洋葱假单胞菌脂肪酶的固定化及其催化合成生物柴油的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪酶的固定化技术有助于提高酶的稳定性和维持酶的催化活力,使酶能够在工程化条件下重复使用,从而降低了生物工业行业的生产成本。本文研究了以四甲氧基硅烷(TMOS)和甲基三甲氧基硅烷(MTMS)为前驱体的溶胶-凝胶法(sol-gel)固定洋葱假单胞菌(Pseudomonas cepacia)脂肪酶,优化了固定化条件。结果表明,当TMOS为2 mmol和MTMS为10 mmol时,最优固定化条件是:水与硅烷前驱体摩尔比为10,PEG400为120μL,给酶量为200 mg。在此条件下固定化酶的蛋白质回收率为93.7 %,pNPP水解比活力为游离酶的1.54倍。
     在此基础上,考察了固定化酶与游离酶的酶学性质差异。结果表明,80℃以下固定化酶能保持80%以上的酶活,而游离酶在50℃以上活力急剧降低,到80℃时残余酶活约为10%;固定化酶在50%的甲醇中处理48 h能保持85%的酶活,在90%的乙醇中处理48 h能保持31%的酶活,而游离酶残余酶活只有69%和0;固定化酶的pH稳定性与游离酶相比也有一定程度的提高。测定的酶反应动力学参数为:固定化酶的Vmax为12.3mmol/min·mg,Km值为4.04mmol/L,游离酶的Vmax为8.0mmol/min·mg,Km值为13.64mmol/L,该结果表明固定化酶比游离酶有更好的底物亲和性和催化活力。
     随后比较了来源于日本天野酶公司的七种游离脂肪酶酯交换效率的差异,筛选出酯交换效率最高的Lipase PS,采用溶胶-凝胶法固定化后用于催化大豆油制备生物柴油;系统研究了固定化Lipase PS催化大豆油与甲醇酯交换反应合成生物柴油工艺中的各种影响因子(包括酶用量、醇油比、含水量、反应温度、反应时间、溶剂等)对酯交换效率的影响。结果表明,通过酯交换反应,催化4.5g大豆油合成生物柴油的最佳反应工艺参数为:固定化酶646mg,醇油比4:1,含水量6%,反应温度40℃。此条件下反应72 h后,甲酯的最高得率为96.33%,高出游离酶16.3个百分点,且固定化酶重复使用10次后仍能保持60%的酶活。
Lipase immobilization technology is widely used because it can improve lipase stability, maintain its activity, which renders lipase be reused in biochemical processing for several hundred times thus reduce production cost. In this paper lipase from Pseudomonas cepacia Burkholder was entrapped in hybrid organic-inorganic sol-gel powder prepared by base-catalyzed polymerization of tetramethoxysilane (TMOS) and methyltreimethoxysila (MTMS). When TMOS 2 mmol and MTMS 10 mmol, optimum preparation conditions were water/silane molar ratio 10, enzyme supply 200 mg, and PEG400 120μL. The percentage of protein immobilization was 93.7% and the resulting lipase specific activity of hydrolyzing pNPP was 1.54 times higher than that of the free lipase.
     The characteristics of immobilized lipase were studied. The results showed that immobilized lipase remained over 80% of its activity when temperature was below 80℃while the residual activity of free one was decreased rapidly when temperature was over 50℃, and only 10% was remained when temperature reached 80℃. After incubating 48 h in 50% methanol solvent, the residual activities of immobilized lipase and free one were 85% and 69% respectively, and after incubating 48 h in 90% ethanol solvent, the residual activities of immobilized lipase and free one were 31% and 0 respectively. The kinetic parameters of Vmax and Km obtained using Lineweaver-Burk plot method were 12.3mmol/min·mg and 4.04mmol/L for immobilized lipase, 8.0mmol/min·mg and 13.64mmol/L for free lipase, respectively.
     Seven different free lipases from AMANO ENZYME INC.(JAPAN) were tested in transesterification experiments. Transesterification capacity of Lipase PS from P. cepacia ranked the highest and the lipase was selected as the experimental enzyme to be immobilized in sol-gel matrix, and then the immobilized lipase was used to catalyze the transesterification reactions of soybean oil with methanol to produce biodiesel. The factors such as effects of water content, methanol/oil molar ratio, enzyme loading, temperature, organic solvents and time course in the reaction were studied. The results showed that the optimal conditions for converting 4.5g soybean oil were: temperature 40℃, 4:1methanol/oil molar ratio, 6% water content and 646mg immobilized lipase, under which conditions, methyl esters formation of 96.33% was obtained after 72 h, which was 16.3% higher than that of the free one. After continuously used for 10 times, 60% residual activity of immobilized lipase was remained. These results indicated the stability and activity of the lipase when immobilized were highly improved.
引文
[1]彭立凤,微生物脂肪酶的研究进展[J].生物技术通报, 1999, 2: 17-22
    [2] Jaeger K E, Reetz M T. Microbial lipases form versatile tools for biotechnology[J]. Tibtech September, 1998, 16: 396-403
    [3]魏铁麒,沙长青.微生物脂肪酶及其应用[J].生物技术, 1997, 7(4): 8-10
    [4]李燕,潘运国,运毅.微生物脂肪酶催化及其性质研究进展[J].粮食与油脂, 2005, 10: 15-7
    [5] Hsu A F, Kerby J, Thomas A F, et al. Optimization of alkyl ester production from grease using a phyllosilicate sol-gel immobilized lipase[J]. Biotechnology Letters, 2003, 25: 1713-1716
    [6] Hsu A F, Kerby J, Thomas A F, et al. Transesterification activity of lipase immobilized in a phyllosilicate sol-gel matrix[J]. Biotechnology Letters, 2004, 26: 917-921
    [7] Noureddini H, Gao X, Philkana R S. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil[J]. Bioresource Technology, 2005, 96: 769-777.
    [8] Ashraf G, Volker S. Entrapment of Pseudomonas cepacia lipase with peracetylatedβ-cyclodextrin in sol–gel: application to the kinetic resolution of secondary alcohols[J]. Tetrahedron: Asymmetry Pergamon, 2003, 14: 2547-2555
    [9] Shimada Y, Sakai N, Sugihara A, et al. Purification ofγ-Linolenic acid from borage oil by a two-step enzymatic method[J]. Journal of American Oli Chemists’Society, 1997, 11: 1465-1469
    [10]周丽清,李炜煊.胰蛋白酶原-2与淀粉酶、脂肪酶联合检测在急性胰腺炎诊疗中的临床研究[J].国际医药卫生导报, 2004, 10(8): 22-24
    [11] Patel R N. Microbial/enzymatic synthesis of chiral intermediates for pharmaceuticals[J]. Enzyme and Microbial Technology, 2002, 31: 804-826
    [12] Astur-Pharma. Optically pure paroxetine precursors[P]. EP: 1431287, 2004-06-23
    [13] Wolberg M, Kaluzna I A, Muller M, et al. Regio and enantiosele ctive reduction of t -butyl 6-chloro-3, 5-dioxohexanoate with baker’s yeast[J]. Tetrahedron: Asymm, 2004, 15: 2825-2828
    [14] Clark D S. Can immobilization be exploited to modify enzyme activity[J]. Trends in Biotechnology, 1994, 12: 439-443
    [15] Ephraim K. Immobilized enzymes-learning from past successes and failures[J]. Trends in Biotechnology, 1994, 11: 471-478
    [16] Malcata F X, Reyes H R, Garcia H S, et al. Immobilised lipase reactors for modification of fats and oils: a review[J]. Journal of American Oli Chemists’Society, 1990, 67(12): 809-910
    [17] Balcao V M, Paiva A L, Malcata F X. Bioreactors with immobilized lipases: state of the art[J]. Enzyme Microbiology Technology, 1996, 18: 392-416
    [18] Bosley J A, Clayton J C. Blueprint for a lipase support: use of hydrophobic controlled-pore glasses as model systems[J]. Biotechnology and Bioengineering, 1994, 43: 934-938
    [19] Charles A, Haynes, Willem N. Structure and stabilities of adsorbed proteins[J]. Journal of Colloid and interface Science, 1995, 169, 313-318
    [20] Shaw J F, Chang R C, Wang F F, et al. Lipolitic activities of a lipase immobilized on six selected supporting materials[J]. Biotechnology and Bioengineering, 1990, 35: 132-7
    [21]朱天民,白强,袁中一.光交联聚乙烯醇合成及固定化青霉素酰化酶研究[J].生物化学与生物物理学报, 1990, 22(4): 407-410
    [22] Prabhune A A, Rao B S, Pundle A V, et al. Immobilization of premeabilized Escherichia Coli cells with Penicillin acylase activity[J]. Enzyme and Microbiology Technology, 1992, 14: 161-163
    [23] Shan S W, Lee-Jun C W. Chemical crosslinking and the stabilization of protein andenzymes[J]. Enzyme and Microbiololy Technology, 1992, 14: 866-874
    [24] Quinn Z, Zhou K, Chen X D. Immobilization ofβ- galactosidase on graphite surface by glutaraldehyde[J]. Journal of Food Engineering, 2001, 48(1): 69-74
    [25] Lima F V, Pyle D L, Asenjo J A. Factors affecting the esterification of lauric acid using an immobilized biocatalyst: enzyme characterization and studies in a well-mixed reactor[J]. Biotechnology and Bioengineering, 1995, 46(1): 69-79
    [26] Xenakis A, Stamatis H. Lipase immobilization on microemulsion-based polymer gels[J]. Progress Colloid Polymer Science, 1999, 112: 132-135
    [27] Matsumoto M, Sumi N, Ohmori K et al. Immobilization of lipase in microcapsules prepared by organic and inorganic materials[J]. Process Biochemistry, 1998, 33: 535-540
    [28] Sofina. Immobilization of lipase from Pseudomonas aeruginosa on a magnetic support modified with a polymide[J]. Chemistry of Natural Compounds, 1998, 34(6): 724-728
    [29] Carta G. Protein adsorption and leakage in carrier-enzyme systems[J]. Biotechnology and Bioengineering, 1991, 37: 1004-1009
    [30] Soares C M, Santana M H, Zanin G, et al. Covalent coupling method for lipase immobilization on controlled pore silica in the presence of nonenzymatic proteins[J]. Biotechnology Progress, 2003, 19: 803-807
    [31] Al-Duri B, Yong Y P. Lipase immobilization: an equilibrium study of lipases immobilized on hydrophobic and hydrophilic/hydrophobic supports[J]. Journal of Biochemical Engineering, 2000, 4: 207-215
    [32] Wang Chen. Immobilization of lipase by covalent binding on crosslinked ally dextran[J]. Chinese Journal of Polymer Reaction. 1998, 7(1): 10-15
    [33] Sissel H, Lise K, Thorleif A, et al. Alginate as immobilization matrix and stabilizing agent in a two-phase liquid system: application in lipase-catalysed reactions[J].Enzyme and Microbial Technology, 1992, 14(1): 42-47
    [34] Kawakami K, Yoshida S. Entrapment of lipase in silica glass by the sol-gel method and its esterification activity in organic media[J]. Biotechnology Techniques, 1994, 8: 441-6
    [35] Reetz M T, Zonta A, Simpelkamp J. Efficient heterogeneous biocatalysts by entrapment of lipases in hydrophobic sol-gel materials[J]. Angewandte Chemie International Edition in English, 1995, 34: 301-3
    [36] Reetz M T, Zonta A, Simpelkamp J. Efficient immobilization of lipases by entrapment in hydrophobic sol-gel materials[J]. Biotechnology Bioengineering, 1996, 49: 527-34
    [37] KuncováG, ?ivel M. Lipase immobilized in organic–inorganic matrices[J]. Journal of Sol-Gel Science Technology, 1997, 8: 667-71
    [38] Hsu A F, Foglia T A, Shen S. Immobilization of Pseudomonas cepacia lipase in a phyllosilicate sol-gel matrix: effective as a biocatalyst[J]. Biotechnology and Applied Biochemistry, 2000, 31: 179-83
    [39] Badjic J, Kadnikova E, Kostic N. Enantioselective aminolysis ofα-chloroester catalyzed by Candida cylindracea lipase encapsulated in sol-gel silica glass[J]. Organic Letters, 2001, 3: 2025-8
    [40]孙继红,张哗,范文浩等. Sol-Gel技术与纳米材料的化学剪裁[J].化学进展, 1999, 11(1): 80-85
    [41]符连社,张洪杰,邵华等.溶胶-凝胶法及其在生物材料方面的应用[J].化学通报, 1998, 61(12): 26-31
    [42]杨南如,余桂郁.溶胶-凝胶法简介第一讲:溶胶-凝胶法的基本原理与过程[J].硅酸盐通报, 1992, 20(2): 56-63
    [43] Pope E J A, Mackenzie J D. Sol-gel processing of silica II. the role of catalyst[J]. Journal of Non-Crystalline Solids, 1986, 87: 185-198
    [44] Chen K C, Tsuchiya T, Mackenzie J D. Sol-gel processing of silicaⅠ: the role of starting compound[J]. Journal of Non-Crystalline Solids, 1986, 81: 227-237
    [45] Gill L. Bio-doped nonocomposite polymers: sol-gel bioencapsulats[J]. Chemistry of Materials, 2001, 13: 3404-3421
    [46] Pandey P C, Upadhyay S, Pathak H C. Studies on glucose biosensors based on nonmediate and mediated electrochemical oxidation of reduced glucose oxidase encapsulated within organically modified sol-gel glasses[J]. Electroanalysis, 1999, 11(17): 1251-1258
    [47] Gary A, Baker, Jordan D, et al. Effects of polyethylene glycol doping on the behavior of pyrener, hodamine 6G, and acrylodan-labeled bovine serum albumin sequestered within tetramethylorthosilane-derived sol-gel-processed composites[J]. Journal of Sol-gel Science and Technology, 1998, 11(1): 43-54
    [48] Wang B, Li B, Deng Q et al. Amperometric glucose biosensor based on sol-gel organic-inorganic hybrid material[J]. Analytic Chemistry, 1998, 70(15): 3170-3174
    [49] Venton D L, Cheeseman K L, Chatterton R T. Entrapment of highly specific antiprogesterone antiserum using polysiloxane copolymers[J]. Biochimical et Biophysical Acta. 1984, 797: 343-7
    [50] Glad M, N?rrlow B, Sellergren B, et al. Use of silane monomers for molecular imprinting and enzyme entrapment in polysiloxane-coated porous silica[J]. Journal of Chromatography 1985, 347: 11-23
    [51] Braun S, Rappoport S, Zusman R, et al. Biochemically active sol-gel glasses: the trapping of enzymes[J]. Material Letters, 1990, 10: 1-8
    [52] Avnir D, Braun S, Lev O, et al. Enzymes and other proteins entrapped in sol-gel materials[J]. Chemistry of Materials, 1994, 6: 1605-14
    [53] Avnir D. Organic chemistry within ceramic matrixes: doped sol-gel materials[J]. Accounts of Chemical Research, 1995, 28: 32873
    [54] Shtelzer S, Braun S. An optical biosensors based upon glucose oxidase immobilized in sol-gel silicate matrix[J]. Biotechnology and Applied Biochemistry, 1994, 19: 293-305
    [55] Avnir D, Braun S. Biochemical aspects of sol-gel science and technology. New York: Kluwer Academic Publishers; 1996
    [56] Livage J. Bioactivity in sol-gel glasses[J]. CR Acad Sci Ser, 1996, 322: 417-27
    [57] Lin J, Brown C W. Sol-gel glass as a matrix for chemical and biochemical sensing[J]. Trends in Analytical Chemistry, 1997, 16: 200-11
    [58] Gill I, Ballesteros A. Encapsulation of biologicals within silicate, siloxane, and hybrid sol-gel polymers: an efficient and generic approach[J]. Journal of American Oli Chemists’Society, 1998, 120: 8587-98
    [59] Reetz M T. Entrapment of biocatalysts in hydrophobic sol-gel materials for use in organic chemistry. Advanced Materials, 1997, 12: 943-54
    [60] Gill I, Ballesteros A. Bioencapsulation within synthetic polymers: sol-gel encapsulated biologicals[J]. TIBTECH, 2000, 18: 282-96
    [61] Reetz M T, Patrick T, Wolfgang W, et al. Second generation sol-gel encapsulated lipases: robust heterogeneous biocatalysts [J]. Advanced Synthesis and Catalysis, 2003, 345: 717-728
    [62] Chen J P, Lin W S. Sol-gel powders and supported sol-gel polymers for immobilization of lipase in ester synthesis [J]. Enzyme and Microbial Technology, 2003, 32: 801-811
    [63] Hsu A F, Jones K, Thomas A, et al. Immobilized lipase-catalysed production of alkyl eaters of restaurant grease as biodiesel[J]. Biotechnology and applied biochemistry, 2002, 36: 181-186
    [64] Noureddini H, Gao X, Wagner P R. Immobilization of Pseudomonas cepacia lipase by sol-gel entrapment and its application in the hydrolysis of soybean oil[J]. Journalof American Oil Chemists’Society, 2004, 79: 33-3
    [64] Fangrui M, Milford A H. Biodiesel production: a review[J]. Bioresource Technology. 1999, 70: 1-15
    [65] Shimada Y, Watanabe Y, Sugihara A, et al. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing[J]. Journal of Molecular Catalysis B: Enzymatic, 2002, 17 (3/ 4/ 5): 133-142
    [66] Dossata V, Combesb D, Martyb A. Continuous enzymatic transesterification of high oleic sunflower oil in a packed bed reactor: influence of the glycerol production[J]. Enzyme and Microbial Technology, 1999, 25(3/ 4/ 5): 194-200
    [67] Du W, Xu Y, Liu D H, et al. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl- acceptors[J]. Journal of Molecular Catalysis B: Enzymatic, 2004, 30(3/4): 125-129
    [68] Soumanou M M, Bornscheuer U T. Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil [J]. Enzyme and Microbial Technology, 2003, 33 (1): 97-103
    [69] Iso M, Chen B, Eguchi M, et al. Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase[J]. Journal of Molecular Catalysis B: Enzymatic, 2001, 16 (1): 53-58
    [70]邓利,谭天伟,王芳.脂肪酶催化合成生物柴油的研究[J].生物工程学报, 2003, 19(1): 97-101
    [71] Kordel M, Hofman B, Schomburg D, et al. Extracellular lipase of Pseudomonas sp. strain ATCC 21808, purification, characterization, crystallization, and preliminary X-ray diffraction data [J]. Journal of Bacteriology, 1991, 73: 4836-4841
    [72] Bradford M M. A rapid and sensitive method for the quantition of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytic Biochemistry, 1976, 72: 248-254
    [73] Soares C M F, Santos O A, Olivo J E, et al. Influence of the alky-substituted silane precursor on sol-gel encapsulated lipase activity [J]. Journal of Molecular Catalysis B: Enzymatic, 2004, 29: 69-79
    [74] Maury S, Buisson P, Perrard A, et al. Influence of the sol-gel chemistry on the activity of a lipase encapsulated in a silica aerogel [J]. Journal of Molecular Catalysis B: Enzymatic, 2004, 29: 133-148
    [75] Tracey K T, Michael R, Cassandra S, et al. Controlling the material properties and biological activity of lipase within sol-gel derived bioglasses via organosilane and polymer doping [J]. Chemistry Materials, 2000, 12: 3695-3704
    [76] Svendsen Allan. Lipase protein engineering[J]. Biochemical et Biophysical Acta, 2000, 1543: 223-238
    [77] Kaieda M, Samukawa T, Kondo A, et al. Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system[J]. Journal of Bioscience and Bioengineering, 2001, 91: 12-15
    [78]高静,王芳,谭天伟等.固定化脂肪酶催化废油合成生物柴油[J].化工学报, 2005, 56(9): 1727-1730
    [79] Brady L, Brzozowski A M, Derewenda Z S, et al. A serine protease triad forms the catalytic center of a triacylglycerol lipase[J]. Nature, 1990, 343: 767-770
    [80] Khmelnitsky Y L, Levashov A V, Klyachko N L, et al. Engineering biocatalytic systems in organic media with low water content[J]. Enzyme and Microbial Technology, 1988, 10: 710-724
    [81] Wang L, Du W, Liu D H, et al. Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system[J]. Journal of Molecular Catalysis B: Enzymatic, 2006, in press
    [82] Watanabe Y, Shimada Y, Sugihara A, et al. Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase[J]. Journal of MolecularCatalysis B: Enzymatic, 2002, 17: 151-155
    [83] Du W, Xu Y Y, Zeng J, et al. Novozym 435-catalysed transesterification of crude soya bean oils for biodiesel production in a solvent-free medium[J]. Biotechnology and Applied Biochemistry, 2004, 40: 187-190
    [84] Du W, Xu Y Y, Liu D H, et al. Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production[J]. Journal of Molecular Catalysis B: Enzymatic, 2005, 37: 68-71
    [85] Mamoru I, Baoxue C, Masashi E, et al. Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase[J]. Journal of Molecular Catalysis B: Enzymatic, 2001, 16: 53-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700