光纤传感应用中若干关键技术及系统方案的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤传感是以光波为载体,光纤为煤质,感知和传输外界被测信号的新型传感技术。光纤传感技术因具有灵敏度高、体小质轻、外形改变灵活、抗电磁干扰、抗腐蚀性强等特点,自出现之日其就广泛应用于社会的多个领域。近年来新型微结构光纤的出现在促进光通信技术发展的同时,其传感特性也显现出诱人的应用前景。对微结构光纤传感特性的深入研究将会极大提升光纤传感技术并推动其应用领域的拓展。随着光纤传感技术应用市场的不断扩展,对高精度、低成本、商用化光纤光栅传感及解调系统的研究同样具有重要意义。
     本论文主要是微结构光纤气液体传感及光纤光栅传感解调系统等方面的理论和实验工作。研究内容主要分两方面:一方面,通过数值仿真的方法,分析微结构光纤的结构和传输参数对其气液体传感特性的影响;另一方面,设计新型光纤光栅传感解调方案,并通过实验的方法,对所提传感解调系统进行性能研究。本论文的主要工作概述如下:
     第一部分:微结构光纤数值仿真平台的建立及传感特性的仿真分析
     ◇基于对多种用于微结构光纤数值仿真方法的主要特点及适用场合的分析总结,建立了基于全矢量有限元法的微结构光纤数值仿真平台,并根据已发表的实验结果和数值结果,对仿真平台的可靠性和准确性进行了验证。
     ◇建立了分析孔芯光子晶体光纤(PCF)传感特性的数值仿真模型,分析了孔芯PCF的气体及液体传感特性,详细讨论了光纤结构参量及传输光波长对其气液体传感灵敏度的影响;结果表明孔芯PCF孔结构内的电磁场能量分布最高可达总能量的1/2以上,同比是普通光子晶体光纤的四倍。
     ◇建立了分析高折射率芯布拉格(Bragg)光纤传感特性的数值仿真模型,分析了高折射率Bragg光纤的气体传感特性,详细讨论了光纤结构参量对气体传感灵敏度的影响;结果表明高折射率芯Bragg光纤中空气孔中的电磁场能量分布最高可达1/4以上,比普通PCF高出一倍以上。
     第二部分:新型光纤光栅传感解调系统的实验研究及性能分析
     ◇提出了基于匹配光栅和线型腔拉曼光纤激光器的光纤布拉格光栅(FBG)传感解调系统方案,并进行了实验验证;结果表明该方案具有分布式、高信噪比、高抗干扰性等优点。
     ◇改进了基于线型腔掺铒光纤激光器、环型腔掺铒光纤激光器的FBG传感解调系统,并对此两种系统进行了实验验证:实验结果表明该两种系统具有高信噪比、高抗干扰性、高传感灵敏度等优点。
     ◇提出了基于匹配光纤光栅的FBG传感解调系统方案,并分别利用步进电机和温度调节箱作为调谐装置进行了系统实验验证:实验结果表明该种系统方案具有结构简单、成本低廉,传感灵敏度较高等特点。
     ◇提出了基于马赫-曾德尔干涉仪(MZI)和匹配光纤光栅的FBG传感解调系统方案,并进行了实验验证,实验结果表明,此方案具有结构新颖、传感灵敏度高,全光结构等优点。
Fiber-optic sensor, a novel sensor technology that provides measuring and monitoring solutions for temperature, pressure, strain, displacement, force and load, has attracted a considerable amount of interests in the last decades because of their unprecedented properties, such as self-referencing capability, high signal-to-noise ratio, immunity to electromagnetic interference and anti-cauterization. With the development of the fiber sensor applications, much work on the fiber sensor technology was focused on the research of the sensing properties of microstructured optical fiber (MOF) and the wavelength interrogation systems feature high resolution, low cost, low complexity and high utility.
     This dissertation mainly focuses on theoretical studies on the sensing properties of MOF and experimental studies on sensing systems of fiber Bragg grating (FBG). The works are made up of two parts, one is the relationships between the gas sensing properties and the fiber parameters of MOF, including the fiber length and the operating wavelength, are numerically investigated through a full-vector finite element method (FEM), another is novel schemes of wavelength interrogation of FBG sensing are proposed and demonstrated. Below are the lists of the research.
     Gas sensing properties of MOF
     A full-vector finite element mode solver based on the hybrid edge/nodal element is developed to conduct the numerical simulation of MOF. Perfectly matched layer (PML) boundary conditions are incorporated into the mode solver to evaluate the leakage properties of MOF.
     The gas sensing properties of index-guided photonic crystal fiber (PCF) with air-core are investigated via full-vector FEM. The fraction of the total power located in the holes (including the air-core), which directly affects the sensing sensitivity, is simulated. The relationship between the gas sensing properties and the fiber parameters, as well as the operating wavelength, is discussed. It is predicted that higher relative sensitivity of more than 50% can be achieved by designing the fiber parameters and the operating wavelength properly.
     The gas sensing properties of high-index-core Bragg fiber are investigated via full-vector FEM. The fraction of the total power located in the holes is simulated. The relationship between the gas sensing properties and the fiber parameters, as well as the operating wavelength, is discussed. It is predicted that the gas sensing sensitivity of the fiber increases with the fiber's radius and refractive index decrease, but increases with the wavelength increase.
     Wavelength interrogation schemes of FBG
     A scheme of long-distance FBG sensor system based on linear-cavity fiber Raman laser is firstly proposed and demonstrated. Two schemes of FBG wavelength demodulation based on tunable Er-doped fiber ring laser and linear-cavity Er-doped fiber laser are improved, respectively. In measured experiment, results show that the schemes based on fiber laser feature high Signal-to-Noise ratio (SNR), high sensitivity, and anti-jamming.
     Two schemes of FBG interrogation system based on matching-FBG are proposed and demonstrated, in which step motor and temperature control equipment are used to adjust the matching-FBG, respectively. In measured experiments, results show that the schemes based on matching-FBG feature low cost, small size, low complexity and high utility.
     A scheme of FBG sensor interrogation system based on all fiber Mach-Zehnder interferometer (MZI) edge filter and tunable-FBG is firstly proposed and demonstrated. The sensing signal produced by FBG sensor can be interrogated by differing two pairs of power transformed from the wavelengths of FBG sensor and tunable-FBG. In measured experiments, the results show that the precision of the proposed system is 0.02nm in a range of 1nm. Furthermore, the precision can be improved by adjusting the two interference arms of the filter.
引文
[1] C. K. Kao, and G. A. Hockham, "Dielectric-fiber surface waveguides for Optical frequency," Proc. IEE, vol.133, Jul. 1966, pp. 1151-1158.
    [2] F. P. Kapron, D.B. Keck and R.D. Maurer, "Radiation Losses in Glass Optical Waveguides", Applied Physics Lett., vol.17, no.10,1970, pp.423-425.
    [3] T. C. Cannon, D. L. Pope, and D. D. Sell, "Installation and Performance of the Chicago lightwave Transmission system," IEEE Transactions on Communications, vol. 26, no. 7, Jul. 1978, pp. 1056-1060.
    [4] T. C. Cannon, D. L. Pope, and D. D. Sell, "Installation and Performance of the Chicago lightwave Transmission system," IEEE Transactions on Communications, vol. 26, no. 7, Jul. 1978, pp. 1056-1060.
    [5] J.S. Cook and O.I. Szentesi, "North American Field Trials and Early Applications in Telephony", IEEE. J. Sel. Areas on Commun., vol.1, 1983, pp. 393-397.
    [6] A.Moncalvo and F. Tosco, "European Field Trials and Early Applications in Telephony", IEEE. J. Sel. Areas on Commun., vol.1, 1983, pp. 398-403.
    [7] R. J. Meers et al., "Low-noise Erbium-doped fiber amplifier at 1.54 mm," Electronics Letters, vol. 23, no. 19, pp. 1026-1028, 1987
    [8] E. Desurvire, J. R. Simpson, and P. C. Becker, "High-gain, Erbium-doped traveling-wave fiber amplifier," Optics Letters, vol. 12, no. 11, 1988, pp.888-890
    [9] H. Taga, et al, "Recent progress in amplified undersea systems", Journal of Lightwave Technology, vol. 13, no. 5, May 1995, pp. 829-840.
    [10] Sexton M. Network architecture for SDH transmission networks, IEE Colloquium on Evolution to Synchronous Networks, Oct. 1989, pp. 1/1-1/8.
    [11] Ball P.R., Wright I.R.,Gosal S.,et al. SDH add/drop multiplexer rings in Northern Ireland. Fourth IEE Conference on Telecommunications, 18-21 Apr, 1993, pp:115-120.
    [12] F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, "WDM systems with unequally spaced channels," Journal of Lightwave Technology, vol. 13, no. 5, May 1995, pp. 889-897.
    [13] H. Taga, "Long distance transmission experiments using the WDM technology," Journal of Lightwave Technology, vol. 14, no. 6, Jun. 1996, pp. 1287-1298.
    [14] N. S. Bergano, and C. R. Davidson, "Wavelength division multiplexing in long-haul transmission systems," Journal of Lightwave Technology, vol. 14, no. 6, Jun. 1996, pp. 1299-1308.
    [15] J. P. Elbers, "High-capacity DWDM/ETDM transmission," OFC'2002, paper ThD3, Mar. 2002.
    [16] Okamoto S., Watanabe A., Sato K.I., "Optical Path Cross-connect Node Architectures for Photonic Transport Network", IEEE J. Lightwave Technol., Vol. 14, No.6,1996,pp. 1410-1422.
    [17] Sabella R., Iannone E., Modular optical path cross-connect. Electronics letters, vol.32,no.2, Jan. 1996,pp: 125-126.
    [18] Shiragaki T., Henmi N.,Kato T., et al. Optical cross-connect system incorporated with newly developed operation and management system. IEEE Journal on Selected Areas in Communications, vol. 16, no.7, Sep. 1998, pp.1179-1189.
    [19] Venghaus H., Gladisch A., Joergensen B.F.,et al. Optical add/drop multiplexers for WDM communication systems. OFC 97,16-21 Feb. 1997,pp:280-281.
    [20] C. Giles and M. Spector. The wavelength Add/Drop Multiplexer for lightwave communication networks. Bell Labs Tech. J., vol.4, no.l,1999,pp:207-229.
    [21] M. Berger, M. Chbat, P. Demeester, P. Godsvang, B. Hein, M. Huber, A. Jourdan, A. Leclert, R. Marz, T. Olsen, M. Sotom, G. Tobolka, B. Van Caenegem, and T. Broeck, "Pan-European optical networking using wavelength division multiplexing," IEEE Communications Magazine, vol. 35, Apr. 1997, pp. 82-89.
    [22] A. Jourdan, et al., "Fully reconfigurable WDM optical crossconnect: Feasibility validation and preparation of prototype crossconnect for ACTS 'OPEN' field trials," in Proc. ECOC'97, vol. 3, Sept. 1997, pp. 55-58.
    [23] B. Mukherjee, "WDM Optical Communication Networks: Progress and Challenges," IEEE Journal on Selected Areas in Communications, vol. 18, no.10, 2000, pp. 1810-1824.
    [24] Paul Green, "Progress in Optical Networking," IEEE Communication Magazine, vol.39, no.1, Jan. 2001, pp. 54-61.
    [25] R. Davey, D. Payne and A. Lord, "Optical Networks: A European View," OFC'2002, 2002, paper Tuh1.
    [26] Bubel; G.M. Krause; J.T. Bickta; et al. Mechanical reliability of metallized optical fiber for hermetic terminations. Journal of Lightwave Technology, Vol. 7, Issue 10, Oct 1989, pp: 1488-1493
    [27] Ching-Tarng Shuy and Likarn Wang, "Sensitive Linear Electric Current Measurement Using Two Metal-Coated Single-Mode Optical Fibers," Journal of Lightwave Technology, Vol. 12, No. 11, November 1994, pp. 2040-2048
    [28] R. H. Stolen and E. P. Ippen. "Raman gain in glass optical waveguides," Applied Phys. Lett., Vol.22, No.6, 1973, pp.276
    [29] Ohashi, M.; Tateda, M.; Design of strain-free-fiber with nonuniform dopant concentration for stimulated Brillouin scattering suppression. Journal of Lightwave Technology, Vol. 11, Issue 12, Dec. 1993, Page(s):1941-1945
    [30] Hansen, P.B.; Eskildsen, L.; Stentz, J.; et al. Rayleigh scattering limitations in distributed Raman pre-amplifiers. Photonics Technology Letters, Vol. 10, Issue 1, Jan. 1998, Page(s):159-161
    [31] Velanas, P.; Bogfis, A.; Syvridis, D.; Impact of dispersion fluctuations on the noise properties of fiber optic parametric amplifiers. Journal of Lightwave Technology, Vol. 24, Issue 5, May 2006, Page(s):2171 - 2178
    [32]Marrone, M.; Rashleigh, S.; Blaszyk, P.; Polarization properties of birefringent fibers with stress rods in the cladding. Journal of Lightwave Technology, Vol. 2, Issue 2, Apr 1984, Page(s):155 -160
    [33]Galtarossa, A.; Palmieri, L.; Pizzinat, A.; et al. Polarization Optical Time Domain Reflectrometry Measurements. Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005. Pacific Rim Conference on 30-02 Aug. 2005, Page(s):1490 -1491
    [34]Sreckovic, M.; Marinovic, A.; Glisic, R.; et al. Properties of fiber optical materials after exposure to nuclear radiation. 20th International Conference on Microelectronics, Vol. 1,12-14 Sept. 1995, Page(s):289 - 292
    [35]Bing Yu; Anbo Wang; Pickrell, G.R.; Analysis of fiber fabry-Pe/spl acute/rot interferometric sensors using low-coherence light sources. Journal of Lightwave Technology, Vol. 24, Issue 4, April 2006, Page(s):1758 -1767
    [36]Velanas, P.; Bogris, A.; Syvridis, D.; Impact of dispersion fluctuations on the noise properties of fiber optic parametric amplifiers. Journal of Lightwave Technology, Vol. 24, Issue 5, May 2006, Page(s):2171 - 2178
    [37]Litchinitser, N.M.; Patterson, D.B.; Analysis of fiber Bragg gratings for dispersion compensation in reflective and transmissive geometries. Journal of Lightwave Technology, Vol. 15, Issue 8, Aug. 1997, Page(s):1323 -1328
    [38] Hill, K.O.; Meltz, G; Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, Vol. 15, Issue 8, Aug. 1997, Page(s):1263 -1276
    [39]Yeuk. L. Hoo et al. Evanescent-wave gas sensing using microstructure fiber. Optical Engineering, 2002, 41 (1):8-9
    [40]Yeuk. L. Hoo, Wei Jin, Chunzheng Shi, Hoi L. Ho, Dong N. Wang, and Shuang C. Ruan, Design and modeling of a photonic crystal fiber gas sensor. Applied Optics, 2003, 42(18):3509-3515
    [41] Wang Jingyuan, Jiang Chun, Hu Weisheng, Gao Mingyi, Properties of index-guided PCF with air-core, Optics Communications, 2005,
    [42]Menyuk, C.R.; Marks, B.S.; Interaction of polarization mode dispersion and nonlinearity in optical fiber transmission systems. Journal of Lightwave Technology, Volume 24, Issue 7, July 2006, Page(s):2806 - 2826.
    [43]Akbulut, M.; Weiner, A.M.; Miller, P.J.; Broadband all-order polarization mode dispersion compensation using liquid-crystal modulator arrays. Journal of Lightwave Technology, Volume 24, Issue 1, Jan. 2006, Page(s):251 - 261.
    [44] E. Yablonovitch. Photonic crystal: semiconductors of light. Scientific American (International Edition), vol. 285, no. 6, December 2001, pp: 47-55.
    [45]Fujisawa, T.; Koshiba, M.; Finite-element modeling of nonlinear Mach-Zehnder interferometers based on photonic-crystal waveguides for all-optical signal processing. Journal of Lightwave Technology, Volume 24, Issue 1, Jan. 2006 Page(s):617-623.
    [46] Sugimoto, Y.; Asakawa, K.; Fabrication and characterization of photonic crystal based symmetric Mach-Zehnder (PC-SMZ) structures toward ultra-small all-optical switching devices. Proceedings of 2004 6th International Conference on Transparent Optical Networks, Volume 1, 4-8 July 2004, Page(s):285-290
    [47] Zhang Min, Wang Lin, Ye peida. "All-optical XOR logic gates-technologies and experiment demonstrations". IEEE Communication Magazine. Volume 43, Issue 5, May 2005, Page(s):S19-S24
    [48] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., vol. 58, no. 20, May. 1987, pp. 2059-2062.
    [49] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., vol. 58, no. 23, Jun. 1987, pp. 2486-2489.
    [50] J. C. Knight, T. A. Birks, P. S. J. Russell, et al. "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. Vol. 21, 1996, pp.1547-1549.
    [51] Philip Russel, Photonic crystal fibers. SCIENCE, vol. 299, Jan. 2003, pp. 358-362.
    [52] Monro T M, Richardson D J, Bennett P J et al. Developing holey fibers for evanescent field devices. Electron Lett., 1999, 35(14): 1188-1189
    [53] ITU-T Recommendation G.652, Characteristics of a single-mode optical fibre and cable. Oct.1984.
    [54] ITU-T Recommendation G.653, Characteristics of a dispersion-shifted single-mode optical fibre and cable. 1988.
    [55] ITU-T Recommendation G.655, Characteristics of a non-zero dispersion-shifted single-mode optical fibre and cable. 1996.
    [56] Matsuo, S.; Ikeda, M.; Himeno, K.; Bend-insensitive and low-splice-loss optical fiber for indoor wiring in FTTH. Optical Fiber Communication Conference, 2004. OFC 2004, Volume 2, Feb. 2004, Page(s):3.
    [57] Van Vickle, P.; Stokes, S.; Mackie, G.; Flexible FTTX Deployment using Segmented Ribbon and Bend Insensitive Fiber. Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference. 5-10 March 2006 Page(s):1-7.
    [58] Shiraki, K.; Ohashi, M.; Tateda, M.; SBS threshold of a fiber with a Brillouin frequency shift distribution. Journal of Lightwave Technology, Volume 14, Issue 1, Jan. 1996, Page(s):50-57.
    [59] Hansryd, J.; Dross, F.; Westlund, M.; et al. Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution. Journal of Lightwave Technology, Vol. 19, Issue 11, Nov. 2001. Page(s):1691-1697.
    [60] Norman, D.C.C.; Lai, Y.; Webb, D.J.; High birefringence fibre interrogating interferometer for optical sensing applications. Electronics Letters, Vol. 41, Issue 5, Mar 2005, Page(s):235-236.
    [61] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., vol. 58, no. 20, May. 1987, pp. 2059-2062.
    [62] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., vol. 58, no. 23, Jun. 1987, pp. 2486-2489.
    [63] E. Yablonovitch, "Photonic band-gap structure," J. Opt. Soci. Of America B. 1993:283-295.
    [64] S. John, "localization of light: theory of photonic band gap material," Photonic Band Gap Materials, vol.315,, 1996,pp:563-666.
    [65] Scherer, A.; Vuckovic, J.; Loncar, M.;et al. "Photonic bandgap microcavity devices". Optical Fiber Communications Conference, 2003. OFC 2003, vol.2, March 2003, Page(s):490
    [66] Se-Heon Kim, Han-Youl Ryu, Hong-Gyu Park, Guk-Hyun Kim, Yong-Seok Choi,and Yong-Hee Lee, "Two-dimensional photonic crystal hexagonal waveguide ring laser," Appl. Phys. Lett., v. 81, no. 14, Sep 2002, pp. 2499-2501.
    [67] J.S. Jensen and O. Sigmund. "Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends". Appl. Phys. Lett. Vol. 84(12), 2004, pp. 2022-2024.
    [68] S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature, vol. 407, 2000, pp. 608-610.
    [69] Masahiro lmada, Susumu Noda, Alongkarn Chutinan, Masamitsu Mochizuki, and Tomoko Tanaka, "Channel Drop Filter Using a Single Defect in a 2-D Photonic Crystal Slab Waveguide," IEEE. J. Lightwave. Tech., vol. 20, no. 5, May 2003, pp. 873-878.
    [70] Takashi Asano, Masamitsu Mochizuki, Susumu Noda, Makoto Okano, and Masahiro Imada, "A Channel Drop Filter Using a Single Defect in a 2-D Photonic Crystal Slab—Defect Engineering With Respect to Polarization Mode and Ratio of Emissions From Upper and Lower Sides," IEEE. J. Lightwave. Tech., vol. 21, no. 5, May 2003, pp. 1370-1376.
    [71] Christopher J. Herbert and Michelle S. Malcuit. "Optical bistability in nonlinear periodic structures". Opt. Lett. Vol.18(21),1993:1783-1785.
    [72] A. Figotin, Yu. A. Godin, and I. Vitebsky, "Two-dimensional tunable photonic crystals," Phys. Rev. B, vol. 57, no. 5, Feb. 1998, pp. 2841-2848.
    [73] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, Toshiaki Tamamura, Takashi Sato, and Shojiro. Kawakami, "Superprism Phenomena in Photonic Crystals: Toward Microscale Lightwave Circuits," IEEE. J. Lightwave.Tech., vol. 17, no. 11, Nov 1999, pp. 2032-2038.
    [74] Takashi Matsumoto, Shinji Fujita and Toshihiko Baba, "Wavelength demultiplexer consisting of Photonic crystal superprism and superlens," Opt. Expr, vol. 13, no. 26, Dec 2005, pp. 10768-10776.
    [75] Birks T A, Knight J C, Russell P. St. J, et al. Endless single-mode photonic crystal fiber[J]. Opt. Lett, vol. 22,1997,:961-963.
    [76] J. C. Knight, J. Broeng, T. A. Birks, and R S. J. Russell, "Photonic band gap guidance in optical fibers," Science, vol. 282,1998, pp. 1746-1748.
    [77] P. J. Bennett, Tanya M. Monro, D. J. Richardson. "Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization," Optics Letters, Vol. 24, Issue 17, Sep. 1999, pp:1203-1205.
    [78] Peng G D. Polymer optical fiber systems and devices, a book chapter in science and technology-advancing into the new millennium, ISBN 7-107-13208-3, People's Education Press, Beijing, Aug. 1999,337-351 and 573-578.
    [79]Emslie C. Review-Polymer optical fibers. J. of Mat. Sci., 1988, 23:2281.
    [80]Ishigure T, Koike Y. Design of POF for gigabit transmission. Proc. Of the 12th International Conference on Polymer Optical Fiber(POF'2003), Seattle, WA, USA, Sept. 2003,2-5.
    [81]Ishigure T, Nihei E, Koike Y. High bandwidth(2GHzkm) low loss(56dB/km) GI polymer optical fiber. SPIE, 1992,1799,67.
    [82]Niher E, Ishigure T, Koike Y. High-bandwidth, graded-index polymer optical fiber for near-infrared use. Appl. Optics, 1996,35(36):7085-7090
    [83] Koike Y. Progress in GI-POF, status of high speed plastic optical fiber and its future. Proc. of the International POF Technical Conference, POF'2000, 2000,1-5.
    [84]Koganezawa K, Onishi T. Progress in perfluorinated GI-POF. Proc. of the International POF Technical Conference, POF'2000,2000,19-21.
    [85] White W R et al. Perfluorinated POF, out of the lab, into the real world. Proc. of the 12th International Conference on Polymer Optical Fiber (POF'2003), Seattle, WA, USA, 2003, 16-19.
    [86]Kaino T, Fujiki M, Jinguji K. preparation of polymer optical fibers. Rev. Elect. Comm. Lab. 1984, 32(3):478.
    [87]Kaino T, Jinguji K, Nara S. Low loss poly(methyl methacrylate-d8) core optical fibers. Appl. Phys. Lett. 1983,42(7):567.
    
    [88]Tanio N, Koike Y. What is the most transparent polymer? J. of Polymer, 2000, 32:42-50.
    [89]Grattan K T V, Meggitt B T. Optical Fiber Sensor Technology. London: Chapman & Hall 1995.
    [90]Bhatia V, Murphy K A, et al. Recent developments in optical-fiber-based extrinsic Fabry- Perot interferometric strain sensing technology. Smart Mater. Struct, 1995. 24(4): 246-251.
    [91]Guanderson L C. Fiber optic sensor applications using Fabry-Perot interferometry. Proc. of SPIE. 1267(1990): 194-204.
    [92] Bennett K D, Mclaughlin L R. Monitoring of corrosion in steel structures using optical fiber sensors, Smart Structure and Materials. Proc. of SPIE 1995 (2446):48-59.
    [93] De Vries M J et al. Applications of absolute EFPI fiber optic sensing system for measurement of strain. Smart Structure and Materials, SPIE. 1995 (2446): 9-15
    [94] Oh K D, et al. Optical fiber Fabry-Perot interferometric sensor for magnetic field measurement. IEEE Photonics Technology Letters, 1997, 9(6): 797-799
    [95] Lee C E, Taylor H F, Fiber-Optic Fabry-Perot Temperature Sensor Using a Low-Coherence Light Source. Journal of Lightwave Technology, 1991, 9(1): 129-134.
    [96] K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett., vol. 32, 1978, pp: 647-649.
    [97] G. Meltz, W. W. Morey, and W. H. Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett., vol.14,1989, pp: 823-825.
    [98]Muto S et al. A plastic optical fiber sensor for real-time humidity monitoring. Measurement Science and Technology, 2003,14(6):746-750.
    [99] Kersey A D, Davis M A, Patrick H J et al. Fiber grating sensor. J. of Ligthwave Technol., 1997,15(8):1442-1463.
    [100] Huang S, Oha M M, Measures R M. Phase-based Bragg intra-grating distributed strain sensor. Appl. Opt., 1996,35(7):1135-1142.
    [101]Cassidy D T, Reid J. Atmospheric pressure monitoring of trace gases using tunable diode lasers, Appl. Opt., 1982, 21(7): 1185-1190.
    [102]Scherer J J et al. Infrared cavity ring down laser absorption spectroscopy(IR-CRLAS), Chemical Physics Letters, 1995,245:272-280.
    [103] Zhang Y, Zhang, Jin W. Sensitivity enhancement in erbium-doped fiber laser intra-cavity absorption sensor. Sensor & Actuator A-PHYS 2003, APR 15, 14(2):183-187.
    [104]Collins S F et al. Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation. Journal of Appl. Phy., 1998, 84(9):4649-4654.
    [105]A1-Chalabi S A, Chlshaw B, David D E N. Partially coherent sources in interferometric sensors. Proc. 1th International Conference on Optical Fiber sensors, London, 1983, 132-135.
    [106] Morris J A, Pollock C R. A digital fiber-optic liquid level sensor. J Lightwave Technol., 1987, Vol. LT-5(7):920-925.
    [107] Mitchell G L. Intensity-Based and Fabry-Perot Interferometer Sensor. Fiber Optic Sensor: An Introduction For Engineers and Scientists. New York, 1991.
    [108] Zhang Z P, Gambling W A. Principle of fiber sensor. Publishing House of China Measuremen, 1991
    [109] Payne S A et al. Laser performance of LiSrAlF6:Cr3+, J Appl. Phy. 1989, 66(3):1051-1056.
    [110] Zhang Z Y, Grattan K T V, Palmer A W. Sensitive fiber optic thermometer using Cr:LiSAF fluorescence for bio-medical sensing applications. Proc. of 8th Optical Fiber Sensors Conference, Monterey, California, 1992, 93-96.
    [111]Zhang Z Y et al. Cr:LiSAF fluorescence lifetime based fiber optic thermometer and its applications in clinical RF heat treatment. SPIE Proc., 1992,1885:300-305.
    [112]Guo F Z, Yu C T. Technologies and applications of fiber sensor. Publishing House of Zhejiang Univ., 1992
    [113] An S Y, Zeng X D. Optical Sensitivity and Measurement. Publishing House of Electronics Industry, 1995
    [114] Zhang G S, He J X, Xiao G X. Fiber Sensor Technology. Publishing House of Water Conservancy and Electric Power, 1988.
    [115] Liu R F, Shi J S. Fiber Sensor and Applications. Publishing House of Electronics Technology Univ., 1994
    [116]Musa S M. Real-Time Signal Processing and Hardware Development for a Wavelength Modulated Optical Fiber Sensor System. Dissertation of the degree of Doctor of Philosophy to the Faculty of the Virginia Polytechnic Institute and State, 1997.
    [117]Lee C E, Gibler W N, Tkins R A, Taylor H F. In-Line Fiber Fabry-Perot Interferometer with High-Reflectance Internal Mirrors. J Lightwave Technol., 1992,10(10).
    [118]Meller S A. Extrinsic Fabry-Perot interferometer System Using Wavelength Modulated Source. Dissertation of the Master to the Faculty of the Virginia Polytechnic Institute and State Univ., Dec. 1996.
    [119] Zhou S J, Cui M, Wen C H. Magnetic-field Sensing Technique Based on the Faraday Effect. Journal of PLA Univ. of Science and Technology, 2003,04(06).
    [120] Wang L M. A New Method fof Measuring Magnetic Field Parameters by a Optical Fiber. Optoelectronic Technology, 1999,01(15).
    [121] Li R M, Ye S H, Wang C H. Theoretical analysis of sensing model with a Dual Fabry-Perot interferometer system. Acta Optical Sinica, 1990,09(06).
    [122]Boheim G. Fiber optic thermometer using semiconductor etalon sensor. Electron. Lett., 1986,22:238-239.
    [123]Harl J C, Saaski E W, Mitchell G L. Fiber optic temperature sensor using spectral modulation. Proc. SPIE, 1987, 838:257-261.
    [124]Kersey A D, Dandridge A. Dual-wavelength approach to interferometric sensing. Proc. SPIE, 1987, 798:176-181.
    [125]Farahi F et al. Coherence multiplexing of remote fiber Fabry-Perot sensing system. Opt. Commun., 1988, 65:319-321.
    [126]Boheim G. Fiber-linked interferometric pressure sensor. Rew. Sci. Instrum., 1987, 58:1655-1659.
    [127]Velluet M T, Graindorge P, Arditty H J. Fiber optic pressure sensor using white-light interferometry. Proc. SPIE, 1987, 838:78-83.
    [128]Trouchet D, Laloux B, Graindorge P. Prototype industrical multi-parameter FO sensor using white light interferometry. Proc. 6th International Conference on Optical Fiber Sensors, Paris, 1989, 227-233.
    [129]Gusmeroli V, Vavassori P, Martinelli M. A coherence-multiplexed quasi-distributed polarimetric sensor suitable for structural monitoring. Proc. 6th International Conference on Optical Fiber Sensors, Paris, 1989,513-518.
    [130]Kotrotsios G, Parriaux. White light interferometry for distributed sensing on dual mode fibers monitoring. Proc. 6th International Conference on Optical Fiber Sensors, Paris, 1989, 568-274.
    [131]Henderson P J, Fisher N E, Jackson D A.In:Proceeding of the 12th International Conference on Optical Fiber Sensors. Williamsburg, USA, 1997, 186
    [132]Wolfgang E, Stephan G, Ines Let al, SPIE, 2001, 4328:160
    [133]Vohra S.T. Davis M.A.,Dandridge A. et al.In:Proceedings of the 12th International Conference on Optical Fiber Sensors. Williams burg. USA, 1997
    [134]R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Harti, and A. Afromowitz, "Development of medical pressure and temperature sensors employing optical spectrum modulation," IEEE Trans. Biomed. Eng., vol. 38, pp. 974-981,1991.
    [135] X. Shu, L. Zhang, and I. Bennion, "Sensitivity characteristics of longperiod fiber gratings," J. Lightwave Technol., vol. 20, pp. 255-266, Feb. 2002.
    [136] M. H. Sun, K. A. Wickersheim, and J. Kim, "Fiber-optic temperature sensors in the medical setting," Proc. SPIE, vol. 1967, pp. 15-21,1989.
    [137]Chen.X, Zhou. K, Zhang L, Bennion I. "Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching." IEEE Photonics Technology Letters, Vol.16, May 2004 1352 - 1354.
    [138] Wang H W, Jiang X J, et al. The Technologies and Applications of Optical Fiber Sensing. National Defence Industry Press, 2001.
    [139] Jin W, Ruan S S, et al. Evolvation of Fiber Sensor Technologies. Science Press, 2005.
    [1] Birks T A, Knight J C, Russell P. St. J, et al. Endless single-mode photonic crystal fiber[J]. Opt. Lett., vol. 22,1997, 961-963.
    [2] T.A .Birks, D.Mogilevtsev, J.C. Knight, et al. ,'The analogy between photonic crystal fibres and step index fibres ," in Optical Fiber Communication Conference , OS A (Optical Society of America, Washington, D .C, 1998), FG4,114-116.
    [3] Steven G. Johnson and J. D. Joannopoulos. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. Opt. Exp., vol.8 (3), 2001,pp. 173-190.
    [4] Shangping Guo and Sacharia Albin. Simple plane wave implementation for photonic crystal calculations. Opt. Exp., vol.11 (2), 2003,pp.
    [5] R. Zoli, M. Gnan, D. Castaldini,et al,"Reformulation of the plane wave method to model photonic crystals," Opt. Exp., vol.11, 2003, 2905-2910.
    [6] T. M. Monro, D. J. Richardson, N. G. R. Broderick, et al, Holey optical fibers: an efficient modal model,. J. Lightwave Technol Vol. 17,1999,pp. 1093-1102.
    [7] T. M. Monro, D. J. Richardson, N. G. R. Broderick, et al, Modeling large air fraction holey optical fibers. J. Lightwave Technolo. Vol.18, 2000, pp.50-56.
    [8] Wang Zhi, Ren Guobin, Lou shuqin, et al. "Supercell lattice method for photonic crystal fibers," Opt. Exp., vol.11, 2003, pp.980-991.
    [9] Min Qiu. Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method. Microwave and Optical Technology Letters. Vol.30 (5), 2001
    [10] Yanjie Zhu,Yinchao Chen,Paul Huray, and Xiaopeng Dong. Application of a 2D-CFDTD algorithm to the analysis of photonic crystal fibers (PCFs). Microwave and Optical Technology Letters. Vol.35 (1), 2002
    [11]Z. Zhu and T.G. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers, " Opt. Exp., Vol.10,2002, pp.853-864.
    [12]T.P. White, B.T. Kuhlmey, R.C. McPhedran, et al. Multipole method for microstructured optical fibers. I. Formulation. J. Opt. Soc. Am. B. vol.19 (10), 2002,pp.2322-2330.
    [13] B.T. Kuhlmey, T.P. White, et al Multipole method for microstructured optical fibers. II. Implementation. J. Opt. Soc. Am. B. vol.19 (10), 2002,pp.2331-2340
    [14] T.P. White, R.C. McPhedran, L.C. Botten, et al. Calculations of air-guided modes in photonic crystal fibers using the multipole method, Optics Express, Vol. 9, No. 13, December 2001, pp:721-732.
    [15] F. Fogli, L. Saccomandi, P. Bassi, et al. "Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers," Opt. Exp.,vol. 10, 2002, pp. 54-59.
    [16] 金建铭著,“电磁场有限元方法”,王建国译,葛德彪校,西安电子科技大学出版社,西安,1998.
    [17] Liu Xiaoyi, Zhang Fangdi, Zhang Min, Yu Chongxiu, Huang Lijie, Ye Peida. 'High-index-core Bragg fiber analysis through the vector finite element method'. Proc. of SPIE, APOC'2005, 7-10 November 2005,Shanghai, China.
    [18] F. Brechet, J. Marcou, D. Pagnoux, and P. Roy. Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers by the Finite Element Method. Optical Fiber Technology, vol. 6, 2000, pp. 181-191.
    [19] Koshiba M.Full-vector analysis of photonic crystal fibers using the finite element method [J]. IEICE Trans.Electron, vol. E85-C, 2002,pp:881-888.
    [20] A. Cucinotta, S. Selleri, L. Vincetti, et al., "Holey fiber analysis through the finite element method", IEEE Photonics Technology Letters, vol.14, pp. 1530-1532, 2002.
    [21] Kunimasa Saitoh and Masanori Koshiba, Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Opt. Exp., 11 (23), 2003, pp. 3100~3109.
    [22] Berenger J.P., "A Perfectly Matched Layer for the Absorption of Electromagnetic waves", J. Comp. Phys., vol. 114(2), 1994, pp. 185-200.
    [23] 张方迪,刘小毅,张民,叶培大,“全矢量有限元模型及其在光波导和光子晶体光纤中的应用”,光子学报,vol.36(2),Feb.2007,pp.209-215.
    [24] 张治国,刘小毅,李安俭,张方迪,张民,叶培大,“高折射率芯Bragg光纤的气体传感特性研究”,吉首大学学报,2007年第三期.出版中
    [1] Zhang Zhiguo, Zhang Fangdi, Zhang Min, Ye Peida. Gas sensing properties analysis of index guided PCF with air core. Optics&Laser Technology, In Press
    [2] Knight J C et al. All silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 1996,21(19):1547-1549
    [3] Birks T A et al. Full 2-D photonic bandgap in silica/air structures. Electronics Letters, Oct. 1995,31(22):1941-1943
    [4] Cregan R et al. Single-mode photonic bandgap guidance of light in air. Science, Sept 1999, 285:1537-1539
    [5] Hansen T P et al. Air-guigance over 345m of large-core photonic bandgap fiber. Optical Fiber Communication Conference OFC'2003, Post deadline paper, Atlanta, Georgia , March, 2003, 23-28
    [6] Bjarklev A, Broeng J, Bjarklev A S. Photonic Crystal Fibers. Kluwer Academic Publishers, 2003
    [7] Monro T M, Richhardson D J. Holey optical fibers: Fundamental properties and device applications. CR PHYS JAN-FEB 2003,4(1):175-186
    [8] Wang Jingyuan, Jiang Chun, Hu Weisheng, Gao Mingyi, Properties of index-guided PCF with air-core. Optics and Laser Technology, March, 2007. 39(2):317-321
    [9] Monro T M et al. Chalcogenide holey fibers. Electronics Lett., Nov. 2002, 36(24)
    [10]Kiang K M et al. Extruded single mode non-silica glass holey optical fibers. Electronics Lett., 2002, 38(12):546-547
    
    [11] Knight J.C., Broeng J., Birks T.A., and Russel P.St.J, Photonic band gap guidance in optical fiber, Science, 1998, 282:1476-1478
    
    [12] Birks T.A., Knight J.C., Russel P.St.J., Endlessly single-mode photonic crystal fiber. Opt. Lett., 1997,22 (7): 961-963
    
    [13] Knight J.C. Photonic crystal fibres. Nature, 2003,424: 847—851
    [14] T.M. Monro, D.J. Richardson and P.J. Bennett, Developing holey fibres for evanescent field devices. ELECTRONICS LETTERS, 1999,35(14): 1188-1189
    [15]Yeuk. L. Hoo et al. Evanescent-wave gas sensing using microstructure fiber. Optical Engineering, 2002, 41 (1):8-9
    [16]Yeuk. L. Hoo, Wei Jin, Chunzheng Shi, Hoi L. Ho, Dong N. Wang, and Shuang C. Ruan, Design and modeling of a photonic crystal fiber gas sensor. Applied Optics, 2003, 42(18):3509-3515
    [17] Monro T M, Richardson D J, Bennett P J et al. Developing holey fibers for evanescent field devices. Electron Lett., 1999,35(14):1188-1189
    [18]Hoo Y L et al. Evanescent-wave gas sensing using microstructure fiber. Optical Engineering, 2002,41(1):8-9
    [19] Kunimasa Saitoh, and Masanori Koshiba, Numerical Modeling of Photonic Crystal Fibers, JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005,23(11): 3580-3590
    [20]Fabrizio Fogli, Luca Saccomandi, Paolo Bassi, Gaetano Bellanca and Stefano Trillo, Full vectorial BPM modeling of Index-Guiding Photonic Crystal Fibers and Couplers, OPTICS EXPRESS, 2002,10(1): 54-59
    [21]T.P. White, R.C. McPhedran, L.C. Botten, G.H. Smith, C. Martijn de Sterke, Calculations of air-guided modes in photonic crystal fibers using the multipole method, OPTICS EXPRESS, 2001, 9(13):721-732
    [22] Masanori Koshiba, and Kunimasa Saitoh, Applicability of classical optical fiber theories to holey fibers, OPTICS LETTERS, 2004, 29(15): 1739-1741
    [23] J. Crack, The Mathematics of Diffusion (Clarendon, Oxford,1975), pp:40-200
    [24]E. L. Cussler, Diffusion: Mass Transfer in Fluid System (Cambridge, Second Edition 2000), pp:60-200
    [25] C. L. Yaws, Handbook of Transport Property Data: Viscosity, Thermal Conductivity, and Diffusion Coefficients of Liquids and Gases (Gulf Publishing, Houston, Tex., 1995)
    [26] R. E. Cunningham and R. J. J. Williams, Diffusion in Gases and Porous Media (Plenum, New York 1980), pp: 140-250
    [1] 张治国,刘小毅,李安俭,张方迪,张民,叶培大,高折射率芯Bragg光纤的气体传感特性研究,吉首大学学报,已接收
    [2] E. Yablonovitch. Photonic crystal: semiconductors of light. Scientific American (International Edition), vol. 285, no. 6, December 2001, pp: 47-55
    [3] Fujisawa, T.; Koshiba, M.; Finite-element modeling of nonlinear Mach-Zehnder interferometers based on photonic-crystal waveguides for all-optical signal processing. Journal of Lightwave Technology, Volume 24, Issue 1, Jan. 2006 Page(s):617-623
    [4] Sugimoto, Y.; Asakawa, K.; Fabrication and characterization of photonic crystal based symmetric Mach-Zehnder (PC-SMZ) structures toward ultra-small all-optical switching devices. Proceedings of 2004 6th International Conference on Transparent Optical Networks, Volume 1, 4-8 July 2004,Page(s):285-290
    [5] Zhang Min, Wang Lin, Ye peida. "All-optical XOR logic gates-technologies and experiment demonstrations". IEEE Communication Magazine. Volume 43, Issue 5, May 2005, Page(s):S19-S24
    [6] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., vol. 58, no. 20, May. 1987, pp. 2059-2062
    [7] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., vol. 58, no. 23, Jun. 1987, pp. 2486-2489
    [8] J. C. Knight, T. A. Birks, P. S. J. Russell, et al. "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. Vol. 21, 1996, pp.1547-1549
    [9] Monro T M, Richardson D J, Bennett P J et al. Developing holey fibers for evanescent field devices. Electron Lett., 1999, 35(14):1188-1189
    [10] Xian Feng, Tanya M. Monro, Periklis Petropoulos, et al., Solid microstructured optical fiber. Opt. Exp., 2003, 11(18): 2225~2230
    [11] Tanya M. Monro, Bennett P.J., Broderick N.G.R., et al. Holey fibers with random cladding distributions. Opt. Lett., 2000, 25 (2):206~208
    [12] Yeh R P, Yadv A, Marom E., Theory of Bragg fiber. J. Opt. Soc. A m., 1978, 68 (9): 1196~1201
    [13] Monsoriu J A, Silvestre E, Ferrando A, et al. High-index-core Bragg fibers: dispersion properties. Opt. Exp., 2003,11 (12): 1400~1405
    [14] Ren Guobin, Wang Zhi, Lou Shuqin, et al., Dispersion properties of high-index-core Bragg fibers. Acta Physica Sinica,2004, 53 (6): 1862~1867
    [15] Feng X, Monro T M., Petropoulos P, et al. Single-mode high-index-core one-dimensional microstructured fiber with high nonlinearity. Proc. OFC 2005:OThA5
    [16] G. Stevart, J. Norris, D. E Clark, et al. Evanescent-wave chemical sensors—a theoretical evaluation. Int. J. Optoelectron, 1991, 6, 227~238
    [17] Takashi Katagiri, Yuji Matsuura, Mitsunobu Miyagi. Single-mode operation in silica-core Bragg fibers. Optical Fiber Communication Conference, 2005
    [18] Julian D. C. Jones, Philip St. J. Russell, Jonathan C. Knight, et al. Photonic crystal fibers for sensor application. Optical Fiber Sensors Conference, 2002, 1:565~568
    [19] Vienne, G., Xu, Y., Jakobsen, C., Deyerl, H.J., Hansen, T.P., Larsen, B.H., Jensen, J.B., Sorensen, T., Terrel, M., Huang, Y., Lee, R., Mortensen, N.A., Broeng, J., Simonsen, H., Bjarklev, A. and Yariv, A. First demonstration of air-silica Bragg fiber. Optical Fiber Communication Conference, 2004. OFC 2004, Los Angeles, California, USA, vol. 2: PDP25
    [20] Alexander Argyros, Ian Bassett, Martijn van Eijkelenborg, Maryanne Large, Joseph Zagari, Nicolae A. Nicorovici, Ross McPhedran, and C. Martijn de Sterke. Ring structures in microstructured polymer optical fibres. Opt. Exp., 2001,9 (12): 813~820
    [1] 张治国,王旭,于志辉,张民,叶培大.基于线型腔掺铒光纤激光器的光纤光栅传感实验研究.光学技术,Vol.32,No.6,2006,pp.935-938
    [2] 张治国,张民,叶培大.基于环型腔掺Er光纤激光器的FBG传感系统.光电子·激光,Vol.17,No.5,2006,pp.509-512
    [3] 张治国,张民,叶培大.基于线型腔拉曼光纤激光器的长距离光纤布拉格光栅传感.中国激光,Vol.33,No.8,2006,pp.1073-1077
    [4] W. W. Morey, G. Meltz, W. H. Glenn. Fiber optic Bragg grating sensors, in Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1169, 1989, pp. 98-107
    [5] W. W. Morey, J. R. Dunphy, G. Meltz. Multiplexing fiber Bragg grating sensors, in Proc. Soc. Photo-Opt. Instrum. Eng.,vol. 1586, 1991, pp. 216-224
    [6] Li Chuan, Han Xuefei, Zhang Yimo, et al. Sensing Nets of Fiber Bragg Grating Via WDM Technology. Acta Photonica Sinica, 2003, 32(5):542~545
    [7] Meng Hongyun, Dong Xinyong, Zhao Chunliu, et al. A Novel structure for Fiber Grating Active Sensors. Acta Photonica Sinica, 2001, 30(10): 1234~1236
    [8] Yang Huayong, Zhou Weilin, Li Zhizhong, et al. FBG Wavelength Demodulation Based on Tunable Narrowband Laser. SEMICONDUCTOR OPTOELECTRONICS, Vol. 26, No. 1, Feb. 2005, pp:75-78
    [9] Lobo A B, Ferreira L A, Santos J L, et al. Analysis of the reflective-matched fiber Bragg grating sensing interrogation scheme. Appl. Opt, Vol.36, No.4, 1997, pp:934-939
    [10] L. A. Ferreira, J. L. Santos, and E Farahi. Pseudoheterodyne Demodulation Technique for Fiber Bragg Grating Sensors Using Two Matched Gratings. IEEE photonics technology letters, Vol. 9, No. 4, April 1997, pp.487-489
    [11] Liu Yunqi Liu Zhiguo Guo Zhuanyun et al. Theoretical and experimental researches on tunable filtering detection technique of fiber grating sensor. ACTA OPTICA SINICA, Vol. 21, No.1, January 2001, pp:88-92
    [12] Chi Ronghua Lv Kecheng Chen Shengping Li Yigang Dong Xiaoyi. Research on Lasing Wavelength of Fiber Grating Laser. ACTA OPTICA SINICA, Vol. 23, No. 11, November 2003, pp:1315-1319
    [13] Ching-Tarng Shuy and Likarn Wang. Sensitive Linear Electric Current Measurement Using Two Metal-Coated Single-Mode Optical Fibers. Journal of Lightwave Technology, Vol. 12, No. 11, November 1994, pp. 2040-2048
    [14] Ming Gang Xu, Harald Geiger, and John P. Dakin. Modeling and Performance Analysis of a Fiber Bragg Grating Interrogation System Using an Acousto-Optic Tunable Filter. Journal of Lightwave Technology, Vol.14, No.3, March 1996, pp. 391-396
    [15] Newbury, N.R.. Pump-wavelength dependence of Raman gain in single-mode optical fibers. Journal of Lightwave Technology, 2003 21(12):3364~3373
    [16] Xin Xiangjun, Yu Chongxiu et al. Influence of Channel Power and Pumping Configuration on the Gain Profile of Distributed Raman Fiber Amplifier. Chinese Physics Letters, 2003, 20(2): 237~239
    [17] Zhou Bingkun, Gao Yizhi, Cheng Titong et al. Laser principle (Fourth Edition). National Defence Industry Press, 2000,25~95
    [18] Zhao Ling, Zhang Chun-lin, Li Li-na et al. Optimization of linear cavity design of Yb-doped double-clad fiber laser. Chinese Optics Letters, 2004, 2(3):148~150
    [1] 张治国,余重秀,罗映祥,王葵如,张民,叶培大,“匹配光纤光栅温度传感解调系统”,光学技术,Vol.32,No.1,2006,PP:105-107
    [2] Zhang Zhiguo, Su Fugen, Zhang Min, Ye Peida, " Wavelength-shift detection system based on matching-FBG with enhanced temperature sensitivity ", Opto-Electronics Letters, Vol.2 No.2, 2006, PP: 139-141
    [3] Zhang Zhiguo, Zhang Min, Ye Peida, Su Fugen, "FBG-Based Wavelength-shift Detection System with Enhanced Temperature Sensitivity ", APOC2005, Proceedings of SPIE, Vol.6019, Nov. 2005, PP: 409-413
    [4] L.A. Ferreira, J. L. Santos, and F. Farahi, "Pseudoheterodyne Demodulation Technique for Fiber Bragg Grating Sensors Using Two Matched Gratings," IEEE photonics technology letters, Vol. 9, No. 4, April 1997, pp.487-489
    [5] W. W. Morey, G. Meltz, and W. H. Glenn, "Fiber optic Bragg grating sensors," in Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1169, 1989, pp. 98-107
    [6] W. W. Morey, J. R. Dunphy, and G. Meltz, "Multiplexing fiber Bragg grating sensors," in Proc. Soc. Photo-Opt. Instrum. Eng.,vol. 1586, 1991, pp. 216-224
    [7] Y.J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion," Optical In-Fiber Bragg Grating Sensor System For Medical Applications," JOURNAL BIOMEDICAL OPTICS, Vol. 3, No. 1, January 1998, pp38-44
    [8] Huang Jian-hui, Cao Mang, Li Da-cheng, Cheng Xiao-hui, "Review of phase generated carrier demodulation techniques for interferometric f iber-optic sensors," OPTICAL TECHNIQUE, Vol. 26 No.3 May 2000, pp228-230
    [9] Guan Bai-ou, Guo Zhuan-yun, L iu Zhi-guo, Dong Xiao-yi, "Temperature Sensitivity Enhancing Experiment of Fiber Bragg Gratings," ACTA PHOTON ICA S INICA, Vo1. 28 No. 1 January 1999, pp.65-67
    [10] Liu Yun-qi, Guo Zhuan-yun, Liu Zhi-guo, Ge Chun-feng, Zhao Dong-hui, Dong Xiao-yi, "High-sensitivity Fiber Grating Pressure Sensor with Polymer Jacket," CHINESE JOURNAL OF LASERS, Vol. A27, No. 3 March, 2000, pp211-214
    [11] Gang-Chih Lin, Likarn Wang, C. C. Yang, M. C. Shih, and T. J. Chuang, "Thermal Performance of Metal-Clad Fiber Bragg Grating Sensors," IEEE photonics technology letters, Vol. 10, No. 3, Mrch 1998, pp. 406-4
    [12] Jia Zhen-an, Qiao Xue-guang, Fu Haiwei, Zhou Hong, "Temperature sensitivity enhancement technology of fiber Bragg gratings," Journal of Northwest University (Natural Science Edition), Vol.33 No.4, Aug.2003, pp.414-420
    [13] Liu Yun-qi Liu Zhi-guo Guo Zhuan-yun Dong Xiao-yi, "Theoretical and Experimental Researches on Tunalbe Filtering Detection Technique of Fiber Grating Sensor," Acta Optica Sinica, Vol. 1, No.1, January 2001, pp.88-92
    [14] Ming Gang Xu, Harald Geiger, and John P. Dakin, "Modeling and Performance Analysis of a Fiber Bragg Grating Interrogation System Using an Acousto-Optic Tunable Filter," Journal of Lightwave Technology, Vol.14, No.3, March 1996, pp. 391-396
    [15] Ching-Tamg Shuy and Likam Wang, "Sensitive Linear Electric Current Measurement Using Two Metal-Coated Single-Mode Optical Fibers," Journal of Lightwave Technology, Vol. 12, No. 11, November 1994, pp. 2040-2048
    [1] Zhang Zhiguo, Su Fugen, Zhang Min, Ye Peida, "MZI-Based Wavelength-shift Detection System with Tunable-FBG", APOC2006, Proceedings of SPIE, Vol.6351, Sept.2006, PP: 635134
    [2] Liu Yun-qi Liu Zhi-guo Guo Zhuan-yun Dong Xiao-yi, "Theoretical and Experimental Researches on Tunalbe Filtering Detection Technique of Fiber Grating Sensor," Acta Optica Sinica, Vol.1, No.1, January 2001, pp.88-92
    [3] Ching-Tarng Shuy and Likarn Wang, "Sensitive Linear Electric Current Measurement Using Two Metal-Coated Single-Mode Optical Fibers," Journal of Lightwave Technology, Vol. 12, No. 11, November 1994, pp. 2040-2048
    [4] Nan Qiu-ming, Liu De-li, Liang Lei, "Application of FBG sensors in under-water structure project," Journal of Wuhan Institute of Chemical Technology, Vol.28, No.3, 2006, pp25-28
    [5] Xin Si-jin, "Study on Application of FBG Sensing Technology for Dam Safety Monitoring," Journal of Wuhan University of Technology, Vol.26, No.8, 2004, pp:35-37
    [6] Zhang Xinming, Yu Youlong, Zhu Yong. "Techniques for Fiber Bragg Grating Sensor System Demodulation," Optoelectronic Technology & Information, Vol.15, No.4, Aug 2002, pp. 17-20
    [7] Huang Chong, Cai Hai-wen, Geng Jian-xin, "Wavelength Interrogation Based on a Mach-Zehnder Interferometer with a 3×3 Fiber Coupler for Fiber Bragg Grating Sensors," Chinese Journal of Lasers, Vol. 32(10), 2005, pp:1397-1400
    [8] Liu Bo, Sun Gui-ling, Yang Yi-fei, "Application for High Birefringence Fiber Sagnac Loop Mirror Filter of Fiber Bracg Grating Sensing System Biomolecular Interactions," Acta Scientiarum Naturalium Universitatis Nankaiensis, Vol. 38(5), 2005, pp:9-12
    [9] Zhang Zhi-guo, Su Fu-gen, Zhang Min, Ye Pei-da, "Wavelength-shift detection system based on matching-FBG with enhanced temperature sensitivity," Opto-Electronics Letters, Vol.2, No.2, 2006, pp:0139-0141
    [10] Gerd Keiser, "Optial Fiber Communications" Third Edition, ISBN 7-5053-7637-3, pp:317-320

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700