灵宝大枣遗传多样性的表型与ISSR分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灵宝大枣(Ziziphus jujuba‘Lingbaodazao’)果实个大,糖分含量高,营养丰富,是枣(Ziziphus jujuba Mill.)的一个优良地方品种。灵宝大枣有栽培历史悠久,在长期的栽培过程中,由于气候、土壤等自然条件和人类生产活动的影响,其形态特征、生物学特征和品质特征均发生了较大的变异,对灵宝大枣生产的标准化和商品化产生了不利的影响,但同时也为从中选育优良品系奠定了良好的基础。本文采用传统形态学标记方法并结合技术成熟稳定、经济适用且多态性检测水平高的ISSR标记方法,对灵宝大枣群体的遗传多样性、遗传学结构及遗传学关系进行了研究,收集了一些优良单株并进行了嫁接实验,为灵宝大枣新品种选育、种质资源保护提供理论依据。主要结果如下:
     1.对70份灵宝大枣材料28个表型性状的变异系数分析结果显示:灵宝大枣14个植株性状的平均变异系数为17.36%,平均方差为9.3267;8个果实外观性状的平均变异系数为25.29%,平均方差为15.1270;6个果实主要内含物性状的平均变异系数为11.39%,平均方差为8.1293。表明在灵宝大枣表型总变异中果实的变异程度最高,植株变异程度居中,而内含物最为稳定,变异系数也最小。
     2.表型性状的聚类分析结果表明:供试的70份材料可以分为3个群组,第一群组为大果型,为灵宝大枣的典型代表类型,第二群组为小果型和长果型,在灵宝大枣中种类中比较稀少。第三组群仅有1株,形态特征多方面异于其他单株,可能是灵宝大枣的变异单株或者同名异物单株。对灵宝大枣10个主要性状的相关性分析结果表明:果形主要受到果横径变异的影响最大;单果重和内含物含量的关系比较密切,内含物各性状之间的相关关系不明显。
     3.改良后的SDS法提取的灵宝大枣基因组DNA,纯度较好平均OD260/280值为1.77;平均得率为93.7μg/g;完整性好。可以完全满足后期ISSR扩增的需要。
     4.建立和适合灵宝大枣的ISSR-PCR反应体系:总体积20μL,其中含模板DNA80ng,引物浓度0.7μmol/L,2×Taq PCR MasterMix 10.0μl,用无菌去离子水补足20μl。扩增程序:94℃预变性5min,94℃变性30s,54℃(视引物而定)复性45s,72℃延伸75s,35个循环;72℃延伸10 min,4℃保存,筛选出多态性较好的12条ISSR引物用于扩增。
     5.共选出扩增稳定、多态性较好的引物12个,对70份灵宝大枣基因组DNA进行了扩增,共扩增出105个位点,平均每引物扩增位点8.7个,其中多态位点91个,多态位点百分率86.67%,检查到的等位基因数na=1.8667,有效等位基因数ne= 1.5491,基因多样性h= 0.3183,香农信息指数I= 0.4725,说明70份灵宝大枣材料间存在着较高的遗传变异。
     6.对灵宝大枣的群体遗传结构分析表明:灵宝大枣群体的基因多样度Ht为0.3193,群体内基因多样度Hs为0.2828,群体间基因多样度Dst为0.0365,基因分化系数Gst为0.1144,说明仅有11.44%的变异来源于居群之间,而主要的遗传变异来自群体内的个体之间,基因流Nm为3.8717>1,说明居群间的基因流动性较大,居群间的分化比较小。
     7.基于ISSR数据的聚类分析同基于表型的聚类分析的结果有所差异,但基本保持一致;主坐标分析更加直观地揭示灵宝大枣各材料之间的亲缘关系;对遗传距离和地理关系的相关系分析表明,遗传距离和地理距离有着弱相关关系。
     8.综合表型特征和分子生物学特征,从70株优良单株中挑选出具有代表性优良单株,用高接换头嫁接的方法,在灵宝和新郑进行异地对比试验和遗传稳定性测定,结果有待于经一步观察。
Ziziphus jujuba 'Lingbaodazao' which is a fine local variety with big fruit, high sugar, nutrient-rich, and has a long history cultivated, in the long-term cultivation process, because of climate, soil and other natural conditions and the impact of human activities, their morphological characteristics, biological characteristics and quality features of the natural are significant variation of Lingbao jujuba production standardization and commercialization of adverse effects, but also for the breeding of improved strains from which laid a favorable foundation. In this paper, the traditional morphological markers combined with technology is mature and stable economy with high levels of applicable and polymorphism of ISSR markers, the genetic diversity Lingbao jujuba, the relationship between genetic structure and genetic studies, collecting some fine individual and carrying out grafting experiments, the Lingbao jujuba breeding, germplasm conservation provide a theoretical basis. The main results are as follows:
     1. Ziziphus jujuba 'Lingbaodazao' material on 70 of 28 phenotypic analysis showed that the coefficient of variation: 14 Ziziphus jujuba 'Lingbaodazao' plant traits, the average coefficient of variation was 17.36%, the average variance of 9.3267; 8 traits of the average fruit coefficient of variation was 25.29%, the average variance is 15.1270; 6 characters inclusions, the average coefficient of variation was 11.39%, the average variance is 8.1293. Shows that Ziziphus jujuba 'Lingbaodazao' fruit phenotypic variation of the total variance in the highest degree of plant variation center, while the inclusion of the most stable, the coefficient of variation is also minimal.
     2. Phenotypic characteristics of cluster analysis showed that: 70 materials were divided into three groups, the first group for large fruit, as a typical representative of the type, and the second group of small fruit type and long-shaped fruit, these are rare species. The third group only one, different from many other plant morphology, might be a variety in the population or homonym. With the 10 main characters Ziziphus jujuba 'Lingbaodazao'correlation analysis showed that: fruit shaped largely by the impact of fruit diameter; fruit weight and content of inclusions close relationship, inclusion relationship between the characters is not obvious.
     3. The improved SDS method is the best one with fewer steps, easy to handle and stable. The average OD260/280 1.77; the average yield was 93.7μg / gThe extraction is suitable acting as template DNA for ISSR-PCR amplification.
     4. The optimal ISSR-PCR reaction system was determined.Each 20uL reaction system should contain 80ng template DNA , 0.7mmol/L primer , 10.0μL 2×Taq PCR MasterMix.The amplification program as follows:predenature at 94℃for 5min,followed by denature at 94℃for 45s,annealing at 54℃(depend on primer ) for 1 min,extend at 72℃for 90s,35 cycles,and then extend at 72℃for 8min, final store at 4℃for ever.
     5. 12 stable polymorphisms primers were selected from 100 ISSR primes, 70 Ziziphus jujuba 'Lingbaodazao' on genomic DNA was amplified to a total out of 105 sites per primer locus 8.7 a, 91 polymorphic sites, the percentage of polymorphic loci was 86.67%, the number of alleles na = 1.8667, the effective number of alleles ne = 1.5491, gene diversity h = 0.3183, Shannon information index I = 0.4725 shows that between 70 Ziziphus jujuba 'Lingbaodazao' material there is a high genetic variation.
     6. Population genetic structure analysis shows that: Ziziphus jujuba 'Lingbaodazao' group gene diversity Ht was 0.3193, gene diversity within populations Hs was 0.2828, gene diversity among populations Dst was 0.0365, coefficient of gene differentiation Gst was 0.1144, that indicating only 11.44% of the variation comes from the population between the main genetic variation among individuals within populations and gene flow Nm to 3.8717> 1, indicating that gene flow among populations is large,therefore,the differentiation between populations is relatively small.
     7. Based on ISSR data of cluster analysis with cluster analysis based on phenotypic results were inconsistent, but basically indentical; principal coordinate analysis revealed Ziziphus jujuba 'Lingbaodazao' genetic relationship between the various materials for futher; on the genetic distance and the geographical relationship of the correlation analysis showed that genetic distance and geographic distance has a weak correlation.
     8. Comprehensive phenotypic and molecular characteristics of an integrated morphological and molecular cluster, from 70 to select 6 fine individuals, with grafting methods for remote testing and species comparison determination of genetic stability, the results need to be observed further.
引文
埃尔特曼.G.孢粉学手册[M].北京:科学出版社,1978,10-60.
    常经武.枣核是鉴定品种的重要特征[J].中国果树,1985(4),33-35.
    陈贻金.中国枣树学概论[M].北京:中国科学技术出版社,1991.
    程昌凤,何桥,洪林,等.晚熟甜橙芽变的ISSR鉴定[J].西南农业学报,2008,21(5):1378-1380.
    方从兵,盛炳成,章镇.梅花品种分类的花粉形态学研究[J].安徽农业大学学报,2002,29 (2):137-142.
    冯晨静,张元慧,徐秀英,等.14份杏种质的ISSR分析[J].河北农业大学学报,2005,28(5):52-55.
    冯春宝,陈学森,杨红花,等.蒙山脆枣与枣及酸枣亲缘关系的研究[J].石河子大学学报(自然科学版),2004,22(4):311-315.
    冯建灿,潘建宾张玉洁,等.河南枣品种数量分类研究[J].经济林研究,1994, 12 (2) : 29-32.
    高梅秀,张金海.不同枣品4种同工酶活性的分析[J].西北农林科技大学学报(自然科学版),2004(32):110-111.
    高志红,章镇,盛炳,等.梅品种数量分类研究[J].北京林业大学学报,1999, 21(2) : 12-15.
    葛颂,洪德元.生物多样性研究的原理和方法[M].北京:中国科学技术出版社,1994.
    葛永奇,邱英雄,丁炳扬,等.孑遗植物银杏群体遗传多样性的ISSR分析[J].生物多样性,2003,11(4):276-287.
    桂腾琴,乔爱民,等.果梅ISSR-PCR反应体系的建立和优化[J].西南大学学报(自然科学版)2007,29 (10):124-127.
    何小兰,敖志文.泥炭藓植物数量分类的研究植物研究[J].植物研究,1986, 9 (4) : 135-144.
    何新华,李杨瑞,郭永泽,等. ISSR鉴定亲缘关系非常近的芒果栽培品种[J].广西植物,2007 ,27(1) :44-47.
    何业华,胡中沂,马均,等.凤梨类植物的种质资源与分类[J].经济林研究,2009, 27(3) : 102-107.
    洪德元.植物细胞分类学[M].北京:科学出版社,1990.
    胡守荣,夏铭,郭长英,等.林木遗传多样性研究方法概况[J].东北林业大学学报,2001,29(3):72-75.
    黄建,李新岗,高文海,等.晋枣品种变异研究[J].西北林学院学报,2005,20(1):71-73.
    李登科.枣种质资源描述规范和数据标准[M].北京:中国农业出版社,2006.
    李海涛.河南枣主栽品种及灰枣群体遗传变异分析[D].郑州,河南农业大学,2008.
    李继东,毕会涛,等.灰枣成熟叶片DNA提取及ISSR反应体系构建[J].园艺学报,2008,25(6):837-841.
    李莉.RAPD及SRAP标记在中国枣属植物系统分类学中的应用研究[D].保定:河北农业大学,2007.
    李守勇,续九如,孙浩元.不同产地冬枣的RAPD分析[J].西北林学院学报,2006,21(5): 89-93.
    李树林,曲泽洲,王永蕙.枣品种资源的花粉学研究[J].河北农业大学学报,1987,10 (3):1-9.
    李振山.枣ISSR反应体系的建立及其在新郑枣区优良单株早起鉴定上的应用[D ].郑州:河南农业大学.
    刘孟军.RAPD技术在枣和酸枣种质鉴定中的应用研究[A].中国科协第二届青年学术年会园艺
    学论文集,北京:北京农业大学出版社,1995:337-341.
    刘孟军.枣属植物分类学研究进展[J] .园艺学报,1999,26(5):302~308.
    刘平,彭建营,彭士琪,等.应用RAPD标记技术探讨枣与酸枣的分类学关系[J].林业科学,2005 41(2):182-185.
    刘平,彭建营,彭士琪,等.赞皇大枣的群体遗传多样性评价[J].果树学报,2006,23(5):685-689.
    刘志彦,陈北光,等.植物生态型分类研究进展[J] .生态科学,2004,23 (4):365-369.
    罗淑萍,曾斌,等.野扁桃ISSR-PCR反应体系的优化[J].经济林研究,2007,25(3):1-5.
    马丹慧.杏种质资源亲缘关系及分类地位的ISSR和SSR分子标记研究[D];长春,吉林农业大学;2007.
    孟祥勋.生物科学中的种质资源学[J].生物学通报,2002,37(6):22-24.
    彭建营,刘平,周俊义.‘赞皇大枣’不同株系的染色体数及其核型分析[J].园艺学报,2005,32 (5):798-801.
    彭建营,束怀瑞,孙仲序.中国枣种质资源的RAPD分析[J].园艺学报,2000,27(3):171-176.
    彭建营,王永蕙,彭士琪.用花粉形态鉴定枣品种和酸枣类型[J].河北农业大学学报,1992,15:31~34.
    彭云滔,唐绍清,李伯林,等.野生罗汉果遗传多样性的ISSR分析[J].生物多样性,2005,13(1):36-42.
    齐靖,申连英,等.枣ISSR扩增体系的建立[J].华北农学报,2007,2008 23(s2) :209-212
    齐靖.枣树型和针刺性状的QTL分析[D].保定:河北农业大学,2006.
    钱迎倩,马克平.生物多样性研究的原理与方法[M].北京:中国科学技术出版社,1994.
    乔玉山,章镇,房经贵,等.李种质资源ISSR反应体系的建立[J].果树学报,2003,20(4):270-274.
    邱芳,伏健民.遗传多样性的分子检测[J].生物多样性,1998,6(2):143-150.
    曲泽州,王永蕙.中国果树志枣卷[M] .北京:中国林业出版社,1993.
    曲泽洲,王永德,吕增仁.枣和酸枣的染色体数目研究[J].园艺学报,1986,13(4)232-236.
    曲泽洲,王永蕙,张凝艳.同工酶在枣品种分类研究中的应用[J].河北农业大学学报,1990,4:1-6.
    申连英.枣遗传图谱构建及性状的QTL定位研究[D ].保定:河北农业大学, 2005.
    施立明.遗传多样性及其保存[J] .生物科学信息,1990(2) :158-164.
    宋婉,续九如,杨凯,等.AFLP技术在中国枣优良品种鉴定中的应用[A].全国干果生产与科研进展学术研讨会.保定:河北农业大学,1999.
    王宏,申晓辉,郭瑛.野鸢尾染色体的核型分析及其分类地位探讨[J].上海交通大学学报(农业科学版,2007,25(3):289-293.
    王建波. ISSR分子标记及其在植物遗传学研究中的应用[J].遗传,2002,24(5):613– 616.
    王进,何桥,欧毅,等.李种质资源ISSR鉴定及亲缘关系分析[J].果树学报,2008,25(2):182-187.
    王开发,王宪曾.孢粉学概论[M].北京:北京大学出版社,1983.
    王葳,张秀珍,张志善.我国枣树研究评述[J].经济林研究,1992,10(1):52-55.
    王秀伶,邵建柱,张学英,等.POD同工酶在酸枣、枣分类中的应用[J].武汉植物学研究,1999, 17 (4) : 307- 313.
    王永康,田建保,王永勤,等.枣树品种品系的AFLP分析[J].果树学报,2007,24(2):146-150.
    吴子龙,方连玉,王军,等.15份葡萄种质亲缘关系的ISSR分析果树学报[J].2006,23(4) , 605-608.
    徐克学.数量分类学[M].北京:科学出版社,1994.
    杨继.数量分析方法在种内变异研究中的运用[J].植物学通报,1991,8(1):30-36.
    姚明哲黄海涛余继忠等ISSR在茶树品种分子鉴别和亲缘关系研究中的适用性分析[J].茶叶科学,2005,25(2):153-157
    张飞琳,郭美丽,等.太白山油松球果和种子形态变异分析[J].陕西林业科技,2007,(5):1-4,28.
    张行言,王其超热带型荷花的发现与荷花品种分类系统[J]经济林研究,2006, 22(7) : 82-85.
    赵锦,刘孟军.枣树品种品系及其近缘种的RAPD分析[J].中国农业科学,2003,36(5):590-594.
    赵晓平,荣威恒,王福喜,等.不同枣树品种的同工酶分析[J].河南农业科学,2008(6):85-88.
    中华人民共和国卫生部,中国国家标准化管理委员会. GB /T12293290,水果、蔬菜制品可滴定酸度的测定[S].北京:中国标准出版社, 2004
    中华人民共和国卫生部,中国国家标准化管理委员会. GB /T1229521990,水果、蔬菜制品可溶性固形物的测定[S].北京:中国标准出版社, 2004
    中华人民共和国卫生部,中国国家标准化管理委员会. GB /T619421986,水果、蔬菜制品可溶性总糖的测定[S].北京:中国标准出版社, 2004
    中华人民共和国卫生部,中国国家标准化管理委员会.水果、蔬菜及其制品总抗坏血酸的测定(2,6-二氯靛酚滴定法)[S].北京:中国标准出版社, 2004
    钟扬,陈家宽,黄德世.数量分类的方法和程序[M].武汉:武汉大学出版社,1990.
    周延清.DNA分子标记技术在植物研究中的应用[M].北京:化学工业出版社,2005,145.
    周延清.生物遗传标记与应用[M].北京:化学工业出版社, 2008.
    朱元娣,李光晨,李春雨,等.苹果柱型基因的ISSR分子标记研究[J].园艺学报,2003(5) :505-510.
    卓书斌,黄小凤,袁志永,等.台湾青枣不同品种表型差异和遗传多样性研究[J].现代农业科学,2009,16(2):13-16.
    邹春静.沙地云杉生态型对干旱胁迫的生理生态响应[J].应用生态学,2003,14(9):1446-1450.
    Aga,Esayas. Molecular Genetic Diversity Study of Forest Coffee Tree (Coffea arabica L.) Populations in Ethiopia: Implications for Conservation and Breeding. [D]. Alnarp: Swedish University of Agricultural Sciences, 2005.
    Botstein B,White R L,Skolinck M M, et .Construction of a genetic linkage map in man using restriction fragment length polymorphisms [J].Am J Hum Gent,32:314-331
    Brown A H D.B S Weir.Measuring genetic variation in plant population In:S DTanksiey,T J Orton (eds),Isozyme in plant genetics and breeding ,part A, Amsterdan: Elsevier,1983,219-239.
    Brown A H D.Isozymes, plant population genetic structure and genetic conservation Theor.Appl. Genet, 1978, 52: 145-157.
    Daniel Potter, Fang You Gao.Inter-simple Sequence Repeat Markers for Fingerprinting and Determining Genetic Relationships of Walnut (Juglans regia) Cultivars [J].Amer.Soc.Hort. Sci. 2002, 127(1):75-81.
    E O Wiley. Phylogenetics.the Theory and Practice of Phylogenetic Systematics. Wiley-Interscience, New York. 1981.
    Eiadthong W,Yonemori K,Sugiura A.et a1.Identification of mango cultivars of Thailand and evaluation of their genetic variation using the amplified fragments by simple sequence repeat-(SSR)anchored primers[J].Sci Hort,1999,82:57-66.
    Erdtman G. Handbook of palynology [M].Hafner Publishing Co, New York, 1969.
    Fang D Q, Krueger R R, Rose M L.Phylogenetic relationships among selected Citrus germplasm accessions revealed by inter-simple sequence repeat (ISSR) markers [J]. Amer Soc Hort Sci,1998,123(4):6l2-617.
    Hamrick, J. L., Godt, M. J. W. Allozyme diversity in plant species.[J] Plant population genetics, breeding, and genetic resources.1990,43-63.
    Hemmat M,Weeden N F.The use of Molecular Markers to Analyze the inheritance of morphological and developmental traits in apple .1995, J. Amer. Soc. Hort. Dci.,in press.
    J.D. Li, H.T. Bi, H.T. Li, et.al.Genetic Analysis of Ziziphus jujuba‘huizao’Using ISSR Markers [J].Acta Horticulturae, 2009, 840:135-141.
    Luis G,Luisa MC,Cristina M O.Phenetic characterization of plum cultivars by high multiplex ratio markers:Amplified fragment length polymorphisms and inter-simple sequence repeats [J]. Amer SocHort Sci, 2001, 126(1):72-77.
    M Casasoli1, C Mattioni1, M Cherubini1 and F. Villanil A genetic linkage map of European chestnut (Castanea sativa Mill.) based on RAPD, ISSR and isozyme markers [J]. TAG Theoretical and Applied Genetics, 2001, 102(8):1190-1199.
    M.Gupta, Y S. Chyi.Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor. Appl. Genet. 89: 998 -1006
    Moreno, S, J P. Martin, J M Ortiz. Inter-simple sequence repeats PCR for characterization of closely related grapevine germplasm. Euphytica, 1998, 101:117-125.
    Nei M .Molecular population genetics and evolution.Amsterdan: North Holland, 1975.
    Nei M .Sampling variance of heterozygosity and genetic distance Genetics, 1974, 76:379-390.
    Nei M.Analysis of gene diversity in subdivided populations. Proc.Nat1.Acad.USA,1973,70:3321-3323.
    R?der M S, Korzun V, Wendehake K A.microsatellite map of wheat. Genetics[J]. 1998, 149(4):2007-23.
    S D.Tanksley,S R.Mccouch.Seed Banks and Molecular Maps: unlocking Genetic Potential from the Wild[J] Science,1997,(277):1063-1066.
    Tutel B,Kandemir I,Kus S,Kence A.Classification of Turkish plantago L.species using numerical taxonomy [J].Turk J Bot, 2005.29:51-61.
    V J V Gemas , M C Almadanim, R Tenreiro,et. Genetic diversity in the olive tree (Olea europaea L.subsp.europaea) cultivated in Portugal revealed by RAPD and ISSR markers [J]. Genetic Resources and Crop Evolution, 2004, 51(1):501-511.
    Wright S. The genetical structure of population .Ann. Eugenics 1951, 15: 323-354.
    Yamamoto T, Kimura T, Sawamura Y, et al. SSRS isolatied from apple can identify polymorphism and genetic diversity in pear. Theor ApplGenet, 2001, 102:865-870.
    Yang R C, F C Yeh. Genetic consequences of in situ and ex situ conservation of forest trees.The Forestry Chronicle, 1992, 68: 720-729.
    Zietkiewicz, E., A. Rafalski, and D. Labuda. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 1994, 20:176-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700