基于聚羟基脂肪酸酯双亲嵌段共聚物的合成、表征、自组装及生物相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚羟基脂肪酸酯(Polyhydroxyalkanoates或PHAs)是一类微生物发酵、可生物降解的高分子聚酯,因其具有卓越的生物相容性和生物降解性而受到越来越多的关注。聚乙二醇(Polyethylene glycol或PEG)是一类水溶性和生物性相容的物质,可安全存在于人体的血液中。本文选用了PHAs家族中聚三羟基丁酸酯(PHB)、三羟基丁酸和四羟基丁酸共聚酯(P3/4HB)和三羟基丁酸三羟基己酸共聚酯(PHBHHx)分别为硬段、疏水段和软段、亲水段的PEG通过化学共聚的方式合成三个系列的多嵌段双亲性共聚物。
     所聚合的产物通过核磁(NMR)和红外(IR)对其结构进行分析,结合凝胶渗透色普(GPC)测试结果,验证了产物的嵌段结构。示差扫描量热测试结果(DSC)显示所有的产物只有一个内移的玻璃化转变温度(Tg),表现出PHA相和PEG相有一定的相容性,且由于彼此链段的影响使两相都处于半结晶状态。而通过调节不同的组分组成,产物在久置后能达到相分离的状态。热稳定分析(TGA)结果表明多嵌段共聚物中由于PEG和亚氨酯基团的引入,增加了PHA的热加工区间。三个系列的多嵌段共聚物中由于PHA链段不同的结晶性,形成了材料不同的表面形态和特殊的生物学意义。当PHA是高结晶的PHB片段时,共聚物表面形态时多孔网状结构;当PHA时完全无定形态的P3/4HB时,共聚物表面形态是连续的平滑结构;当PHA是半结晶状态的PHBHHx时,共聚物表面形态是介于多孔和平滑之间。实现了选用不同结晶态的PHA的方法来调控共聚物的表面形态的设想。共聚物的这种特性也使他们在不同方面表现出了新的性能和应用。随着PEG的引入,PHB-b-PEG系列多嵌段共聚物的血液相容性得到很大程度的提高。主要体现在凝血时间的增加和共聚物表面血小板贴附数目的减少。完全无定形态的P3/4HB使得P3/4HB-b-PEG系列多嵌段共聚能够溶于水,且在水包油的乳液中根据组分的不同自组装成为不同的形状(树叶状和三角形状)。半结晶态的PHBHHx使PHBHHx-b-PEG系列多嵌段共聚物有着更强的机械强度和断裂伸长率,动物实验表明PHBHHx-b-PEG系列多嵌段共聚物有着比纯PHBHHx更好的组织重建和组织相容性。这将会使PHBHHx-b-PEG系列多嵌段共聚物在术后抗粘连和伤口的修复方面有潜在的生物医学应用。
     本文成功的改善了PHA作为生物材料疏水的特点,并研究了改性后的多嵌段共聚物相比于纯的PHA的独特性能和生物医学应用。这将为拓展PHA应用领域,尤其在高级自组装功能材料和开发新型生物医学材料方面有着独特的贡献。
Polyhydroxyalkanoates (PHAs) are a class of biodegradable polyesters produced by microorganisms. Due to their biodegradability and biocompatibility, PHAs have received much attention as a friendly material recently. Polyethylene glycol (PEG) is a water-soluble substrate as its popular hydrophilicity. Particularly, it can be found in human blood for its good biocompatibility. In this essay, three series of poly(ester-urethane)s (PUs) were synthesized from copolymerization of different PHA members (PHB, P3/4HB and PHBHHx) which behave as a hard and hydrophobic portion and PEG functions as soft and hydrophilic moieties.
     The resultant products were characterized by NMR and Fourier transform infrared spectroscopy (IR), as well as gel permeation chromatography (GPC), which indicated the block copolymer architecture. Differential scanning calorimetry (DSC) revealed that PUs multiblock copolymers possess a semi-crystalline morphology with a single inner Tg due to the segments interaction. Whilst, a two phase separation was observed after placed for crystallinity equilibrium depending on its chemical composition. Thermogravimetric analysis (TGA) showed that the PUs multiblock copolymers had better thermal processability than their precursors. The morphologies of the three types PUs were controlled by the crystallinity of the PHA segments which would be potential in biomedical area. It is porous and net-like surface of crystal PHB based PUs copolymers while continuous and smooth when amorphous P3/4HB was employed. For semi-crystal block PHBHHx, the morphology changes between the two mentioned above due to the very low crystallinity rate. The differences of the aforesaid morphologies behaved novel properties and applications of the PUs. The blood compatibility of PHB-b-PEG series multiblock copolymers revealed an increasing blood clot formation time and reduced blood adhesion with increasing PEG content in the multiblock copolymers compared with the PHB only polymers. The P3/4HB and PEG block copolymers showed water dispersion behavior and the changes on hydrophilic/hydrophobic ratios led to the formation of different polymer shapes in Oil-in-Water emulsion (leaf-like and triangle). The mechanical properties assessment of the PUs based PHBHHx and PEG recorded an improved and adjustable ductility and toughness than pure PHBHHx with changing segment composition. Implantation of PU in mouse abdominal cavity indicated that tissue regeneration and tissue compatibility of PUs film was better than that of PHBHHx film. This kind of multiblock copolymer has great potential to be developed as a suitable candidate biomaterial for anti-adhesion and wound healing.
     To sum up, the hydrophobicity of PHA was modified successfully by copolymerization with hydrophilic PEG segments and made comparison in terms of novel properties and biomedical application between the synthesized PUs and neat PHA only materials. This would make great contributions to broaden PHA application area, especially in advanced self-assembly and biomedical materials aspects.
引文
[1] Anderson A.J., & Dawes E.A. Occurense,Metabolism,Metabolic Role,and Industrial Use of Bacterial Polyhydroxyalkanoates. Microb. Rev. 1990. 54: 450-472.
    [2] Lee S.Y. Bacterial Polyhydroxyalkanoates. Biotech. and Bioeng. 1996. 49: 1-14.
    [3] Lee S.Y. Plastic bacteria Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends in Biotechnol. 1996. 14:431-438.
    [4] Stapp C. Uber die reserveinhaltstoffe und den schleim von Azotobacter chroococcum. Zentbl Bakteriol II. 1924, 61: 276-292.
    [5] Kunikoa M, Nakamura Y, Doi Y. New bacterial copolysters produced in Alcaligenus eutrophus from organoic acid. Polym. Commun. 1988, 29: 174-176.
    [6] Wallen LL, Rohwedder WK. Poly-β-hydroxyalkanoate from activated sludge. Environ. Sci. Technol. 1974, 8: 576-579.
    [7] Findlay RH, White DC. Polymeric beta-hydroxyalkanoates from environmental samples and Bacillus megaterium. Appl. Environ. Microbiol. 1983, 45: 71-78.
    [8] Smet MJ, Eggink G, Witholt B, Kingma J, Wynberg H. Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol. 1983, 154: 870-878.
    [9] Fritsche K, Lenz RW, Fuller RC. Bacterial polyesters containing branched poly (β-hydroxyalkanoates) units. Int. J. Biol. Macromolecules. 1990, 12: 92-101.
    [10] He WN, Tian WD, Zhang G, Chen GQ Zhang ZM. Production of novel polyhydroxyalkanoates by Pseudomonas stutzeri 1317 from glucose and soybean oil. FEMS Microbiol Lett. 1998, 169: 45-49.
    [11] Tian WD, Hong K, Wu Q, Chen GQ. Production of polyesters consisting of medium chain length 3-hydroxyalkanoic acids by Pseudomonas mendocina 0806 from various carbon sources. Antonie van Leeuvanhoek. 2000, 77: 31-36.
    [12] Matsusaki H, Manji S, Taguchi K, et al. Cloning and molecular analysis of the poly (3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyalkanoate)biosynthesis genes in Pseudomonas sp strain 61-3. J. Bacteriol, 1998, 180: 6459-6467.
    [13] Anderson AJ, Dowes EA. Occurense, metabolism, metabolic role, and industrial use of bacterial polyhydroxyalkanoates. Microb. Rev., 1990, 54: 450-472.
    [14] Alvarez HM, Pucci OH. Steinbüchel A. Lipid storage compounds in marine bacteria. Appl. Microbiol. Biotechnol. 1997, 47: 132-139.
    [15] Eusch RN, Sadoff HL. D-(-)-poly-β-hydroxybutyrate in membranes of genetically competent bacteria. J. Bacteriol. 1983, 156: 778-788.
    [16] Reusch RN, Hiske TW, Sadoff HL. Poly-β-hydroxybutyrate membrane structure and its relationship to genetic transformability in Escherichia coli. J. Bacteriol. 1986, 168: 553-562.
    [17] Reusch RN, Sadoff HL. Putative structure and functions of a poly-β-hydroxybutyrate/calcium polyphosphate channel in bacterial plasma membranes. P. Natl. Acad. Sci. USA. 1988, 85: 4176-4180.
    [18] Mamelak M, Scharf MB, Woods M. Treatment of narcolepsy withγ-hydroxybutyrate. A review of clinical and sleep laboratory findings. Sleep. 1986, 9: 285-289.
    [19]胡平,陈国强,张增民,吴琼,生物可降解塑料聚羟基脂肪酸酯的生产及物性表征。合成树脂及塑料,1997,14:45-49.
    [20] Peter J B, Phil B, Sally J. Organ physical properties of poly (hydroxybutyrate) and copolymers of hydroxybutyrate and hydroxyvalerate. FEMS. Microbiol. Rev. 1992, 103: 289-298.
    [21] Lemoigne M. Products of dehydration and of polymerization of P-hydroxybutyric acid. Bull. Soc. Chem. Biol. 1926, 8: 770-782.
    [22] Matsusaki H, Abe H, Doi Y. Biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 61-3. Biomacromolecules. 2000, 1: 17-22.
    [23] Kunioka M, Tamaki A, Doi Y. Crystalline and thermal-properties of bacterial copolyesters poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules. 1989, 22: 694-697.
    [24] Kato M, Bao HJ, Kang CK, Fukui T and Doi Y. Production of a novel copolyester of 3- hydroxybutyric acid and medium chain length 3- hydroxyalkanoatic acids by Pseudomonas sp.61-3 from sugars. Appl. Microbiol Biotechnol, 1996, 45, 363-370.
    [25] Kunikoa,M., NAkamura, Y. Doi, Y. New bacterial copolysters produced in Alcaligenus eutrophus from organoic acid. Polymer Commun. 1988. 29: 174-176.
    [26] Doi, Y., Tamaki, A., Kunioka, M. Soga, K. Biosynthesis of terpolysters of 3-hydroxybutyrate, 3-hydroxyvalerate,and 5-ghydroxyvalerate in Alcaligenus eutrophus from 5-chloropentanoic and pentanoic acids. Macromol. Chem. Rapid Commun. 1987. 8: 631-635.
    [27] Doi Y., Tamaki M., Kunioka, and Soga K.. Production of copolysters of 3-hydroxybutyrate by Alcaligenus eutrophus from butyric and pentanoic acids. Appl. Miocrobiol. Biotechnol. 1988 28: 330-334.
    [28] Doi Y, Kawaguchi, Koyama N, Nakamura S, Hiramitsu M, Yoshida Y and Kimura U. Synthesis and degradation of polyhydroxyalkanoates in Alcaligenes eutrophus. FEMS Microbial REV, 1992, 103, 103-108.
    [29] Chen GQ, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 2005, 26: 6565–6578.
    [30] Zhao K, Deng Y, Chen JC, et al. Polyhydroxyalkanoate (PHA) Scaffolds with good mechanical properties and biocompatibility. Biomaterials, 2003, 24: 1041-1054.
    [31] Zhao K, Deng Y and Chen GQ. Effects of surface morphology on the biocompatibility of Polyhydroxyalkanoates. Biochemical. Eng. J, 2003, 3727: 1-9.
    [32] Deng Y, Lin XS, Zheng Z, et al. Poly(hydroxybutyrate-co-hydroxyhexanoate) promoted production of extracellular matrix of articular cartilage chondrocytes in vitro. Biomaterials, 2003, 24: 4273-4281.
    [33] Wang YW, Wu Q, Chen GQ. Attachment, proliferation and differentiation of osteoblasts on random biopolyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds. Biomaterials, 2004, 25: 669-675.
    [34] Qu XH, Wu Q, Liang J, Zou B, Chen GQ. Effect of 3-hydroxyhexanoate content in poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on in vitro growth and differentiation of Smooth Muscle Cells. Biomaterials, 2006, 27: 2944-2950.
    [35] Qu XH, Wu Q, Zhang KY, Chen GQ. In vivo studies of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) based materials: biodegradation and tissue reactions. Biomaterials, 2006, 27: 3540-3548.
    [36] Freier T, Kunze C, Nischan C, Kramer S, Sternberg K, Sass M, Hopt UT, Schmitz KP. In vitro and in vivo degradation studies for development of a biodegradable patch based on poly (3-hydroxybutyrate). Biomaterials . 2002, 23: 2649-2657.
    [37] Hishatskaya EI, Volova TG, Gordeev SA, Puzyr A P. Degradation of P(3HB) and P(3HB-co-3HV) in biological media. J. BIOMAT. SCI-POLYM. E. 2005, 16: 643-657.
    [38] Majid MIA, Ismail J, Few LL, Tan CF. The degradation kinetics of poly (3-hydroxybutyrate) under non-aqueous and aqueous conditions. EUR. POLYM. J. 2002, 38: 837-839.
    [39] Lauzier C, Revol JF, Debzi EM, Marchessault RH. Hydrolytic degradation of isolated poly (beta-hydroxybutyrate) granules. Polymer 1994, 35: 4156-4162.
    [40] Marois Y, Zhang Z, Vert M, Deng X Y, Lenz R, Guidoin R. Mechanism and rate of degradation of polyhydroxyoctanoate films in aqueous media: A long-term in vitro study. J. BIOMED. MATER. RES. 2000, 49: 216-224.
    [41] Zheng YD, Wang YJ, Wu G, Chen XF, Zhong QH. Kinetic study for enzymatic degradation of polyhydroxyalkanoates. Acta polymerica Sinica . 2002, 6: 760-763.
    [42] Mochizuki M, Hirami M. Structural effects on the biodegradation of aliphatic polyesters. Polym. advan. Technol. 1997, 8: 203-209.
    [43] http://www.boiler.com.cn/trade_supply/offer_detail_193230.html http://www.bjgryk.com/cpyy/yyjyrc.htm
    [44] Guan, J, J.; Sacks, M, S.; Wagner, W, R. Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility. Biomaterials 2004, 25, 85-96.
    [45] Jin Ho Lee.; Yong Min Ju.; Dong Min Kim. Platelet adhesion onto segmented polyurethane film surfaces modified by addition and crosslinking of PEO-containingblock copolymers. Biomaterials 2000, 21, 683-691.
    [46] Gombotz, W, R.; Guanghui, W.; Horbett, T, A.; Hoffman, A, S. Protein adsorption to poly(ethylene oxide) surfaces. J. Biomed. Mater. Res 1991, 25, 1547-1562.
    [47] Li Xu.; Xian Jun Loh.; Li Jun.; Poly(ester urethane)s Consisting of Poly[(R)-3-hydroxybutyrate] and Poly(ethylene glycol) as Candidate Biomaterials: Characterization and Mechanical Property Study. Biomacromolecules 2005, 6, 2740-2747.
    [48] G, X, Cheng.; Z, J, Cai.; L, Wang. Biocompatibility and biodegradability of Poly(hydroxybutyrate)/poly(ethylene glycol) blend films. Journal of Materials Sci: materials in medicine 2003, 14, 1073-1078.
    [49] S.W.SHALABY.; Y.IKADA.; R.LANGER and J.WILLIANS (eds.).“polymer of Biological and Biomedical Significance”(American Chemical Society, Washington, DC, 1994) pp.135-146.
    [50] Zalipsky, S. Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates. Bioconjugate Chem 1995, 6, 150-165.
    [51] Baki Hazer & Alexander Steinbüchel. Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications”Appl Microbiol Biotechnol 2007, 74:1–12.
    [52] Hazer B (1989) Synthesis and characterization of block copolymers. In: Cheremisinoff NP (ed) Handbook of polymer science and engineering, vol 1. Marcel Dekker, New York, pp 133–176.
    [53] Hazer B. Macromonomeric initiators. In: Salamone JC (ed) Polymeric materials encyclopedia, vol 6. CRC Press, Boca Raton, 1996, pp 3911–3918.
    [54] Hazer B. Macrointermediates for block and graft copolymers. In: Cheremisinoff NP (ed) Handbook of engineering polymeric materials. Marcel Dekker, New York, 1997, pp 725–734.
    [55] Hazer B, Baysal BM. Preparation of block copolymers using a new polymeric peroxycarbamate. Polymer, 1986, 27:961–986.
    [56] F?rster S, Antonietti M. Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv Mater, 1998, 10:195–217.
    [57] Li J, Li X, Ni X, Leong KW. Synthesis and characterization of new biodegradable amphiphilic poly(ethylene oxide)-b-poly[(R)-3-hydroxy butyrate]-b-poly(ethylene oxide) triblock copolymers. Macromolecules. 2003, 36:2661–2667.
    [58] Li J, Ni X, Li X, Tan NK, Lim CT, Ramakrishna S, Leong KW. Micellization phenomena of biodegradable amphiphilic triblock copolymers consisting of poly(β-hydroxyalkanoic acid) and poly(ethylene oxide). Langmuir. 2005, 21: 8681–8685.
    [59] Andrade AP, Witholt B, Hany R, Egli T, Li Z. Preparation and characterization of enantiomerically pure telechelic diols from mclpoly[(R)-3-hydroxyalkanoates]. Macromolecules. 2002, 35:684–689.
    [60] Hirt TD, Neuenschwander P, Suter UW. Telechelic diols from poly[(R)-3-hydroxy-butyric acid] and poly[(R)-3-hydroxybutyric acid-co-[(R)-3-hydroxyvaleric acid]. Macromol Chem Phys. 1996, 197:1609–1614.
    [61] Li J, Li X, Ni X, Wang Xin, Hongzhe Li, Leong KW. Self-assembled supramolecular hydrogels formed by biodegradable PEO–PHB–PEO triblock copolymers and a-cyclodextrin for controlled drug delivery. Biomaterials. 2006, 27: 4132–4140.
    [62] Zhu KJ, Bihai S, Shilin Y. Super microcapsules (SMC). I. Preparation and characterization of star polymethylene oxide (PEO)-polylactide (PLA) copolymers. J Polym Sci A Polym Chem. 1989, 27: 2151–2159
    [63] Ravenelle F, Marchessault R. One-Step Synthesis of Amphiphilic Diblock Copolymers from Bacterial Poly([R]-3-hydroxybutyric acid). Biomacromolecules 2002, 3: 1057-1064.
    [64] Ravenelle F, Marchessault R. Self assembly of poly[(R)-3-hydroxybutyric acid)-block-Poly(ethylene glycol) diblock copolymers. Biomacromolecules 2003, 4:856–858.
    [65] Li X, Loh XJ, Wang K, He C, Li J. Poly(ester urethane)s consisting of poly[(R)-3-hydroxy butyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study. Biomacromolecules. 2005, 6:2740–2747.
    [66] Zhao Q.; Cheng G, X. Preparation of biodegradable poly(3-hydroxybutyrate) and poly(ethylene glycol) multiblock copolymers. Journal of Materials Science 2004, 39: 3829-3831.
    [67] Saad GR. Calorimetric and dielectric study of the segmented biodegradablepoly(ester-urethane)s based on bacterial poly[(R)-3-hydroxy butyrate]. Macromol Biosci. 2001, 1:387–396.
    [68] Xian Jun Loh , Xin Wang , Hongzhe Li , Xu Li , Jun Li. Compositional study and cytotoxicity of biodegradable poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol). Materials Science and Engineering C 2007, 27: 267–273.
    [69] Xian jun loh.; Kah kyee Tan, Xu Li, Jun Li. The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol). Biomaterials 2006, 27, 1841-1850.
    [70] Qiang Zhao, Guoxiang Cheng, Cunjiang Song, Yi Zeng, Jian Tao, Liguang Zhang. Crystallization behavior and biodegradation of poly(3-hydroxybutyrate) and poly(ethylene glycol) multiblock copolymers. Polymer Degradation and Stability 2006, 91: 1240-1246
    [71] Z.B. Li, K.T. Xu and G.Q. Chen,“Novel Amphiphilic Poly(ester-urethanes) Based on Poly (R-3-hydroxybutyrate) (PHB): Synthesis and Biocompatibility”Polym. Prepr. 2007, 48: 458-460.
    [72] Z.B. Li, K.T. Xu and G.Q. Chen,“Novel Amphiphilic Poly(ester-urethanes) Based on Poly[(R)-3-hydroxyalkanoate)] (PHA): Synthesis, Biocompatibility and Aggregation in Aqueous Solution”Polymer International. (2008 In press).
    [73] Hao J, Deng X. Semi-interpenetrating networks of bacterial poly(3-hydroxybutyrate) with net-poly(ethylene glycol). Polymer. 2001, 42: 4091–4097.
    [74] Zibiao LI, Kaitian XU. Synthesis and Characterization of Biodegradable Elastomeric Poly(ester-urethane) Based on Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) via Melting Polymerization. (Submitted to Macromolecular Chemistry and Physics under peer review).
    [75] Zibiao Li, Xiaodi Yang, Zhifei Chen. In vivo and vitro study of novel amphiphilic poly(ester-urethane) block copolymers based on PHBHHx. (Manuscript in preparation)
    [76] Timbart L, Renard E, Langlois V, Guerin P. Novel biodegradable copolyesters containing blocks of poly(3-hydroxyoctanoate) and poly(ε-caprolactone): synthesis and characterization. Macromol Biosci. 2004, 4:1014–1020.
    [77] Austin P. Andrade, Bernard Witholt, Dongliang Chang, and Zhi Li. Synthesis and Characterization of Novel Thermoplastic Polyester Containing Blocks of Poly[(R)-3-hydroxyoctanoate] and Poly[(R)-3-hydroxybutyrate]. Macromolecules 2003, 36, 9830-9835.
    [78] Austin P. Andrade, Peter Neuenschwander, Roland Hany, Thomas Egli, Bernard Witholt, and Zhi Li. Synthesis and Characterization of Novel Copoly(ester-urethane) Containing Blocks of Poly-[(R)-3-hydroxyoctanoate] and Poly-[(R)-3-hydroxybutyrate]. Macromolecules 2002, 35:4946-4950.
    [79] GAMAL R. SAAD, Y. J. LEE,2 H. SELIGER. Synthesis and Characterization of Biodegradable Poly(Ester-Urethanes) Based on Bacterial Poly(R-3-Hydroxybutyrate). Journal of Applied Polymer Science. 2002, 83: 703–718.
    [80] Hulya Arslan, Ayfer Mentes, Baki Hazer. Synthesis and Characterization of Diblock, Triblock, and Multiblock Copolymers Containing Poly(3-hydroxybutyrate) Units. Journal of Applied Polymer Science. 2004, 94: 1789–1796.
    [81] Xu Li, Kerh Li Liu, Jun Li, Eunice Phay Shing Tan, Lee Meng Chan, Chwee Teck Lim, and Suat Hong Goh. Synthesis, Characterization, and Morphology Studies of Biodegradable Amphiphilic Poly[(R)-3-hydroxybutyrate]-alt-Poly(ethylene glycol) Multiblock Copolymers. Biomacromolecules. 2006, 7: 3112-3119.
    [82] Jun Li, Xu Li, Xiping Ni, Xin Wang, Hongzhe Li, Kam W. Leong. Self-assembled supramolecular hydrogels formed by biodegradable PEO–PHB–PEO triblock copolymers and a-cyclodextrin for controlled drug delivery. Biomaterials. 2006, 27: 4132–4140.
    [83] Xian Jun Loh, Suat Hong Goh, and Jun Li. New Biodegradable Thermogelling Copolymers Having Very Low Gelation Concentrations. Biomacromolecules. 2007, 8: 585-593.
    [84] Xian Jun Loh, Suat Hong Goh, and Jun Li. Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol). Biomaterials 2007, 28: 4113–4123.
    [85] Kerh Li Liu, Suat Hong Goh, Jun Li. Controlled synthesis and characterizations of amphiphilic poly[(R,S )-3-hydroxybutyrate]-poly(ethyleneglycol)-poly[(R,S )-3-hydroxybutyrate] triblock copolymers. Polymer 2008, 49: 732-741.
    [86] Kerh Li Liu, Suat Hong Goh, Jun Li. Threadingα-Cyclodextrin through Poly[(R,S)-3-hydroxybutyrate] in Poly[(R,S)-3-hydroxybutyrate]-Poly(ethylene glycol)-Poly[(R,S)-3-hydroxybutyrate] Triblock Copolymers: Formation of Block-Selected. (Macromolecules under peer review).
    [87] Z. Y. Wang, Y. M. Zhao, F. Wang, J. Wang. Syntheses of Poly(lactic acid-co-glycolic acid) Serial Biodegradable Polymer Materials via Direct Melt Polycondensation and Their Characterization [J ] . J .Appl . Polym. Sci. 2006, 99:244~252.
    [88] Z. Y. Wang, Y. M. Zhao, J. Wang, L. X. Li. Studies on the Synthesis of Poly(D ,L-lactic Acid) s Biodegradable Material through Direct Melt Poly condensation Diisocyanate Chain Extension by TDI in Melt State. Journal of Materials Science & Engineering 2007, 25: 35-39.
    [89] S. H. Oh, J. K. Kim, K. S. Song, S. M. Noh, S. H. Ghil, S. H. Yuk, J. H. Lee. Prevention of postsurgical tissue adhesion by anti-inflammatory drug-loaded pluronic mixtures with sol-gel transition behavior. J. Biomed. Mater. Res. 2005, 72A, 306-316..
    [90] Xu J, Guo BH, Yang R, Wu Q, Chen GQ, Zhang ZM, In situ FTIR study on melting and crystallization of polyhydroxyalkanoates. Polymer 2002, 43:6893-6899.
    [91] Zhao L, He Y, Inoue Y, Quantitative Analysis of Compositional Distribution in Biodegradable Poly(ethylene oxide)/Poly(3-hydroxybutyrate) Blend Film with Compositional Gradient by FT-IR Microspectroscopy. Macromol Chem Phys. 2005, 206:841-849.
    [92] H. R. Kricheldorf, S. R. Lee, N. Scharnagl, Polylactones. 28. Syndiotactic Poly(.beta.-D,L-hydroxybutyrate) by Ring-Opening Polymerization of .beta.-D,L-Butyrolactone with Butyltin Methoxides. Macromolecules 1994, 27: 3139-3146.
    [93] F. Rodriguez,“Principles of polymer system”, Hemisphere Publishing Corporation, New York Washington Philadelphia London 1989, p. 518.
    [94] Barham,P.; Keller, A.J.; Otun, E.L.; Holmes, P. A, Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J.Mater. Sci .1984, 19: 2781-2794
    [95] Martuscelli, E.;Silvertre,C.;Assonizio,M.L.;Amelino,L. Phase structure and compatibilitystudies in poly(ethylene oxide)/poly(methyl methacrylate) blends. Makromol.Chem.1986, 187: 1557-1571.
    [96] Q. Lin, U. Serkan, F. Ann R, Y. P. Wei, H. M. Li, A. R. Scott, L. Timothy E, K. Hans R, Synthesis and characterization of poly(ethylene glycol) methyl ether endcapped poly(ethylene terephthalate). Macromol. Symp. 2003, 199: 163-166.
    [97] Maurizio, A.; Ezio, M.; Pietro Greco. Crystallization behaviour of poly(ethylene oxide) from poly(3-hydroxybutyrate)/poly(ethylene oxide) blends: phase structuring, morphology and thermal behaviour. Polymer 1991, 32:1647-1653.
    [98] Maurizio, A.; Ezio, M. Poly--(?)(3-hydroxybutyrate)/poly(ethylene oxide) blends: phase diagram, thermal and crystallization behaviour. Polymer, 1988, 29:1731-1737.
    [99] Zhao L, Kai WH, He Y, Zhu B, Inoue Y, Effect of aging on fractional crystallization of poly(ethylene oxide) component in poly(ethylene oxide)/poly(3-hydroxybutyrate) blends. J Polym Sci Part B: Polym Phys 2005, 43:2665-2676.
    [100] Y. Doi, S. Kitamura, H. Abe, Microbial Synthesis and Characterization of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate).Macromolecules. 1995, 28: 4822-4828.
    [101] G. R. Saad, Y. J. Lee, H. Seliger, Synthesis and Thermal Properties of Biodegradable Poly(ester-urethane)s Based on Chemo-Synthetic Poly[(R,S)-3-hydroxybutyrate]. Macromol. Biosci. 2001, 1: 91-99.
    [102] L. W. Seong, O. K. Bong, S. J. Hae, N. C. Ho, Polymerization of aqueous lactic acid to prepare high molecular weight poly(lactic acid) by chain-extending with hexamethylene diisocyanate. Polymer Bulletin. 1995, 35: 415-421.
    [103] G. Seretoudi, D. Bikiaris, C. Panayiotou. Synthesis, characterization and biodegradability of poly(ethylene succinate)/poly(-caprolactone) block copolymers. Polymer. 2002, 43: 5405-5415.
    [104] R. C. Luo, K. T. Xu, G. Q. Chen, Study of Miscibility, Crystallization, Mechanical Properties, and Thermal Stability of Blends of Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate- co-4-hydroxybutyrate). J. Appl. Polym. Sci. 2007, 105: 3402-3408.
    [105] Yu K, Eisenberg, Multiple Morphologies in Aqueous Solutions of Aggregates ofPolystyrene-block-poly(ethylene oxide) Diblock Copolymers. Macromolecules. 1996, 29: 6359-6361.
    [106] Mi YL, Chan YN, Trau D, Huang PB, Chen EQ, Micromolding of PDMS scaffolds and microwells for tissue culture and cell patterning: A new method of microfabrication by the self-assembled micropatterns of diblock copolymer micelles. Polymer. 2006, 47:51245130.
    [107] Zheng Z, Bei FF, Deng Y, Tian HL, Chen GQ, Effects of crystallization of polyhydroxyalkanoate blend on surface physicochemical properties and interactions with rabbit articular cartilage chondrocytes. Biomaterials. 2005, 26: 3537-3548.
    [108] Zhao K, Deng Y and Chen GQ, Effects of surface morphology on the biocompatibility of polyhydroxyalkanoates. J Biochem Eng. 2003, 16: 115-123.
    [109] Jiang Y, Zhou JJ and Li L, Surface Properties of Poly(3-hydroxybutyrate-co-3- hydroxyvalerate) Banded Spherulites Studied by Atomic Force Microscopy and Time-of-Flight Secondary Ion Mass Spectrometry. Langmuir. 2003, 19: 7417-7422.
    [110]. Xu J, Guo BH, Zhang ZM, Zhou JJ, Jiang Y, Yan S, Li L, Wu Q, Chen GQ and Schultz JM, Direct AFM Observation of Crystal Twisting and Organization in Banded Spherulites of Chiral Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules . 2004, 37: 4118-4123.
    [111] Jeong B, Bae YH, Lee DS and kim SW, Biodegradable block copolymers as injectable drug-delivery systems. Nature. 1997, 388: 860-862.
    [112] Pazur RJ, Hocking PJ, Marchessault RH, Crystal Structure of Syndiotactic Poly(-hydroxybutyrate) from X-ray Fiber and Powder Diffraction Analyses and Molecular Modeling. Macromolecules. 1998, 31: 6585-6592.
    [113] Gee PJ,. Hamprecht FA, Van Gunsteren WF, A Molecular-Dynamics Simulation Study of the Conformational Preferences of Oligo(3-hydroxyalkanoic acids) in Chloroform Solution. Helvetica Chimica Acta. 2002, 85: 618-632.
    [114] P. B. van Wachem, T. Beugeling, J. Feijen, A. Bantjes, J. P. Detmers, W. G. van Aken, Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities. Biomaterials 1985, 6: 403-408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700