马铃薯花色苷及其生物合成的主要关键酶基因的克隆与表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯(Solanum tuberosum)是仅次于小麦、玉米和水稻的第四大粮食作物。其块茎是繁殖器官,也是产品器官。块茎有不同颜色,如白色、红色和紫色。花色苷是有色块茎颜色的决定因子,作为天然色素,花色苷可应用于食品、医药和化妆品等行业。同时,它被证明具有抗癌、抗氧化和预防心血管疾病的作用。因此,近年来有关花色苷的生化与分子生物学研究,引起了全世界科学家的广泛关注和浓厚兴趣。
     花色苷的生物合成途径是被最为广泛而深入研究的植物次生代谢途径,特别在主要模式植物中,已经有了清楚的认识。一些花色苷生物合成途径中的关键酶基因,已经从马铃薯栽培种(S.tuberosum L.)中克隆到,如CHS基因、F3H基因、DFR基因和F3’5’H基因,而在马铃薯野生种(S.pinnatisectum)中,还未见到花色苷生物合成酶基因克隆及其表达研究的报道。本研究以野生种为材料,克隆了CHS、F3H、DFR和3GT四个基因,分析了这四个基因的表达情况,通过转基因对3GT基因进行了功能验证;以马铃薯栽培种(S.tuberosum cv.Chieftain)为材料,研究了CHS、F3H、F3’5’H、DFR和3GT五个基因的组织表达和诱导表达。研究的主要结果如下:
     1.马铃薯花色苷的种类、含量和稳定性及影响其生物合成的因素
     用1%(v/v)盐酸甲醇溶液分别从红色和紫色马铃薯中提取色素,用正已烷除杂,再经薄层层析(TLC)纯化后,在紫外-可见分光光度计下扫描。根据提取液特性、Rf值和紫外-可见光谱特点,参考已有相关资料,初步判断马铃薯紫色色素主要为锦葵素的衍生物,而红色色素主要为天竺葵素衍生物。紫色马铃薯的花色苷含量是红色马铃薯花色苷含量的2.9倍。光、热和pH值对花色苷的稳定性有显著影响,但紫色马铃薯花色苷的稳定性好于红色马铃薯花色苷。愈伤组织来源于马铃薯品种Chieftain,在红色愈伤组织中,低浓度的2,4-D有利于花色苷的积累,高浓度的2,4-D促进愈伤组织的生长而不利于花色苷的积累;高浓度的6-BA能促进红色愈伤组织中花色苷的积累和诱导白色愈伤组织合成花色苷,但抑制生长;卡那霉素能使白色愈伤组织变红并积累花色苷,随着卡那霉素浓度的提高,愈伤组织生长受到严重抑制并最终变褐死亡;提高蔗糖浓度能促进马铃薯愈伤组织花色苷的产生和积累而抑制生长。
     2.马铃薯野生种花色苷生物合成相关基因的克隆与序列分析
     设计简并引物,通过RT-PCR方法从马铃薯野生种(S.pinnatisectum)紫色芽的cDNA中克隆到了CHS、F3H、DFR和3GT基因的全长cDNA。序列分析表明,以上四个基因分别编码389、358、382和448个氨基酸残基的多肽,在氨基酸水平上与茄科植物相应多肽的同源性最高,达到76-96%;多重比较和系统发育分析表明它们分别属于各自基因家族中的一员。
     3.马铃薯野生种3GT基因的功能验证
     为了验证马铃薯野生种3GT基因的功能,构建带CaMV 35S启动子的表达载体pG3GT,转化农杆菌GV3101,用茵液浸泡花序法对拟南芥进行遗传转化,在含50mg/LKan的1/2MS培养基上筛选,得到4个抗性幼苗,转化率为0.13%,对移栽成活的3株进行PCR检测为阳性,Southern blot分析2株表现为阳性并为单拷贝整合。其中一株的叶片和茎杆颜色变成紫红色,经花色苷含量的测定表明其含量比野生型植株高出7.01倍,从而初步验证了3GT基因的功能和活性。
     4.马铃薯花色苷生物合成相关基因的表达分析
     用RT-PCR分析了马铃薯野生种的CHS、F3H、DFR和3GT基因的空间表达情况,这些基因主要在花、匍匐茎和顶芽中表达,除3GT基因外,其它3个基因在根中的表达没有检测到,CHS在根和块茎中没有检测到。在马铃薯野生种的白色块茎中这些基因在光诱导之前表达量很低或不表达,但在光照之后表达量显著增加,随着光照时间的延长,白色块茎变为紫红色,花色苷大量积累。
     用RT-PCR分析了CHS,F3H,DFR、F3’5’H和3GT五个基因在马铃薯栽培种Chieftain植株中的表达情况,结果表明,这些基因在匍匐茎的表达量最高,这与其花色苷积累量也较高是相一致的。在块茎中五个基因均有表达,但表达量相对较低,这可能与花色苷仅在红色表皮组织中合成而在占大部分体积的白色薯肉中不合成有关。
     在附加6-BA为2mg/L、2,4-D为0.5 mg/L的MS培养基上,分离到绿色、白色和红色三种愈伤组织(细胞系),三种愈伤组织在叶绿素和花色苷的含量上显著不同,其中绿色和白色愈伤组织中几乎不含花色苷,而红色愈伤组织则大量积累花色苷。对CHS、F3H、DFR、F3’5’H和3GT五个花色苷生物合成相关基因分析表明,绿色和白色愈伤组织不合成花色苷主要是由于DFR基因不表达造成的。
     稀土元素铈对马铃薯悬浮培养的愈伤组织中花色苷积累及其生物合成基因的表达有显著影响。研究表明,低浓度Ce~(4+)能促进细胞和愈伤组织的生长,而高浓度Ce~(4+)则抑制生长并导致细胞死亡。不同浓度的Ce~(4+)能诱导正常的愈伤组织变红并积累花色苷。RT-PCR分析表明,用0.1 mM Ce~4处理悬浮培养的愈伤组织能显著诱导以上五个基因的表达,其表达量与花色的含量呈协同关系。
Potato (Solanum tuberosum) is the forth food crop following wheat, maize and rice inthe world. Potato tubers are multiplicative organs as well as product organs, which there aredifferent colors, e.g. white, red and purple. Anthocyanins are key factors that determinetuber color. As natural pigments, they have been used in foods, pharmaceuticals andcosmetics due to their function of anti-cancer, cardioprotection and antioxidization. So inrecent years, scientists have showed a great interest in biochemical and molecularbiological investigation of anthocyanin biosynthesis all over the world.
     The biosynthetic pathway of anthocyanins is one of the most extensively studiedpathways of plant secondary products, and it is clearly elucidated in some model organism.A few genes of anthocyanin synthesis have been cloned from potato cultivars (S. tuberosumL.), e.g., chalcone synthase (CHS), dihydroflavonol 4-reductase (DFR), flavanone3-hydroxylase (F3H), and flavonoid 3', 5'-hydroxylase (F3'5'H) genes. However, noreports in this aspect have been seen until now in wild potato species. In this research,cDNAs encoding CHS, F3H, DFR and 3GT were isolated from S. pinnatisectum, and theirexpression was analyzed. The function of 3GT was basely confirmed by transgenic plant.The expression of CHS, F3H, F3'5'H, DFR and 3GT genes from S. tuberosum cv. Chieftainwas investigated. The main results were showed as following:
     1. Preliminary studies on the categories, contents of skin color pigments and effectsof growth regulators, antibiotic and sucrose on anthocyanin synthesis in potatoes.
     The skin color pigments of potatoes were extracted in 1%HC1 (v/v) in methanol fromred and purple tubers, respectively. The extract was separated with hexane, purified by ThinLayer Chromatography (TLC). The Rf and UV-Vis spectra analysis indicated that the redpigments were primarily anthocyanin pelargonins and the purple pigments were primarilyanthocyanin petunins. The content of anthocyanins in purple tubers were 2.9 times of thatin red tubers. The stability of anthocyanins was significantly influenced by light, heat andpH value, but the anthocyanins from purple tubers were more stable than that from red tubers.
     The callus originated from the explants of S. tuberosum cv. Chieftain. The lowercontents of 2,4-D promote accumulation of anthocyanins in red callus, the higher contentsof 2,4-D stimulated callus growth and inhibited anthocyanin production in red callus. Thehigher contents of 6-BA promoted accumulation of anthocyanins in red callus, inducedanthocyanin production in white callus and inhibited callus growth. The white callus couldbe induced to turn red and accumulated anthocyanins by different concentrations ofkanamycin, while the higher contents of kanamycin inhibited callus growth and turnedbrown to lead callus dead eventually. The elevated contents of sucrose could stimulateanthocyanin production and inhibite callus growth.
     2. Cloning and sequence analysis of anthocyanin biosynthetic genes in wild potatospecies (S. pinnatisectum).
     Four complete-length cDNAs encoding CHS, F3H, DFR and 3GT were isolated fromthe sprouts by RT-PCR with the degenerated primers. The sequence analysis indicated thatCHS, F3H, DFR and 3GT cDNAs encoded the polypeptide of 389, 358, 382 and 448 aminoacid residues, respectively. Sequences of the encoded polypeptide comparison showed thatthey shared 76-96%identities with each corresponding solanaceous proteins reportedpreviously. The multiple alignment and phylogenetic analysis demonstrated that each genewas a member of a multigene family.
     3. The function of 3GT gene was confirmed by Agrobacterium-mediatedtransformation of arabidopsis thaliana.
     Arabidopsis thaliana was transformed by floral dip method with AgrobacteriumGV3101 carrying expression vector pG3GT. Four transformants were selected for theirgrowth ability on 1/2MS medium containing 50mg/L kanamycin. The frequency oftransformation was 0.13%. PCR analysis confirmed that three survival transformants werepositive. Southern blot confirmed that two transformants were positive, in which only onecopy of 3GT gene was detected. Among the transformants, there was one whose stem andleaves turn purple. The analysis showed that the content of anthocyanin was 7.01 times ofwild type. These results indicated that 3GT gene normally expressed in the transformant.
     4. Expression analysis of anthocyanin biosynthetic genes in potatoes.
     The spatial expression analysis of CHS, F3H, DFR and 3GT genes in wild potatospecies (S. pinnatisectum) indicated that these genes were preferentially expressed inflowers, stolons and terminal buds. In roots, and their transcripts could not detected except 3GT. The expression of CHS was not detected in tubers. In white tubers the genes wereexpressed a little or not, but after receiving light all the genes were induced to express intuber skins and the expression level increased greatly. The color of tubers changed fromwhite into purple with the prolongation of lighting.
     The spatial expression patterns of CHS, F3H, DFR, F3'5'H and 3GT genes in potatocultivar (S. tuberosum cv. Chieftain) were examined by RT-PCR. The expression analysisindicated that the expression of the genes was higher in stolons, and lower in tubers androots.
     The green, white and red callus were isolated from the explants of S. tuberosum cv.Chieftain on the MS medium containing 6-BA 2mg/L and 2,4-D 0.5 mg/L. The contents ofchlorophyll and anthocyanins were significantly different in the three different callus. Therewere few anthocyanins in green and white callus, but a great deal of anthocyanins in redcallus. The expression analysis of CHS, F3H, DFR, F3'5'H and 3GT genes in threedifferent callus were performed by RT-PCR. The results showed that no DFR transcriptswere detected in green and white callus to lead no anthocyanin accumulated in them.
     The effects of cerium on callus growth, anthocyanin content and expression ofanthocyanin biosynthetic genes in callus suspension cultures of S. tuberosum cv. Chieftainwere studied. The results indicated that 0.1 mmol L~(-1) Ce~(4+) could promote callus growth,increase accumulation of anthocyanins, and enhance expression of five anthocyaninbiosynthetic genes (CHS, F3H, F3'5'H, DFR and 3GT) most efficiently. But higherconcentration (1mmol·L~(-1)) of Ce~(4+) inhibited partially callus growth and 2 mmol·L~(-1) of Ce~(4+)caused cell death eventually. The results revealed that Ce4~could induce the expression ofanthocyanin biosynthetic genes and accumulation of anthocyanins.
引文
陈璋.拟南芥:植物分子生物学研究的模式物种.植物学通报,1994,11(1):6-11
    陈勇,张晴.AB-8大孔吸附树脂吸附和分离紫甘薯色素的研究.中国食品添加剂,2001,(1):6~9
    成浩,李素芳,孙锦荷.茶树培养细胞花色苷累积型与非累积型株系的差异性研究.茶叶科学,2000,20(2):124~128
    程金水.园林植物遗传学.北京:中国林业出版社,2000:23~207
    董延瑜.植物基因转移研究进展.湖南农学院学报,1994,20(6):573~584
    董云洲,段胜军,赵连元,杨秀海,贾士荣.用基因枪转化花粉获得转基因谷子和玉米.中国农业科学,1999,32(2):9~13
    付永彩,刘新仿,曹守云,孙传清,李白超,唐祚舜,王象坤,李良才,田文忠.水稻抑制衰老的嵌和基因的基因枪转化和表达分析.农业生物技术学报,1999,7(1):17~22
    傅荣昭,马江生,曹光成,李文彬,孙勇如.观赏植物色香形基因工程研究进展—文献综述.园艺学报,1995,22(4):381~385
    高爱红,童华荣.天然食用色素—花青素研究进展.保鲜与加工,2001,1(3):25~27
    巩振辉,Cecchini E,Milner JJ.以PCR鉴定转基因植株的微量DNA提取方法.西北农业大学学报,1997,25(1):45~48
    郭元林,向平.转基因技术在作物育种上的应用.西南农业学报,1997,10(4):109~113
    何小铃,王金发.观赏花卉的品质基因及其基因工程问题.植物生理学通讯,1998,34(6):462~466
    侯学文,姜悦,郭勇.转基因植物中的标记基因.生物学通报,1997,32(1):19~21
    侯学文,曾庆平,郭勇.转基因植物的一个新型标记基因.生命的化学,1997,17(2):36
    胡国武,马征,王艳东,元英进.稀土对红豆杉细胞中紫杉烯合成酶基因转录的影响.中国稀土学报,2000,18:360~362
    胡张华,黄锐之,刘智宏等.利用花粉管导入法获得转反义PEP基因大豆植株.浙江农业学报,1999,11(2):99~100
    贾彩红,赵华燕,王宏芝,邢智峰,杜克久,宋艳茹,魏建华.抑制4CL基因表达获得低木质素含量的转基因毛白杨.科学通报,2004,49(7):662~666
    贾士荣.转基因植物食品中标记基因的安全性评价.中国农业科学,1997,30(2):1~15
    姜平平,吕晓玲,朱惠丽.花色苷类物质分离鉴定方法.中国食品添加剂,2003(4):108~111
    金波,东惠茹.一品红花色的探讨.园艺学报,1994,21(1):87~90
    瞿礼嘉,顾红雅,胡苹.现代生物技术导论.北京:高等教育出版社,1998:241~286
    郎春秀,胡张华,刘智宏,黄锐之,陈锦清.油菜农杆菌基因体系的建立及转PEP反义基因油菜的获得.浙江农业学报,1999,11(2):55~58
    李云.葡萄遗传转化研究进展.生物工程进展.2000,20(3):49~52
    林泉.色素基因的表达和调控.见:许智宏,刘春明主编.植物发育的分子机理,北京:科学出版社,1998:107~119
    刘建强,孙仲序.植物基因转化方法的研究概况.河北果树,2005,5:4-6
    刘怡涛,龙春林.云南各民族使用花卉的初步研究.云南植物研究,2001,23(4):41~56
    卢钰,董现义,杜景平,李永强,王明林.花色苷研究进展.山东农业大学学报,2004,35(2):315~320
    马伯军,袁妙葆.一种简便的遗传转化技术在大麦中的应用.广西植物,1998,18(1):51~53
    门福义,刘梦芸 编著,马铃薯栽培生理,北京:中国农业出版社,1995,7~13
    孟繁静.植物花发育的分子生物学.北京:中国农业出版社,2000:225~269
    孟祥春,张玉进,王小菁.矮牵牛花瓣发育过程中花色素苷、还原糖及蛋白质含量的变化.华南师范大学学报(自然科学版),2001,(2):96~99
    庞学群,张昭其,段学武,季作梁.pH值和温度对荔枝果皮花色素苷稳定性的影响.园艺学报,2001,28(1):25~30
    彭镇华,汪政科.观赏植物基因工程研究进展.高俊平,姜伟民主编,中国花卉科技进展.北京:中国农业出版社,2001:166~172
    戚元成,张世敏,王丽萍,王明道,张慧.谷胱苷肽转移酶基因过量表达能加速盐胁迫下转基因拟南芥的生长.植物生理与分子生物学学报,2004,30(5):517~522
    任玉林,李华,邴贵德金,钦汉,逮家辉.天然食用色素花色苷.食品科学,1995,16(7):22~27
    邵莉,李毅,杨美珠,宋云,陈章良,萧师辉.查尔酮合酶基因对转基因植物花色和育性的影响.植物学报,1996,38(7):517~524
    沈世华,张秀君,郭奕明,荆玉祥.玉米基因转化的离体子房注射及转基因植株的鉴定.植物学报,2001,43(10):1055~1057
    苏焕然,张丹,汪清胤,黄永芬.花卉基因工程研究进展.北方园艺,1996,4:26~28
    孙慧生.马铃薯育种学,北京:中国农业出版社,2003,1~56
    孙明霞,王宝增,范海,赵可夫.叶片的花色素苷及其对植物适应环境的意义.植物生理学通讯,2003,39(6):688~694
    谭仁祥.植物成分功能.北京:科学出版社.2003,158~182
    谭任祥,孟军才,陈道峰.植物成分分析.北京:科学出版社.2002,498~500
    唐传.天然花色苷类色素的生理功能及应用前景.冷饮与速冻食品工业,2000(1):26~28
    唐传.植物生物活性物质.北京:化学工业出版社.2005,218~248
    唐祚舜,李良才,田文忠,王象坤.基因枪法转基因水稻中hpt基因稳定遗传.遗传学报,2000,27(1):26~33
    王道杰,王灏,李殿荣.生物技术在油菜遗传改良中的作用.西北农业大学学报,1999,27(2):90~95
    王瓞,林其谁。阳离子脂质体介导基因转染的最优化条件.生命的科学,1997,17(1):32~34
    王锋,朱祯,李向辉,章文才.不同调节序列控制下的gus基因在柑桔原生质体中的瞬时表达.福建农业学报,1998,13(2):1~5
    王关林,方宏筠.植物基因工程(第三版).北京:科学出版社,2002,517~619
    王关林,方宏筠.植物基因工程原理与技术.北京:科学出版社,1998
    王国英,张宏,丁群星,戴景瑞,谢友菊.几种玉米基因转移技术的研究及转基因植株的获得.生物工程学报,1996,12:45~49
    王红梅,刘正德,刘方,李运海,罗云佳,张宝红.转基因抗2,4-D棉花室内快速鉴定方法初探.中国农业科学,1999,32(2):98~102
    王金玲,顾红雅.CHS基因的分子进化研究现状.李承森主编.植物科学进展(第三卷).北京:高等教育出版社,施普林格出版社,2000:17~24
    王景雪,孙毅,崔贵梅,胡晶晶.花粉介导法获得玉米转基因植株.植物学报,2001,43(3):275~279
    王玺,安丽芝,章净霞.铈和钆对体外培养下常二倍体细胞的作用.中国稀学报,1998,16(3):252~256
    吴少华,张大生.花青素生成相关基因dfr研究进展.福建林学院学报,2002,22(2):189~192
    肖崇厚,陆蕴如.中药化学.上海:上海科学技术出版社,1987:199~200
    谢灵玲,赵武玲,沈黎明.光照对大豆叶片苯丙氨酸裂解酶(PAL)基因表达及异黄酮合成的调节.植物学通报,2000,17(5):443~449
    徐忠,张亚丽.DA-101大孔树脂对萝卜红色素的吸附特性研究.食品科学,2002,23(1):59~60
    许智宏,刘春明.植物的遗传转化与基因工程.植物生理与分子生物学(第2版).北京:科学出版社,1998,54~73
    颜华,宋云,李羽云,严瑞茗,李毅,陈章良.查尔酮异构酶基因的克隆序列分析及在大肠杆菌中的表达.植物学报,1997,39(11):1030-1034
    杨双,阮燕晔,樊金娟,张立军.一种简易的拟南芥幼苗微量DNA提取方法.沈阳农业大学学报,2005,36(1):99~100
    杨万林,吴毅歆,李先平,阎发祥,隋启君.马铃薯品种块茎性状的遗传分析.中国马铃薯,2004,18(1):19~26
    尹若春,吴丽芳,吴李君,余增亮.低能离子束介导的遗传转化研究进展.生物技术通报,2001,(3):32~35
    张长生.中国优质专用薯类生产与加工.北京:中国农业出版社,2002,14~16
    张广辉,巩振辉,薜万新,陈启林.大白菜和油菜真空渗入遗传转化法初报.西北农业大学学报,1998,26(4):1~4
    张晴,陈勇,李钐,金炳浩.黑米色素的吸收光谱及色差分析研究.食品科学,1999,(7):12~16张志良.植物生理学实验指导.北京:高等教育出版社,1990,183~191
    张中林,任延国,沈燕新,山松,范国昌,吴祥甫,钱凯先,沈桂芳.苏云金芽孢杆菌(Bt)晶体毒蛋白在烟草叶绿体中的表达.遗传学报,2000,27(3):270~277
    章力建,陈乐玫,袁静,李长公,贾士荣,许宁,赵南明.超声波法直接导入外源基因—高效烟草转化系统的建立.中国农业科学,1991,24:83~89
    赵昶灵,陈俊愉,刘雪兰,赵兴发,刘全龙.理化因素对梅花‘南京红须’花色色素颜色呈现的效应.南京林业大学学报(自然科学版),2004,28(2):27-32
    赵昶灵,郭维明,陈俊愉.植物花色呈现的生物化学、分子生物学机制及其基因工程改良.西北植物学报,2003,23(6):1024~1035
    赵云鹏,陈发棣,郭维明.观赏植物花色基因工程研究进展.2003,20(1):51~58
    郑志亮.花卉作物的花色基因工程.北方园艺,1994,3:37~38
    周光宇,翁坚,龚蓁蓁,曾以申,杨晚霞,沈慰芳,王自芬,陶全洲,黄骏麒,钱思颖,刘桂玲,应苗成,薛达元,洪爱华,徐英俊,陈善葆,段晓岚.农业分子育种—受粉后外源DNA导入植物技术.中国农业科学,1988,21:1~6
    周先碗,胡晓倩.生物化学仪器分析与实验技术.北京:化学工业出版社,2003:316~321
    朱玉贤,李毅.现代分子生物学.北京:高等教育出版社,1997版:435~466
    邹琦.植物生理学实验指导.北京:中国农业出版社,2000,72~75
    Markham KR(张宝琛,唐崇实 译).黄酮类化合物结构鉴定技术.北京:科学出版社,1990,13~57
    Afifi M, El-kdreamy A, Legrand V, Chervin C, Monje MC, Nepveu F, Roustan FP. Control of anthocyanin biosynthesis pathway gene expression by eutypine, a toxin from Eutypa lata, in grape cell tiussue cultures. J. Plant Physiol., 2003, 160:971~975
    Aharoni A, Ric De Vos CH, Wein M. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J. 2000, 28 (3): 319~332
    Aida R, Kishimotos, Tanaka Y. Modification of flower color in torenia (Torenia fournieri Lind.) by genetic transformation. Plant Science Limerick, 2000, 153:33~42
    Alderson A, SabeU IPA, Dicknson JR, et al. Complementation of snf 1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA. Proc. Natl. Acad. Sci. 1991, 88:8602~8605
    Ambasht NK, Agrawal M. Physiological responses of field grown Zea mays L. plants to enhanced UV-B radiation. Biotronics, 1995, 24:15~23
    Andersen AW, Tong CBS, Krueger DE. Comparison of periderm color and anthocyanins of four red potato varieties. Amer. J. Potato Res., 2002, 79 (4): 249-253
    Andersen OM, Opheim S, Aksnesn DW, Froystein NA. Structure of petanin, anacylated anthocyanin isolated from Solanum tuberosum, using homo-and hetero-muclear two-dimensional nuclear magnetic resonance techniques. Phytochem. Anal., 1991, 2:230~236
    Anderson MD, Cornish EL, Man SL, et al. Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Nature, 1996, 321:38~44
    Anderson PC, Lombard P B, Westwood M N. Leaf conductance, growth, and survival of willow and deciduous fruit tree species under flooded soft conditions. Am.Soc. Hortic. Sci., 1984, 109:132~138
    Annamaryju DS. Antioxidant ability of anthocyanins against ascorbic acid oxidation. Phytochemistry, 1997, 45:671~674
    Bahler BD, Steffen KL, Orzolek MD. Morphological and biochemical comparison of a purple-leafed and a green-leafed pepper cultivar. Hortic. Sci., 1991, 26:736
    Bajaj S, Targolli J, Liu LF. Transgenic approaches to increase dehydration-stress tolerance in plants. Molecular Breeding, 1999, 5:493~503
    Bakker J, Colin F. Isolation, identification, and characterization of new color-stable anthocyanins occurring in some red wines. J. Agric. Food Chem., 1997, 45:35~43
    BalceUs L, Swinburne J, Coupland G. Transposons as tools for the isolation of plant genes. TIBTECH, 1991, 9:31~37
    Barrel B, Matsuda SPT. Seeing red. Science, 2003, 299:352~353
    Bassa IA, Francis FJ. Stability of anthocyanin from sweet potatoes in model beverages. J. Food Sci., 1987, 52 (6): 1753~1754
    Bechtold N, Ellis J, Pelletier G. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Life Sci., 1993, 316: 1194~1199
    Beld M, Martin C, Huits H, Stuitje AR, Gerats AGM. Flavonoid synthesis in Prtunia hybrida: Partial characterization of dihydroflavonol 4-reductase genes. Plant Mol. Bio., 1989, 13:491~502
    Bender W, Spierer P, Hogness DS, et al. Chromosomal walking and jumping to isolating DNA from the Ace and rosy and the bithorax complex in Drosophila melanogaster. J. Mol. Biol., 1983, 168:17~33
    Bettye, Musoke. The uses of plant colours (anthocyanin pigments) and methods to isolate them from plants. The Worldps Women Congress, 2002. 42~77
    Birch RG. Plant transformation: problem and strategies for practical application. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, 48:297~326
    Bolwill GP. L-phenylalanine ammonialyase from phaseolus vulgaris: characterization and differential induction of multiple forms from elicitor-treated cell suspension cultures. Eur. J. Biochem., 1985, 149:411~419
    Bongue-Barteleman M, Phillips DA. Nitrogen stress regulates gene expression of enzymes in the flavonoid biosynthetic pathway of tomato. Plant Physiol. Biochem., 1995, 33:539~546
    Bonierbale MW, Plaisted RL, Tanksley SD. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics, 1988, 120:1095~1103
    Brandt K, Giammini A, Lercari B. Photomorphogenic Responses to UV radiation Ⅲ: a comparative study of UV-B effects on anthocyanin and flavonoid accumulation in wild-type and aurea mutant of tomato (Lycopersicon esculentum Mill). Photochem. Photobiol., 1995, 62:1081~1087
    Bridle P. Anthocyanins as natural food colours-selected aspects. Food Chemistry, 1997, 58:103~109
    Bfitsch L, Dedio J, Saedler H, Forkmann G. Molecular characterization of flavanone 3β-hydroxylases. Consensus sequence, comparison with related enzymes and the role of conserved histidine residues. Eur. J. Biochem., 1993, 217:745~754
    Britsch L, Grisebach H. Purification and characterization of (2S)-flavanone-3-hydroxylase from Petunia hybrida. Eur. J. Biochem., 1986, 156:569~577
    Brouillard R, Delaporte B. Chemistry of anthocyanin pigments. 2. Kinetic and thermodynamic study of proton transfer, hydration and tautomeric reactions of malvidin 3-glucoside. J. Am. Chem. Soc., 1977, 99:8461~8469
    Brouillard R. Chemical structure of anthocyanins. In: MarkakisP. Ed. Anthocyanins as food colors. Academic Press, New York, 1982
    Brouillard R. The i n vivo expression of anthocyanin color in plants. Phytochem, 1983, 22:1311~1323
    Burton W G. The potato, Wiley, New York. 1989, 328~329
    Chabasud M, Cannor F, et al. Parameters affecting the frequency of kanamycin resistant alfalfa obtained by Agrobacterium tumefaciens mediated transformation. Plant Cell Rep., 1988, 7:512~516
    Chalker-Scott L. Envioronmental significance of anthocyanin in plant stress responses. Photochem. Photobiol., 1999, 70 (1): 1~9
    Chang SS, Park SK, Kim BC, Kang BJ, Kim DU, Nam HG. Stable genetic transformation of A rabidopsis thaliana byA grobacterium inoculation inplanta, Plant J., 1994, 5:551~558
    Chee PP, Krystal A, Fober KA, Slightom JL Transformation of soybean (Glycine max) by infecting germinating seeds withA grobacterium tumefaciens, Plant Physiol., 1989, 91:1212~1218
    Chen YH, Murray JR, Ohmann SM, Tong CS. Anthocyanin accumulation during potato tuber development, J. Amer. Soc. Hort. Sci. 1997, 122:20~23
    Christie PJ, Alfenito MR, Walbot V. Impact of low temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta, 1994, 194:541~549
    Christou P. Transformation technology. Trends Pant Sci., 1996, 1:423~431
    Chuck G, Robbins T, Nijjar C, et al. Tagging and cloning of a petunia flower color gene with the maize transposable elementa ctivator. Plant Cell, 1993, 5:371~378
    Clough SJ, Bent AF. Floral dip: a simplified methoc for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J., 1998, 16 (6): 735~743
    Cormier F, Crevier HA, Do CB. Effects of sucrose concentration on the accumulation of anthocyanin in grape (Vitis vinifera) cell suspension. Can. J. Bot., 1990, 68:1822~1825
    Curtis IS, Hong GN. Transgenic radish (Raphanus sativus L1 longipinnatus Bailey) by floral-dip method-plant development and surfactant are important in optimizing transformation efficiency. Transgenic Res., 2001, 10:363~371
    Daravings G. Cain RF. Changes in the anthocyanin pigments of raspberries during processing and storage. J. Food Sci. 1965, 30:400~405
    De Jong H. Inheritance of anthocyanin pigmentation in the cultivated potato: a critical review. Am. Potato J. 1991, 68:585~593
    De Jong WS, De Jong DM, De Jong H. An allele of dihydroflavonol 4-reductase associated with the ability to produce red anthocyanin pigments in potato (Solanum tuberosum L.). Theor. Appl. Genet., 2003a, 107:1375~1383
    De Jong WS, De Jong DM, Bodis M. A flurogenic 5' nuclease (TaqMan) assy to assess dosage of a marker tightly linked to skin color in autotetraploid potato. Theor. Appl. Genet. 2003b, 107:1384~1390
    De Jong WS, Eanneta NT, De Jong DM, Bodis M. Candidate gene analysis of anthocyanin pogmentation loci in the Solanaceae. Theor. Appl. Genet., 2004, 108:423~432
    De Ronde JA, Cress WA, and van der Mescht A. Agraobacterium-meidated transformation of soybean( Glycine max) seed with the-gluceronidase marker gene, South African J. Sci., 2001, 97: 421~424
    Desfeux C, Clough SJ. Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant physiol., 2000, 123 (3): 895~904
    Desikan R, Mackerness SAH, Hancock Jr, et al. Regulation of the arabidopsis transcription by oxidative stress. Plant Physio., 2001, 127:159~172
    Diatchenko L, Lau YFC, Campell AP, et al. Suppression subtractive hyridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci., 1996, 93:6025~6030
    Ding QX, Xie YJ, Dai JR. Introducing Bt gene into maize with ovary injection. Sci China (ser B), 1994, 37:563~572
    Dixon RA, Dey PM, Lamb CJ. Phytoalexins: enzymology and molecular biology. Adv. Enzymol., 1983, 55:239~291
    Dixon RA, Harrison M J, Lamb CA. Early events in the activation of plant defense responses. Annu. Rev Phytopathol., 1994, 32:479~501
    Do CB, Cormier E Effects of low nitrate and high sugar concentrations on anthocyanin cotent and composition of grape (Vitis Vinifera L.) cell suspension. Plant Cell Rep., 1991, 9:500~504
    Dodds KS, Long DH. The inheritance of colour in diploid potatoes. I. Types of anthocyanidins and their genetic loci. J. Genet., 1955, 53:136~149
    Dodds KS, Long DH. The inheritance of colour in diploid potatoes. Ⅱ. A three-factor linkage group. J. Genet., 1956, 54:27~41
    Donner HK, Robbins T E Genetic and developmental control of anthocyanin biosynthesis. Ann. Rev. Genet., 1991, 25:173~199
    Dooner HK, Nelson OE. Interaction among C, R and Vp in the control of the Bz glucosyltransferase during endosperm development in maize. Genetics, 1979, 91:309
    Dooner HK, Robins TP, Jorgensen RA. Genetic and developmental control of anthocyanin biosynthesis. Annu.Rev.Genet., 1991, 25:173~199.
    Douglas C. Structure and elicitor or UV-light stimulated expression of two 4-coumarate: CoA ligase genes in parsley., EMBOJ., 1987, 6:1189~1195
    Drumm-Herrel H. Blue/UV light effects on anthocyanins synthesis. In: Senger H(ed). Blue light effects in biological systems. Berlin: Spinger Verlag, 1984, 375-383
    Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 1991, 19 (6): 1349
    Elomaa P, Honhanen J, Puska R., 4grobacterium mediated transfer of antisense chalcone synthase eDNA to Gerbera hybrida inhibits flower pigmentation. Bio. technology, 1993, U: 508~511
    Fambrini M, Pugliesi C, Vemieri P. Characterization of a sunflower (Helianthus annuus L.) mutant, deficient in carotenoid synthesis and abseisie acid content, induced by in vitro tissue culture. Theor. Appl. Genet., 1993, 87:65~69
    Fang Y, Smith MAL, Pepin ME Benzyl adenine restores anthocyanin pigmentation in suspension cultures of wild Vacciniumpahalae. Plant Cell Tissue Organ Cult. 1998, 54:113~122
    Federoff NV, Furtek DB, Nelson OE. Cloning of the bronze locus in maize by a simple and generalized procedure using the transposable controlling element Activator(Ac). Proc. Natl. Acad. Sci. USA, 1984, 87:3825~3829
    Feldmann KA, Marks MD, Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: A non-tissue culture approach, Mol. Gen. Genet., 1987, 208:1~9
    Ford CM, Boss PK, HΦj PB. Coning and characterization of Vitis Vinifera UDP-Gulcose: flavonoid 3-o-glucosyltransferase, a homologue of the enzyme encoded by the maize bronze-1 loxus that may primarily serve to glucosylate anthocyanidins/n vivo. J. Biol. Chem., 1998, 273:9224~9233
    Forkmann G. Flavonoids as flower pigments: the formation of natural spectrum and its extension by genetic engineering. Plant Breed., 1991, 106:1~26
    Francis FJ. Food colorants: anthocyanins. Cru. Rev. Food Sci. Xutr. 1989, 28 (4): 273~311
    Francis FJ. Lesser-known food colorants. Food Teehnol., 1987, 41:62~68
    Francis GW, Andersen OM. Dropler counter-eurrentchromatography of anthocyanins. J. Chromatogry., 1984, 283:445~448
    Francis JF. Anthocyanin as Food Color. New York: Academic Press, 1982.181~208
    Froemel S, de Vlaming P, Stotz G, et al. Genetic and biochemical studies on the conversion of flavanones to dihydroflavonols in flowers of petunia hybrida. Theo. Appl. Genet. 1985, 70:561~568
    Fromm M F, et al. Stable transformation of maize after gene transfer by electroperation. Nature, 1986, 319:791~793
    Fukada TS, Hoshino A, et al. Identification of new chalcone synthase genes for flower pigmentation in the Japanese and common morning glories. Plant cell Physiol., 1997, 38 (6): 754~758
    Fuliwara H, tanaka V, Fukui V, et al., Anthocyanin saromatic acyltransferase from Gentiana triflora, purification, characterization and its role in anthocyanin biosynthesis. Eur. J. Biochem., 1997, 249: 45~51
    Fuliwara H, Yoshikazu T, Keikov, et al. eDNA cloning, gene expression and subceUular localization of anthocyanin 5-aromatic acyltransferase from Gentiana triflora. Plant J., 1998, 16:421~431
    Furtek D, Schiefelbein JW, Johnston F, Nelson OEJ. Sequence comparisons of three wild-type Bronze-1 alleles from Zea mays. Plant Mol. Biol., 1988, 11:473~481.
    Garcia F, Cruz-Remes L. The natural xanthophyll pigment industry, Presented at the First International Symposium of Natural Colorants for Food, Nutraceuticals, Beverages and Confectionary. Ambers, MA, 1993, Nov 7~10
    Ge ZQ, Yuan YJ, Wang YD, Ma ZY, Hu ZG. Ce~(4+) induced apoptosis of taxus cuspidate cells in suspension culture. Journal of rare earths., 2002, 20:140~144
    Gebhardt C, Ritter E, Schachtschabel U, Walkemeier B, Uhrig H, Salamini F. RFLP analysis and linkage mapping in Solanum tuberosum. Thor. Appl. Genet., 1989, 78:65~75
    Gerats AGM, Vrijlandt E, Wallroth M, et al. The influence of the genes An1, An2 and An4 on the activity of the enzyme UDP glucose: Flavonoid 3-o-glucosyltransferase in flowers of Petunia hybrida. Biochem. Genet., 1985, 23:591~598
    Gill RW, Sanseau P. Rapid in silico cloning of genes using expressed sequence tags (ESTs). Biotechnol. Annual. Rev., 2000, 5:25~44
    Gleitz J, Seitz. Induction of chalcone synthase in cell suspension culture of carrot by ultraviolet light. Planta, 1989, 179:323~330
    G1β gen WE, Rose A, Madlung J. Regulation of enzymes involved in anthocyanin biosynthesis in carrot cell culture in response to treatment with ultraviolet and fungal elicitors. Planta, 1998, 204:490~498
    Goff SA, Cone KC, Fromm M E. Identification of functional domains in the maize transcriptional activator C1: Comparison of wild type and dominant inhibitor proteins. Genes Develop., 1991, 5: 298
    Gong ZZ, Yamazaki M, Sugiyama M, Tanaka Y, Saito K. Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens. Pant Mol. Biol., 1997, 35:915~927.
    Gong ZZ, Yanagishi E, Yamazaki M. et al. A constitutively expressed Myc-like gene involved in anthocyanin bioxynthesis from Perilla frutescens: Molecular characterization, heterologous expression in transgenic plants and transactivation in yeast cells. Plant Mol. Biol. 1999, 41: 33~44
    Goodrich J, Carpenter R, Coen ES. A common regulates pigmentation pattern in diverse plant species. Cell, 1992, 68:955
    Gould KS, Kuhn DN, Lee DW, Oberbauer SF. Why leaves are sometimes red. Nature, 1995, 378:241~242
    Grace S, Logan BA, Keller. Acclimation of leaf antioxidant systems to light stress. Plant Physiol., 1995, 108:36
    Graham TL. Flavonoid and flavonol glycoside metabolism in Arabidopsis. Plant physiol. Biochem., 1998, 36:135~144
    Gupta JD, Liq S, Thomson A B, et al. Characterization of cDNA encoding a novel plant poly(A) polymerase. Plant Molecular Biology, 1998, 37:729~734
    Gutterson NC, Napoli C, Lemieux C. Modification of flower color in florist's Chrysanthemum: production of a white-genetics. Bio. Technology, 1994, 12:268~271
    Haagendoorn NJN, Zethof JLM, van Hunnik E, van der Plas LHW. Regulation of anthocyanin and lignin synthesis in Petunia hybida cell suspensions. Plant Cell Tiss. Org.Cult., 1991, 27:141~147
    Hada M, Tsurum S, Suzuki M. Involvement and non-involvement of pyrimidine dimmer formation in UV-B effects on Sorghum bicolor Moench seedlings. J. Plant physiol., 1996, 148:92~99
    Hall RD, Yeoman MM. Temporal and spatial heterogeneity in the accumulation of anthocyanins in cell cultures of Catharanthus roseus (L.) G. Don. J. Exp. Bot., 1986, 174:48~60
    Harborne JB. Phytochemical Methods (Second Edition). London, New York: Chapman and Hall. 1984, 55~68
    Harbome JB. Plant polyphenols. 1. Anthocyanin production in the cultivated potao. Biochemical J., 1960, 74:262~269
    Harborne JB. Spectral methods of characterizing anthocyanins. Biochem. J., 1958a, 70:22~28
    Harbome JB. The chromatographic identification of anthocyanin pigments. Journal of chromatography, 1958b, 1:473~488
    Haft RK, Patel TR, Martin AM. An overview of pigment production in biological systems: function, biosynthesis and applications in food industry. Food Rev. Int., 1994, 10:49~70
    Henkel J, Forkrnann G, Min BW, et al. Anthocyanin biosythesis in distinct genotypes of China aster (CaUistephus chinensis). Acta. Horticul., 2000, 508:213~214
    Hermsen JGT, Verdenius J. Selection from Solanura tuberosum Group Phureja of genotypes combining high frequency haploid induction with homoqygosity for embryo-spot. Euphytiea, 1973, 22:244~259
    Holton TA, Brugliera F, Lester DR, Tanaka Y, Hyland CD, Menting JG T, Lu CY, Farcy E., Stevenson TW, Cornish EC. Cloning and expression of cytochrome P450 genes controlling flower colour. Nature, 1993, 366:276~279
    Holton TA, Cornish EC. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell, 1995, 7: 1071~1083.
    Holton TA, Tanaka Y. Blue roses-apigment of our imagnation. Trends Biotech., 1994, 12:40~42.
    Honda C, Kotoda N, Wada M, Kondo S, Kobayashi S, Soejima J, Zhang Z, Tsuda T, Moriguchi T. Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant Physiol. Biochem., 2002a, 40:955~962
    Honda H, Hiraoka K, Nagamori E, Omote M, Kato Y, Hiraoka S, Kobayashi T. Enhanced anthocyanin production from grape callus in an air-lift type bioreactor using a viscous additive-supplemented medium, J. Biosci. Bioeng., 2002b, 94:135~139.
    Hood EE, Clapham DH, Ekberg I, et al. Plant Mol. Biol., 1990, 14 (2): 111~117
    Horsch RB, et al. A simple and general merhod for transferring genes into plants. Science, 1985, 227: 1229~1236
    Howard HW. Genetics of the potato Solanum tuberosum. Logos Press, London. 1970
    Howe G T, Hackett WP, Fumier GR. Photoperiodic responses of a northern and southern ecoty pe of black cottonwood. Physiol Plant, 1995, 93:695~708
    Hung CY, Murray JR, Ohmann SO, Tong CBS. Anghocyanin accumulation during potato tuber development. J. Amer. Soc. Hort. Sci., 1997, 122 (1): 20~23
    Ibrahim RK, Thakur ML, Permanand B. Formtion of anthocyanins in callus tissue cultures. Lloydia, 1972, 34:175~182
    Innis MA, Gelfand DH, Sninsky J J, Wite TJ. PCR Protocols. A Guide to Methods and Applications. San Diego, GA: Academid., 1990
    Ito M, Ichinose Y, Kato H, Shiraishi T, Yamada T. Molecular evolution and functional relevance of the chalcone synthase genes of pea. Mol. Gen. Genet., 1997, 255:28~37
    Jackman RL Smith JL. Anthocyanins and betalains. In: Natural Food Colorants (Second Edition). Edited by GAF Handry and JD Houghton. Blackie Academic and Professional. 1996
    Jackman RL, Yada RY, Tung MA. A review: separation and chemical properties of anthocyanins used for their qualitative and quantitative analysis. J. Food Biochem. 1987, 11:297~308
    Jang Y. Role of anthocyanins, polyphenol oxidase and phenols in lychee pericarp browning. J. Sci. Food Agric., 2000, 80:305~310
    Jeon JH, Joung H, Byun SM. Characterization of two members of the Chalcone Synthase gene family from Solanum tuberosum L. Plant Physiol., 1996, 111:348
    Johnson CA. 1995-1996 seed acres reflect more varieties, market shifts. Valley potato Grower., 1995, 61:13~16
    Johnson ET, Ryu S, Yi H, Shin B, Cheong H, Choi G. Alteration of a single amino-acid changes the substrate specificity of dihydroflavonol 4-reductase, Plant J., 2001, 25:325-333
    Jorgesen RA. Co-suppression flower color paterns and metastable gene expression states. Science, 1995, 268:686~691
    Jung CS, Griffiths HM, De Jong DM, Cheng S, De Jong WS. The potato plocus codes for flavonoid 3', 5'-hydroxylase. Theor. Appl. Genet., 2005, 110:269~275
    Kamei H, Kojima T, Hasegawa M, Koide T, Umeda T, Yukawa T, Terabe K. Suppression of tumor cell growth by anthocyanins in vitro. Cancer Invest., 1995, 13:590~594
    Kamei H, Kojima S, Hasegawa M, Umeda T, Terade K, Yukawa T. Suppressive effect of flavonoid extracts from flower petals on cultured human malignant cells. J. Clin.Exp. Med., 1993, 164:829~836
    Katavic V, Haughn GW, Reed D, Martin M, Kunst L. In planta transformation of A rabidopsis thaliana.Mol. Gen. Genet., 1994, 245:363~370
    Kho KFF, Kamsteeg J, van Brederode J. Identification, properties and genetic control of UDG-glucose: cyandin 3-o-glucosyltransferase in Petunia hybrida. Z. Pflanzenphysiol., 1978, 88:449~464.
    Kim SH, Lee JR, Hong ST, Yoo YK, An G, Kim SR. Molecular cloning and analysis of anthocyanin biosynthesis genes preferentially expressed in apple skin. Plant Sci., 2003, 165:403~413.
    Kim Y. Expression analysis of maize C1 regulatory gene in transgenic tobacco plants (Nicotiana tabacum cv. Xanthi). J. Kor. Soc. Hort. Sci., 2001, 42:487~491
    Knud L. Molecular cloning and characterization of cDNAs encoding cinnamoyl CoA reductase (CCR) from barley (hordeum vulgare) and potato (Solanum tuberum). J. Plant Physiol. 2004, 161:105~112
    Kobayashi S, Ishimaru M, Ding CK, Yakushiji H, Goto N. Comparison of UDP-glucose: Flavonoid 3-o-glucosyltransferase (UFGT) gene sequences between white grapes (Vitis Vinifera ) and their sports with red skin. Plant Sci. 2001, 160:543~550
    Kobayashi S, Ishimaru M, Hiraoka K, Honda C. Myb-related genes of the Kyoho grape (Vitis labruuscana) regulate anthocyanin biosynthesis. Planta, 2002, 215:924~933
    Koes RE, Spelt CE, Mol JNM. The chalcone synthase multigene family of Petunia hybrida. Gene: Differential light regulated expression during flower development and UV light induction. Plant Mol. Biol., 1989a, 30:213~225
    Koes RE, Spelt CE, Vander Elzen PJM. Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida. Gene, 1989b, 81:245~257
    Koes RE, Van Blokland R, Quattrocchio F, et al. Chalcone synthase promoters in petunia are active in pigmented and unpigmented cell types. Plant Ceil, 1990, 2:379~386
    Korobczak A, Aksamit A, Lukaszewica M, Lorenc K, Rorat T, Szopa J. The potato glucosyltransferase gene promoter is environmentally regulated. Plant Science, 2005, 168:339~348
    Krasnyanski S, et al. Transformation of the limonene synthase gene into peppermint (Mentha piperita L.) and preliminary studies on the essential oil profiles of single transgenic plants. Theor.Appl. Genet., 1999, 99:676~682
    Krens F A, et al. In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature, 1982, 296: 72~74
    Kreuzaler F, Ragg H, Fautz E, et al. UV-induction of chalone synthase mRNA in cell suspension cultures of Petrosklinum hortense. Proc.Natl.Acad.Sci., 1983, 80:2591~2593
    Krizek DT, Britz S J, Mirecki RM. Inhibitory effects of ambient levels of solar UV-B and UV-B radiation on growth of cv. New Red Fire lettuce., Physiol. Plant, 1998, 103:1~7
    Kucza MM. Analysis of flavor precursors in radish color extracts. M.S. thesis, Dept. of Food Science and Thechnology. 1996
    Labell E Grapes provide brilliant red color. Food Processing, 1993, 54 (6): 88~89
    Lamar EE, Palmer E. Y-encoded, Species-specific DNA in mice: Evidence that the Y chromosome exists in two polymorphic forms in inbred strains. Cell, 1984, 37:1771
    Lancaster JE. Regulation of skin color in apple, Crit. Rev. Plant Sci., 1992, 10: 487~502
    Lauro GJ. A primer on natural colors. Am. Assoc. Cereal Chemists, 1991, 36 (11): 949~953
    Lewis C E., Walker JRL, Lancaster JE, Conner AJ. Light regulation of anthocyanin, flavonoid and phenolic acid biosynthesis in potato minitubers in vitro. Australian J. Plant Physiol., 2004, 25 (8): 915~922
    Lewis CE, Walker JRL, Lancaster JE, Sutton KH. Determination of anthocyanins, flavonoid and phenolic acids in potatoes. I. coloured cultivars of (Solanum tuberosum L.). J. Sci. Food Agric., 1998, 77:45~57
    Lewis CE, Walker JRL, Lancaster JE. Changes in anthocyanin, flavonoid and phenolic acid concentrations during development and storage of coloured potato (Solanum tuberosum L) tubers, J. Sci. Food Agric., 1999, 79:311~316
    Li J, Hu GW, Ou YD, Niu RF. Effect of cerium on expression and activity of MMP-9 from human carcinoma of bladder cell line. Journal of Rare Earths., 2004, 22:288~291
    Li JC, Ma ZH, Yuan YJ, Sun AC, Hu CX. Dynamic effects of cerium on synthesis of soluble protein and taxol in suspension culture of taxus chinensis Var. Mairei ceils. Journal of Rare Earths., 2001, 19: 223~228
    Li SS, Strid A. Anthocyanin accumulation and changes in CHS and PR-5 gene expression inArabidopsis thaliana afer removal of the inflorescence stem (decapitation). Plant Physiol. Biochem., 2005, 43: 521~525
    Liang P, Arthur BP. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 1992, 257:967~971
    Liu F, Cao MQ, Yao L, Li Y, Robaglia C, Tourneur C. In planta transformation of pakchoi (Brassica Campest ris L. ssp. Chinensis) by infiltrationof adult plants withA grobacterium, Acta. Hort., 1998, 467:187~192
    Liu VM, Li XQ, Weber C, Lee CY, Brown J, Liu RH. Antioxidant and antiproliferative activities of raspberries. J. Agric. Food Chem., 2002, 50:2926~2930
    Loopstra CA, Weissing A.K, Sederoff RR. Can. J. Forest Res., 1992, 22993~22996
    Lukacin R, Britsch L. Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavone 3β-hydroxylases. Eur. J. Biochem. 1997, 249:748~757
    Lukacin R, Groning I, Pieper U, Maten U. Site-diected mutagenesis of the active site serine290 in flavanone 3β-hydroxylase from Petunia hybrida. Eur. J. Biochem., 2000a, 267:853~860
    Lukacin R, Groning I, Schiltz E, Britsch L, Matem U. Purification of recombinant flavanone 3β-hydroxylase from Petunia hybrida and assignment of the primary site of proteolytic degradation. Archives of Biochemistry and Biophysics., 2000b, 375:364~370
    Lunden AP. Arvelighetsundersokelser I potet (Inheritance studies in potato), Solanun tuberosum. Soertrykk av Meldinger fra Norges Landbrukshoiskole, Norges Landbrukshoiskoles Akerveksfforsok., 1937
    Mancinelli AL, Ross F, Moroni A. Cryptochxome, phytochrome, and anthocyanin production. Plant Physiol., 1991 96:1079~1085
    Maritin C, Carpenter R, Sommer H, et al. Control of anthocyanin biosynthesis in flowers of Antirrhinummajus. Plant J., 1991, 1:37-49
    Matzke MA, Matzke AIM. How and why do plants inactivate homologous transgenes. Plant physiol. 1995, 107:679~685
    Mayer AM, Harel E. Polyphenol oxidases in plants. Phytochemistry, 1979, 18:193~215
    Mazza G, Brouillard R. Recent developments in the stabilization of anthocyanins in food products. Food Chemistry, 1987, 25:207~225
    Mazza G, Miniati E. Introduction.Hh.1 in Anthocyains in fruits, vegetables, and grain, CRC Press, Boca Raton, FL.1993, 19
    McKown R, Kuroki G, Warren G. Cold responses of Araidopsis mutants impaired in freezing tolerance. J. Exp. Bot., 1996, 47:1919-1925
    Mehdy MC, Lambc J. Chalcone isomerase eDNA cloning and mRNA induction by fungal elicitor, wounding and infection. EMBO., 1987, 6:1527~1533
    Messon A, Hohmann S, Martin W, et al. The En/Spm transposable element of Zea may scontains splice sites at the terminigenerating a novel intron from a dSpm element in the A2 gene. EMBOJ., 1990, 9: 3051~3058
    Metivier RP, Francis FJ, Clydesdale FM. Solvent extraction of anthocyanins from winepomace. J. Food Sci., 1980, 45:1099~1100
    Meyer HJ, Van Staden J. The in vitro production of anthocyanin from callus cultures of Oxalis linearis. Plant Cell Tissue Organ Cult. 1995, 40:55~58
    Meyer P, Heidmann L, Forkmann G. A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature, 1987, 330:877~678
    Miura H, Kitamura Y, Ikenaga T, et al. Anthocyanin production of Glehnia littoralis callus cultures. Phytochemistry, 1998, 48:279~283
    Mnet M, Dufourm E, Lacroute F. Complementation of Sassharamyces cerevisiae auxotrophic mutants byArabidopsis thaliana eDNA. Plant J. 1992, 2:417~422
    Mol J, Cornish E, Mason J, et al. Novel coloured flowers. Current Opinion in Bioteclmology, 1999, 10: 198~201
    Mol J, Jenkins G, Schfer E. signal perception, transduction, and gene expression involved in anthocyanin biosynthesis. Crit. Rev. Plant Sci., 1996, 15:525~557
    Moorthy P, Kathiresan K. Influence of Ultraviolet-B radiation on photosynthetic and biochemical characteristics o a mangrove Rhizophora apiculata. Photosynthetica, 1997, 34:465~471
    Morazzoni R, Magistretti MJ. Activity of Myrtocyan, anthocyanoside complex from Vaccinium myrtiUus (VMA), on platelet aggregation and adhesiveness. Fitoterapia., 1990, 13~21
    Moil K, Sugaya S, Gemma H. Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Scientia Horticulture., 2005, 105:319~330
    Mori T, Sakurai M, Seki M, Furusaki S. Use of auxin and cytokinin to regulate anthocyanin production and composition in suspension cultures of strawberry cell. J. Food Agric., 1994, 65:271~276
    Mori T, Sakurai M. Production of anthocyanin from strawberry cell suspension cultures: effects of sugar and nitrogen. J. Food Sci., 1994, 59:588~593
    Moustafa E, Wong E. Purification and properties of chalcone-flavanone isomerase from soybean seed. Phytochemistry, 1967, 6:625~632
    Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalysed chain reaction. Methods Enzymol. 1987, 155:335~350
    Mura K, Wilkins D. Natural red color derived from red cabbage. Food Technol., 1990, 44:131
    Murashige T, Skoog E A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 1962, 15:473~497
    Naito K, Umemura Y, Mori M, Sumida T, Takamatsu N, Okawa Y, Hayashi K, Saito N, Honda T. Acylated pelargonidin glycosides from a red ptato. Phyochemistry, 1998, 47 (1): 109-112
    Nakatsuka T, Nishihara M, Mishiba K, Yamamura S. Temporal expression of flavonoid biosynthesis-related genes regulates flower pigmentation in gentian plants. Plant Sci., 2005a, 168: 1309~1318
    Nakatsuka T, Nishihara M, Mishiba K, Yammamura S. Two different muations are involved in the formation of white-flowered gentian plants. Plant Sci., 2005b, 169:949~958
    Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell, 1990, 2:279~289
    Narayan MS, Thimmaraju R, Bhagyalakshmi N. Interplay of growth regulators during solid-state and liquid-state batch cultivation of anthocyanin producing cell line of Daucus carota. Process Biochemistry, 2005, 40:351~358
    Naumann A, Horst WJ. Effect of aluminum supply on aluminum uptake, translocation, and bluing of Hydrangea macrophylla (Thunb.) Ser. cultivars in a peat clay substrate. J. Hortic. Sci. Biotechno., 2003, 78:463~469
    Nemat-Alla MM, Younis ME. Herbicide effects on phenolic metablism in maze (Zea mays L.) and soybean (Glycine max L.) seedlings. J. Exp. Bot., 1995, 46:1731~1736
    Neumann E, et al. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J., 1982, 1:841~845
    Nyman M, Wallin A. Transicent gene expression strawberry (Fragaria × ananassa Dach) protoplast and the recovery of transgenic plants. Plant Cell Rep., 1992, 11:105~108
    Ochatt SJ, de Azkue D. Callus proliferation and plant recovery with Oxalis erosa Kuuth. Shoot tip culture. J. Plant Physiol. 1984, ll7:143~145
    OreiUy C, Shepherd NS, Pereira A, et al..Molecular cloning of the A1 locus in Zea may susing the transposable elements En and Mul. EMBOJ., 1985, 4:877~882
    Ozeki Y, Komamine A. Effects of growth regulators on the induction of anthocyanin synthesis in carrot suspension cultures. Plant Cell Physiol., 1986, 27:1361~1368
    Pasqua G, Monacelli B, Mulinacci N, Rinaldi S, Giaccherini C, Innocenti M, Vinceri FF. The effect of growth regulators and sucrose on anthocyanin production in Camptotheca acuminam cell cultures. Plant Physiology and Biochemistry, 2005, 43:293~298
    Paszkoeski J, et al. Direct gene transfer to plants. EMBO, 1988, 3:2717~2722
    Pelletier MK, Murrell JR, Shirley BW. Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in arabidopsis. Plant Physiol., 1997, ll3:1437~1445
    Peng CY, Markakis P. Effect of phenolase on anthocyanins. Nature, 1963, 199:579
    Piazza P, Procissi A, Jenkins GI, et al. Members of the c1/p11 regulatory gene family mediate the response of maize alcurone and mesocotyl to different ling qualities and cytokinins. Plant Physiol. 2002, 128:1077~1086
    Ouattrocchio F, Wing JF, Leppon HT. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell, 1993, 5:1497~1512
    Ouattrocchio F, Wing JF, van der Woude K, Mol JNM, Koes R. Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant J., 1998, 13:475~488
    Ouattrocchio F, Wing JF, van der Woude K, Souer E, de vetten N, Mol JNM, Koes R. Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell, 1999, 11:1433~1444
    Rajendran L, Ravishankar GA, Venkataramau LV, Prathibha KR. Anthocyanin production in Callus cultures of Daucus carota L. as influenced by nutrient stress and osmoticum. Biotechnol. Lett., 1992, 14:707~712
    Rajendran L, Suvamalatha G; Ravishankar GA, Venkataraman LV. Enhancement of anthocyanin production in callus cultures of Daucus carota L. under the influence of fungal elicitors. Appl. Microbio. Biotechnol., 1994, 42:227~231
    Ralston EJ, English J J, Dooner HK. Sequence of three Bronze alleles of maize and correlation with the genetic fine structure. Genetics., 1988, 119:185~197.
    Ramachandra SR, Ravishankar GA. Plant cell culture: Chemical factor of secondary metabolites, Biotech. Adv., 2002, 20:101~153.
    Ramamurthy M, Nina F. Screening insertion libraries for mutations in many genes simultaneously using DNA microarrays. Proc Natl. Acad. Sci. 2001, 98 (13): 7420~7425
    Rjorgensen RA. Co-suppression, flower color patterns and metastable gene expression states. Scence, 1995, 268:686~691
    Rodriguez-Saona LE, Giusti MM, Wrolstad RE. Anthocyanin pigment composition of red-fleshed potatos. J. Food Sci. 1998, 63 (3): 458~465
    Ronchi A, Farina G, Gozzo E Effects of a triazolic fungicide on maize plant metabolism: modifications of transcript abundance in resistance-related pathways. Plant Sci., 1997, 130:51~62
    Ryder TB, Hedrick SA, Bell JN, et al. Organization and differential activation of a gene family encoding the plant defence enzyme chalcone synthase in Phaseolus vulgris. Mol. Gen. Genet., 1987, 210:219~233
    Saban MR, Hellmich H, Nguyen N-B, et al. Time course of LPS-induced gene expression in a mouse model of genitourinary inflammation. Physiol. Genomics, 2001, 5:147~160
    Sakamoto K, Iida K, Sawamura K, Jajiro K, et al. Effects of nutrients on anthocyanin production in cultured cells ofAralia cordata. Phytochemistry, 1993, 33:357~360
    Sakamura S, Watanabe S, Obata Y. Anthocyanase and anthocyanin occuring in eggplant: PartⅢ. Oxidative decoloration of the anthocyanin by polyphenol oxidase. Agr. Biol. Chem., 1965, 29 (3): 181~190
    Sakut M, Takagi T, Komamine A. Effcets of sucrose on betacyanin accumulation and growth in suspension cultures of Phytolacca Americana. Physiol. Plant, 1987, 71:455~458
    Salaman RaN. Potato varieties. Cambridge University Pres, London, 1926
    Salaman RN. The inheritance of colour and other characters in the potao. J. Genet., 1910, 1:7~46
    Saleh NAH, Fritsch H, Witkop P, Grisebach H. UDP-glucose: cyanidin 3-O-glucosyltransferase from cell cultures of Haplopappus gracilis. Planta, 1976, 133:41~45.
    Samappito S, Page J, Schmidt J, De-Eknamkul W, Kutchan TM. Molecular characterization of root-specifc chalcone synthases from Cassia alata. Planta, 2002, 216:64~71
    San.ford J C. Biolistic plant transformation. Planta, 1990, 79:206~209
    Sarma AD, Sharma R. Anthocyanin-DNA copigmentation complex: mutual protection against oxidative damage. Phytochemistry, 1999, 52:1313~1318
    Sasche J. Anthocyane in den kartoffelsorten Urgenta und Dessiree. Z. Lebensm. Unters. Forsch., 1973, 153, 294~300
    Sato K, Nakayama M, Shigeta JI. Culturing conditions effecting the production of anthocyanin in suspended cell cultures of strawberry. Plant Sci., 1996, 113:91~98
    Schmid J. Developmental and environmental regulation of a bean chalcone synthase promoter in transgenic tobacco. PlantCell, 1990, 2:619~631
    Schroder J, Raiber S, Berger T, et al. Plant polyketide synthase: a chlcone synthase-type enzyme which performs a condensation reaction with methylmalonyl-CoA in the biosynthesis of C-methylated chalcones. Biochemistry, 1998, 37:8417~8425
    Schwinn KL, Davies KM, Deroles SC, Markham KR, et al. Expression of an Antirrhinum majus UDP-glucose: flavonoid-3-O-glucostransferase transgene alters flavonoid glycosylation and acylation in lisianthus (eustoma grandiflorum Grise.). Plant Sci., 1997, 125:53~61
    Sekia M, Narusalaa M, Abec H, et al. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stress by using a full-length cDNA microarray. Plant Cell, 2001, 13:61~72
    Sherwin HW, Farrant JM. Protection mechanisms against exess light in the resurrection plants Craterostigma wilmsii and Xerophyta viscose. Plant Growth Reg., 1998, 24:203~210
    Shi Z, Bassia IA, Gabriel SL, Francis FJ. Anthocyanin pigments of sweet potatoes-Ipomoea batatas. J. Food Sci., 1992a, 57:755~757
    Shi Z, Lin M, Francis FJ. Anthocyanins from Tradescantia pallid.a, potential food colorants. J. Food Sci., 1992b, 57:761~765
    Shillito R D, et al. Hight frequent direct gene transfer to plant. Bio/Technology. 1985, 3:1099~1103
    Skrede G. Color quality of blackcurrant syrups during storage evaluated by hunter L', a', b' values. J. Food Sci., 1985, 50:514~517, 525
    Sommer H, Saedler H. Structure of the chalcone synthase ofAntirrhinummajus. Mol. Gen. Genet., 1986, 202:429~434
    Sompormpailin K, Makita Y, Yamazaki M, et al. A WD-repeat-c, ontaining putative regulatory protein in anthocyanin biosynthesis inperilla frutescens. Plant Mol. Biol., 2002, 50:485~495
    Sorensen EJ. Speciality potatoes. American Vegetable Grower, 1992, (1): 36~39
    Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol. Biol., 1994, 24:743-755
    Spelt C, Quattrocchio F, Mol JNM, Koes R. Anthocyaninl of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes, Plant Cell, 2000, 12: 1619-1631
    Springob K, Nakajima J, Yamazaki M, Saito K. Recent advances in the biosynthesis and accumulation of anthocyanins. Nat. Prod. Rep., 2003, 20:288~303
    Stapletion AE, Walbot V. Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage. Plant Physiol. 1994, 105:881~889
    Stotz G, De Vlaming P, Wiering H, et al. Genetic and biochemical lstudies on flavonoid-3-hydroxylationin flowers of Petunia hybrida. Theor. Appl. Genet., 1985, 70:300~305
    Suh DY, Fukuma K, Kagami J, Yamazaki Y, Shibuya M, Ebizuka Y, Sankawa U. Identification of amino acid resides important in the cyclization reactions of chalcone and stilbene synthases. Biochem. J., 2000, 350:229~235
    Suzki KI, Xue HM, Tanaka Y, Fukui Y, Fukuchi MM, Murakami Y, Katsumoto Y, Tsuda S, Kusumi T, Flower color modification of Torenia hybrida by cosuppression of anthocyanin biosynthesis genes. Mol. Breed, 2000, 6:239~246
    Sweeny JG, Wilkinson MM, Iacobucci GA. Effect of flavonoid suLfonates on the photobleaching of anthocyanins in acid solution. J. Agric. Food Chem., 1981, 29:563~567
    Swindell SR, Myers GA. Interact for the Molecular. eds. 1996, Horizon Scientific Press, England Troult AB; Mcheyzer-Williams MG, Pulendran B, Nossal G J V. Ligation-anchored PCR: a simple amplification technique with single-copy sequences. Proc. Natl. Acad. Sci., 1992, 89:9823~9825
    Tabak AJH, Meyer H, Bennink GJH. Modification of the B ring during flavonoid biosynthesis in Petunia Hybrid.a: In troduction of the 3' hydroxyl group is regulated by the tttl. Planta, 1978, 139:67~71
    Tabak AJH, Schram AW, Beunink GJH. Modification of the B ring during flavonoid synthesis in Petunia hybrida: Effect of the hydroxylation gen Hfl on dihydroflavanol intermediates. Planta, 1981, 153: 464~465
    Takahahashi A, Takeda K, Ohnishi T. Light induced anthocyanin reduces the extent to damage to DNA in irradiated Centaurea cyanus cell in culture. Plant Cell Physiol., 1991, 32:541~547
    Takeda J. Light-induced synthesis of anthocyanin in carrot cells in suspension.l. Factors affecting the anthocyanin production. J. Exp. Bot., 1988, 39:1065~1077
    Tamura H, Yanagami A. Antioxidant activity of monoacylated anthocyanins isolated from Muscatbailey a grape. J. Agric. Food Chem., 1994, 42:1612~1615
    Tanaka Y, Katsumoto Y, Brugliera F, Mason J. Genetic engineering in floriculture. Plant Cell, Tissue and Organ Culture, 2005, 80:1~24
    Tanaka Y, Tauda S, Kusumi T. Metaboli c.engineering to modify flower color. Plant Cell Physiol., 1998, 39:1119~1126
    Tanaka Y, Yonekura K, Fukuchi-Mizutani M, Fukui Y, et al. Molecular and biochemical characterization of three anthocyanin synthetic enzymes from Gentiana triflora. Plant Cell physiol., 1996, 37:711~716
    Tholakalabavi A, Zwiazek JJ, Thorpe TA. Osmotically-stressed poplar cell cultures: anthocyanin accumulation, deaminase activity, and solute composition. J. Plant Physiol. 1997, 151:489~496
    Toguri T, Umemoto N, Kobayashi O, et al. Activation of anthocyanin synthesis genes by white light in eggplant hypocotyls tissues, and identification of an inducible P-450 eDNA. Plant Mol. Biol., 1993, 23:933~946
    Tomas-Barberan FA, Robins RJ. Phytechemistry of fruits and vegetables. Oxford: Clarendon press, 1997. 29~49
    Toriyama K, et al. Diploid somatic-hybrid plants regenerated from rice cultivars. Theor. Appl. Genet., 1988, 76:665~668
    Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin H, Chiou TJ, Katagi H, Dewbre GR, Weigel D, Harrison MJ. Transformation of Medicagot runcatula via infiltration of seedlings or flowering plants withAgrobacterium. Plant J., 2000, 22:531~541
    Tsuada T, Horio F, Osawa T. The role of anthocyanins as an antioxidant under oxidative stress in rats. Biofactor., 2000, 131 (4): 133~139
    Tuohy JW, Choinski JJ. Comparative photosynthesis in developing leaves of Brachystegia spiciformis Benth. J. Exp. Bot., 1990, 41:919~923
    Tusda T, Shiga K, Ohshima K. Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L. Biochem. Pharmacol., 1996, 52: 1033~1039
    Ursula NK, Barzen E, Bernhardt J, et al. Chalcone synthase genes in plants: a tool to study evolutionary relationship. J. Mol. Evol., 1987, 26:213~225
    Van De Meer IM, Brouwer M, Spelt CE, et al. The TACPy AT repeats in the chalcone synthase promoter of Petunia hybrida act as a dominant, negative cis-acting module in the control of organ-specific expression. Plant J., 1992, 2:525~535
    Van der Krol AR, Lenting PE, Veenstra J. An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature, 1988, 333:866~869
    Van Der Meer IM, Spelt CE, Mol JNM, et al. Promoter analysis of the chalcone synthase (CHSA) gene of Petunia hybrida: a 67bp promoter region directs flower-specific expression. Plant Mol. Biol., 1990, 15:95~190
    Van Eck HJ, Jacobs JME, Van Den Berg PMMM, Stiekema WJ, Jacobsen AE. The inhertance of anthocyanin pigmentation in potato (Solarium tuberosum L.) and mapping of tuber skin colour loci using RFLPs. Herdity, 1994, 410~421
    Van Eck H J, Jacobs JME, Van Duk, Stiekema WJ, Jacobsen E. Identification and mapping of three flower colour loci of potato (S. tuberosum) by RFLP analysis. Theor. Appl. Genet., 1993, 86:295~ 300
    Van Eck H J, 3acobs JME, Van Duk, Stiekema WJ, Jacobsen E. Multiple alleles for tuber shape in diploid potato detected by qualitative and quantitative genetic analysis using RFLPs. Genetics, 1994, 137: 303~309
    Van Tunen AJ, Hartmen SA, Mur LA, et al. Regulation of chalcone flavone isomerase (CHI) gene expression in Petunia hybrida: the use of alternative promoters in corolla, anther and pollen. Plant Mol. Biol., 1989, 12:539~551
    Van Tunen A J, Kroes RE, Spelt CE, et al. Cloning of two chalcoe flavanone isomerase genes from Petunia hybrida: Coordinate light regulated and differential expression of flavonoid genes. EMBO. J., 1988, 7:1257~1263
    Van Tunen A J, Mol JN. Control of flavonoid synthesis and manipulation of flower colour. DGRIERSON, BLACK]E, GLASSGOW. Plant biotechnology, vol2: Developmental regulation of plant gene expression, 1991:94~125
    Verma SC, Purohit LK, Sharda RT, Purohit AN, Upadhya MD. Anthocyanin in dark-and light-grown sprouts of potato. Potato Res., 1972, 15:166~169
    Vetten N de, Quattrocchio F, Mol J, Koes R. The anll locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev., 1997, 11: 1422~143
    Wagner GJ. Content and vacuole/extravacuole distribution of neutral sugars, free amino acids and anthocyanin in protoplasts. Plant Physiol., 1979, 64:88~93
    Walden R, Hayashi H, Schell J, et al. T-DNA as a gene tag. Plant J., 1991, 1:281~288
    Wang H, Nair MG, Strasburg GM, Chang YC, Booren AM, Gray IJ. Antioxidant and anti-inflammatory activities of anthocyanins and their aglycone, cyanidin, from tart cherries. J. Nat. Prod. 1999, 62:86~88
    Wang XF, Hong FS, Shen SD, Su GX, Pan XF. Effect of cerium on activity of α-amylase from porcine pancreas. Journal of Rare Earths., 2002, 20:553~556
    Winkel-Shirley B. Flavonoid Biosynthesis. A colorful model for genetics, biochemistry, and biotechnology. Plant Physiol., 2001, 126:485~493
    Woodall GS, Stewart GR. Do anthocyanins play a role in UV protection of the red juvenile leaves of Syzygium? J. Exp. Bot., 1998, 49:1447~1450
    Yamazaki M, Gong Z, Fukuchi-Mizutani M, Fukui Y, Tanaka Y, et al. Molecular cloning and biochemical characterization of a novel anthocyanin 5-O-glucosyltransferase by mRNA differential display for plant forms regarding anthocyanin. J. Biol. Chem., 1999, 274:7405~7411
    Yamazaki M, Yamagishi E, Gong Z, Fukuchi-Mizutani M, et al. Two flavoniod glucosyltransferases from Petunia Hybrida: molecular cloning, biochemical properties and developmentally regulated expression. Plant Mol. Bio., 2002, 48:401~411
    Yang WD, Wang T, Liu JS, Gong ML, Lei HY, Yang YS. Changes of calpa mRNA level in rat hepatocyte after recurrent intraperitoneal administration of cerium nitrate. Journal of Rare Earths., 2001a, 19: 134-137
    Yang WD, Wang T, Liu JS, Gong ML, Lei HY, Yang YS. Effects of cerium nitrate on expression of CaM I and PMCA Ca~(2+)-ATPase mRNA in rat liver. Journal of Rare Earths., 2001b, 19:219~222
    Yanovsky MJ, Alconada-Magliano TM, Mazzella MA, Gatz C, Tomas B, Casal JJ. Phytochrome A affects stem growth, anthocyanin synthesis, sucrose-phosphate-synthase activity and neighbour detection in sunlight-grown potato. Planta, 1998, 205:235~241
    Yoshihara N, Imayama T, Fukuchi-Mizutani M, Okuhara H, et al. eDNA cloning and characterization of UDP-glucose: Anthocyanidin 3-O-glucosyltransferase in Iris hollandica, Plant Sci., 2005, 169:496~501
    Youdim KA. Incorporation of the eldefbery anthocyanins by endothelial cells increases protection against oxidative stress. Free Radical and Medicine, 2000, 29(1): 51~56
    Zapsalis C, Francis FJ. Cranberry anthocyanins. J. Food Sci., 1965, 30:396~399
    Zhang W, Furusaki S. Production of anthocyanins by plant cell cultures. Biotechnol. Bioprocess. Eng., 1999, 4:231~252
    Zhong JJ, Yoshida T. High-density cultivation of Perilla frutescens cell suspensions for anthocyanin production: effects of sucrose concentration and inoculum size. Enzyme Microb. Technol., 1995, 17: 1079~1087
    Zubko MK, Schmeer K, Glaβger WE, Bayer E, Seitz U. Selection of anthocyanin-accumulating potato (solanum tuberosum L.) cell lines from calli derived from seedlings produced by gamma-irradiated seeds. Plant Cell Rep., 1993, 12:555~558

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700