Zea mays L.) by gas chromatography [J].Journal of Chromatography A.1999,831:267-276
    [139]Zablackis,E.,Huang,J.,Muller,B.,et al.1995.Characterization of the cell-wall polysaccharides of Arabidop-sis thaliana leaves[J].Plant Physiology.107:1129-1138
    [140]Mary B,Fresneau C,Morel J L,Mariotti,A.1993.C and N cycling during decomposition of root mucilage,roots and glucose in soil[J].Soil Biology &Biochemistry.25:1005-1014
    [141]Blamey FPC,Nishizawa NK,Yoshimura E.Timing,magnitude,and location of initial soluble aluminum injuries to mungbean roots[J].Soil Science & Plant Nutrition.2004,50(1):67-76
    [142]Rincon MRA,Gonzales.Aluminum partitioning in intact roots of aluminum-tolerant and aluminum-sensitive wheat(Triticum aestivum L.) cultivars[J].Plant Physiology.1992,99:1021-1028
    [143]Matsumoto H.Cell biology of aluminum toxicity and tolerance in higher plants[J].International Review of Cell & Molecular Biology.2000,200:1-46
    [144]Willats WGT,McCartney L,Mackie W,et al.Pectin:cell biology and prospects for functional analysis[J].Plant Molecular Biology.2001,47:9-27
    [145]Schmohl N,Pilling J,Fisahn J,et al.Pectin methylesterase modulates aluminum sensitivity in Zea mays and Solanum tuberosum[J].Plant Physiology.2000,23:419-427
    [146]Horst WJ.The role of the apoplast in aluminum toxicity and resistance_of higher plants:A review[J].Z Pflanzenernaehr Bodenkd.1995,158:419-428
    [147]Ryan PR,DiTomaso JM,Kochians LV.Aluminum toxicity in roots:an investigation of spatial sensitivity and role of root cap[J].Journal of Experimental Botany.1993,44:437-446
    [148]Llugany M,Poschenrieder C,Barcelo J.Monitoring of aluminum-induced inhibition of root elongation in four maize cultivars differing in tolerance to aluminum and proton toxicity[J].Plant Physiology.1995,93:265-271
    [149]Goh CH,Lee Y.Aluminum uptake and aluminum-induced rapid root growth inhibition of rice seedling[J].Journal of Plant Biology.1999,42(2):151-158
    [150]唐剑锋,林咸永,章永松,等.小麦根系对铝毒的反应及其与根细胞壁组分和细胞壁对铝的吸附-解吸性能的关系[J].生态学报.2005,25(8):1890-1897
    [151]张福锁.环境胁迫与植物营养[M].北京:北京农业大学出版社.1993.36-37
    [152]Wagatsuma T,Kaneko M,Hayasaka Y.Destruction process of plant root cells by aluminum[J].Soil Science and Plant Nutrition.1987,33,161-175
    [153]Ma JF,Furukawa J.Recent progress in the research of extemal Al detoxification in higher plant:a mini review[J].Journal of Inorganic Biochemistry.2003,97:45-51
    [154]Kochian LV,Pineros MA,Hoekenga OA.The physiology,genetics and molecular biology of plant aluminum resistance and toxicity[J].Plant and Soil.2005,274:175-195
    [155]Labavitch JM.Cell wall turnover in plant development[J].Annual Review of Plant Physiology.1981,32:385-406
    [156]Taiz L.Plant cell expansion:regulation of cell wall mechanical properties[J].Annual Review of Plant Physiology.1984,35:585-675
    [157]Hossian Z-AKM,Koyama H,Hara T.Sugar composition and molecular mass distributions of hemicellulosic polysaccharides in wheat plants under aluminum stress at higher level of calcium supply[J].Asian Journal of Plant Sciences.2005,4(1):11-16
    [158]Tabuchi A,Matsumoto H.Changes in cell-wall properties of wheat(Triticum aestivum L.) roots during aluminum-induced growth inhibition[J].Plant Physiology.2001,112:353-358
    [159]伍丙华.铝对茶树根系钙吸收及ATP水解酶活性的影响[J].中国茶叶,1994,16(4):8-9
    [160]Facahan AR,Meis LD.Inhibition of maize root H~+-ATPase by-fluoride and fluoroaluminate complex[J].Plant Physiology.1995,108:241-246
    [161]Lindberg S,Griffiths G.Aluminum effects on ATPase activity and lipid composition of plasma membranes in sugar beet roots[J].Journal Experiment Botany.1993,267:1543-1550
    [162]Zhang G.Aluminum-induced alterations in lipid composition of microsomal membranes from an aluminum-resistant and aluminum-sensitive cultivar of Triticum aestivum[J].Plant Physiology.1996,96:683-691
    [163]Zel J,et al.Effect of aluminum on the membrane fluidity the mycorrhizal fungus Amanita muscarica[J].Plant Physiology.1996,96:683-691
    [164]Ofei-Manu P,Wagatsuma T,Ishikawa S,et al.The plasma membrane strength of the root-tip cells and root phenolic compounds are correlated with Al tolerance in several common woody plants[J].Soil Science & Plant Nutrition.2001,47:359-376
    [165]张芬琴,沈振国,刘友良.铝和铝+钙对小麦幼苗根尖质膜、液泡膜微囊ATP酶和膜流动的影响[J].植物生理学报,2000,26(2):105-110
    [166]Zhong,Lauchli.Changes of cell wall composition and polymer size in primary roots of cotton seedlings under high salinity[J].Journal of Experimental Botany,1993,44(261):773-778
    [167]Ma JF,Shen RF,Nagao S,et al.Aluminum targets elongating cells by reducing cell wall extensibility in Wheat Roots[J].Plant Cell Physiology.2004,45(5):583-589
    [168]Rengel Z.Uptake of aluminum by plant cells[J].New Phytologist.1996,134:389-406
    [169]Rengel Z,Reid RJ.Uptake of Al across the plasma membrane of plant cells[J].Plant and Soil.1997,192:31-35
    [170]Schmohl N,Horst WJ.Cell wall pectin content modulates aluminum sensitivity of Zea mays(L) cells grown in suspension culture[J].Plant Cell Environment.2000,23:735-742
    [171]徐冬梅,刘光深,许中坚,等.模拟酸雨对土壤酸性磷酸酶活性的影响及机理[J].中国环境科学.2003,23(2):176-179
    [172]孔繁翔,桑伟莲.小麦铝抗性和敏感品系对铝胁迫的生理生化反应[J].应用与环境生物学报.2004,10(5):559-562
    [173]Mugwira LM,Haque I.Screening forage and browse legumes germplasm to nutrient stressesⅢ:tolerance of sesbania to aluminum and low phosphorus,in soils and nutrient solution[J].Journal of Plant Nutrition.1993,16(1):51-66
    [174]沈宏,严小龙.低磷和铝毒胁迫条件下菜豆有机酸的分泌与累积[J].生态学报,2002,22(3):387-394

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700