球形纳米氧化锆粉末及其涂层材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料在力学、热学、摩擦学等方面具有优良的性能,纳米粉体是纳米材料得以应用的基础,而纳米涂层是已获得应用的纳米材料之一。国内外对纳米粉体的制备研究进行了二十多年,但获得分散性优异、球形度良好且产率较高的纳米粉体仍然是其技术难点之一。另外,近年国内外均开展了热喷涂纳米涂层的制备及性能的研究,尽管这方面的研究报道不多,但已显示了良好的应用前景。本论文围绕这两个重要课题,采用乳浊液和均匀沉淀结合法制备球形纳米氧化锆粉体,在此基础上,采用大气等离子喷涂制备了纳米氧化锆涂层。鉴于目前国内外对纳米氧化锆涂层的研究绝大多数采用纳米涂层和传统的微米涂层横向比较的形式,作者在纳米氧化锆涂层的制备及性能表征等方面在纳米涂层间进行纵向比较,对于纳米氧化锆涂层作为新一代的热障涂层而言,着重研究等离子喷涂工艺参数对纳米涂层物相组成、显微结构和热冲击性能的影响;并专门就该涂层的热学性能、摩擦学性能以及力学性能进行了较为具体的研究,本论文的研究内容如下:
     (1)首次采用价格低廉的二甲苯为油相,span—80为表面活性剂,以及水相含量较高的乳浊液系统,将草酸二甲酯、Zr(NO_3)_4和Y(NO_3)_3溶入水相中,在水浴过程中使草酸二甲酯分解生成沉淀剂,使沉淀物直接在乳液包围的水相中均匀析出形成球形颗粒,从而采用乳浊液和均匀沉淀相结合的方法制备出了具备良好分散性和较窄粒度分布的球形纳米ZrO_2(Y_2O_3)粉末,并对该方法获得球形纳米氧化锆粉末的机理进行了分析。同时,为了获得理想的粉末,在充分考虑乳浊液的影响因素和均匀沉淀影响因素等的同时,在探索性实验的基础上,选择纳米氧化锆前驱体粉末的比表面BET作为正交实验考察指标,采用正交实验对制粉工艺进行了优化,其最佳工艺条件为:水相在乳浊液中的体积百分数为20、反应温度是50℃、草酸二甲酯与Zr(NO_3)_4摩尔比为2:1、活性剂在油相中的体积百分数为7、反应时间为3h。
     (2)计算了该纳米氧化锆粉末中各相的体积分数,即四方相为0.78,立方相为0.22,并利用晶面间距公式与Bragg方程,借助XRD衍射谱求出各相的晶格常数,包括立方相的点阵常数a_c,四方相的点阵常数a_c和c_t及四方相的晶轴比c_t/a_t值,这些值分别为:a_c=0.514357nm;a_t=0.51067nm,c_t=0.51799nm,晶轴比c_t/a_t=1.01433。在此基础上,计算了制备粉末的密度为6.0810g/cm~2,并与公式d=6/ρS_(BET)(该公式前提是假设颗粒呈球形)中的理论物质密度相对比,从而从理论上说明了采用上述方法制备的纳米氧化锆粉末具有良好的球形度。
     (3)采用喷雾干燥技术制备了适合等离子喷涂的纳米氧化锆团聚粉末,考察了该粉末的性能。在进行探索性实验的基础上,确定了等离子喷涂的影响因素及水平,根据其影响因素及水平设计了正交表,按正交表的参数利用大气等离子喷涂技术分别制备了纳米结构氧化锆涂层,以涂层在1100℃水淬的抗热震寿命作为正交实验考察指标的基础上对喷涂工艺进行了优化,其优化的喷涂工艺参数应选择如下:功率为45KW;喷涂距离为120mm;送粉率为25g/min;氩气流量为40slpm;电流为580A;并较为系统地研究了喷涂工艺参数对涂层的显微结构和抗热震性能的影响。
     (4)计算了按优化喷涂工艺参数制备的纳米氧化锆涂层中各相的体积分数及各相的晶格常数,即四方相为0.91,立方相为0.09;另外,涂层四方相的晶格常数a_(ct)=0.51079nm,c_(ct)=0.51762nm,晶轴比c_(ct)/a_(ct)=1.01337;涂层内立方相的晶格常数a_(ct)=0.51460nm;将以上数值与纳米氧化锆粉末的数值进行对比,从而对等离子喷涂形成纳米氧化锆涂层过程中相转变机理进行了探索;并根据各相的晶格常数计算了该纳米氧化锆粉末及涂层中Y_2O_3的理论含量,通过与其实际含量相对比,确定了纳米氧化锆粉末及其涂层的物相组成。
     (5)在按优化的喷涂工艺参数成功获得纳米氧化锆涂层的基础上,对该涂层进行了如真空热处理、封孔等后处理,采用对比分析的方式考察了涂层及其处理后的抗热震性能和高温氧化性能,实验结果表明:对纳米氧化锆涂层进行封孔和真空热处理均对其抗热震寿命有不利的影响,封孔对纳米氧化锆涂层的抗氧化性能帮助不大,而真空热处理不利于涂层的抗高温氧化;另外,分析了涂层的相结构及表面形貌,并结合热冲击试验结果阐述了涂层的抗热震失效机理,即涂层在热震加热过程中,孔隙和早期存在的微裂纹附近的纳米颗粒发生长大,当大部分纳米颗粒或全部的纳米颗粒长大后,纳米氧化锆涂层相应的转变成准微米氧化锆涂层,随后其热震失效方式按传统涂层的失效方式进行;同时结合等温氧化实验结果对纳米氧化锆涂层的氧化机理进行了分析,即纳米氧化锆涂层的氧化机理遵从Wagner氧化理论。对纳米氧化锆涂层的热扩散系数进行了测量,分析了涂层及处理后涂层的热扩散系数的差异,同时,对热扩散机理进行了分析。
     (6)采用最佳喷涂工艺参数分别对两种喷雾造粒粉末进行等离子喷涂,制备了两种纳米氧化锆涂层S1涂层和B1涂层,对比研究了两种涂层的显微硬度、抗裂纹扩展力以及结合强度。结果表明:两种涂层的显微硬度测试值服从weibull分布,无论是表面还是截面的显微硬度值,S1涂层均优于B1涂层,两种涂层截面的显微硬度值均优于其对应表面的显微硬度值;另外,S1涂层的抗裂纹扩展力与结合强度均优于B1涂层。
     (7)对S1涂层和B1涂层摩擦学性能研究表明:两种氧化锆涂层的摩擦系数均随载荷增大而减小。在较低载荷(100N)条件下,S1涂层与不锈钢的摩擦系数低于B1涂层与不锈钢的摩擦系数;而在较高(400N)载荷下,两种氧化锆涂层的摩擦系数开始趋于一致。在摩擦过程中,S1涂层具有比B1涂层更好的抗磨损性能。在较低的载荷下,两种涂层与不锈钢摩擦副的摩擦磨损机制是不同的,S1涂层磨损的磨损属于粘着磨损,B1涂层的磨损属于磨粒磨损;在较高载荷下,两种涂层的磨损机制趋于一致,均为粘着磨损。
Nanostructured materials possess excellent properties in mechanics,calorifics and tribological. Nano-powders are the base of application ofnanostructured material, and nanostructured coating is one of the appliednanostructured materials. The study on the preparation of nano-powdershas been engaged all over the world for two decades, but there is still oneof technology difficulties in gaining nano-powders with excellentdispersion, spherical shape and high productivity. On the other hand, thestudy in preparation and properties of nanostructured coating by thermalspraying is on the way. Though the research in this field is limited, itshows excellent foreground in its application. This dissertation encirclesthe two points mentioned above. The ZrO_2 nano-powders with excellentdispersing, spherical shape and narrow particle size distribution havebeen prepared via the coupling route of w/o emulsion with methyl oxalatehomogenous precipitation. At the same time, nanostructured zirconiacoating has been prepared by atmosphere plasma spraying. Consideringthe landscape orientation comparison study of nanostructured zirconiacoating and microstructured zirconia coating in the majority of theprevailing studies, the author longitudinally compared the preparationmethods and properties of nanostructured zirconia coating. The effects ofplasma spraying technologic parameters on phase composition,microstructure and thermal shock property of nanostructured zirconiacoating were examined. In addition, mechanics properties,thermophysical properties and tribological properties of nanostructuredzirconia coating were also studied.
     (1)The emulsion system containing high water phase was used forthe first time, in which system cheap xylol was used as the oil phase,span-80 as the surfactant, and aqueous solution containing Zr(NO_3)_4,Y(NO_3)_3 and methyl oxalate as the water phase. During the process ofheating water, methyl oxalate hydrolysis occurs to come into beingprecipitator, and precipitate become spherical shape grains in the waterdroplets of emulsion. Through this method, the ZrO_2 nano-powders containing 3.5% Y_2O_3 with excellent dispersion, spherical shape andnarrow particle size distribution have been prepared via the couplingroute of w/o emulsion with methyl oxalate homogenous precipitation.The principle of the coupling route of emulsion with homogenousprecipitation to attain spherical shape particle was analyzed. At the sametime, in order to attain ideal powder, considering the effect factors ofemulsion and homogenous precipitation, the author selected BET of ZrO_2precursor powders as review target of orthogonal test, and usedorthogonal test to optimize preparation process. The optimum technicalconditions were obtained as follows: The volume percentage of waterphase in emulsion is 20; the mol ratio of methyl oxalate and Zr (NO_3)_4 is2:1; the reaction temperature is 50℃; the reaction time is 3h; and G is 7.
     (2)The phase volume fractions of nano-powders were calculated.Tetragonal phase is 0.78 and cubic phase 0.22. Forthermore, the phasecrystal lattice constants were calculated, that is a_c is 0.514357nm, a_t is0.51067nm, c_t is 0.51799nm and c_t/a_t is 1.01433. At the same time, inorder to explain in theory the prepared powders possessing excellentspherical shape, the theoretical density was calculated.
     (3)Nanoscale zirconia powders, which are suitable for plasmaspraying, were reconstituted by spraying and drying before the plasmaspraying. The properties of the powder were reviewed. Basing onexploring experiments, the effect factors and levels of plasma sprayingwere confirmed and tetragonal table was planed. According to thetechnical parameters of tetragonal table, nanostructured zirconia coatingswere deposited by atmosphere plasma spraying. The author selectedthermal shock life of ZrO_2 coating as review target of orthogonal test, andused orthogonal test to optimize technical parameters. The optimumtechnical conditions were obtained as follows: Power is 45kw, sprayingdistance is 120mm, the ratio of powder feeding is 25g/min, the flowvelocity of argon is 40slpm and current is 580A. In addition, the effect ofspraying technical parameters on microstructure and thermal shockproperty of ZrO_2 coatings was systematically studied.
     (4)The phase volume fractions of nanostructured coating werecalculated. Tetragonal phase is 0.91 and cubic phase is 0.09. In addition, the phase crystal lattice constants were obtained by calculation: a_(ct) is0.51079nm, a_(cc) is 0.51460nm, c_(ct) is 0.51762nm and c_(ct)/a_(ct) is 1.01337.Through comparing these values of nano-powder and nanostructuredcoating, the principle of phase transformation during the process ofplasma spraying was studied. Y_2O_3 theoretic contents of nano-powder andnanostructured coating were calculated according to the phase crystallattice constants, and the phase composition of nano-powder andnanostructured coating were confirmed by comparing Y_2O_3 theoreticcontent and real content.
     (5)On the base of successfully gaining nanostructured zirconiacoatings via optimize spraying technical parameters, the coatings weresealed holes or heat-treated in vacuum. The thermal shock property andhigh temperature oxidation property of as-coatings were examinedthrough analytical comparison. Experimental results indicate that sealinghole or heat-treating in vacuum go against thermal shock life and hightemperature oxidation property of the coating. What's more, the phasestructure and surface configuration of the coating were analyzed, and thethermal shock failure principle and oxidation principle of coating wereexplained basing on experiment results. At last, thermal diffusivities ofnanostructured zirconia coatings and coatings after treating weremeasured and analyzed contrastively, and thermal diffuseness principlewas analyzed.
     (6)Adopting the optimize spraying technical parameters, S1 coatingand B1 coating were prepared by plasma spraying with two kinds ofreconstituting and drying powders. Microhardness, adhesion strength andresist crack spread force of as-spraying coatings were studiedcontrastively, and results indicate that microhardnesses of S1 coating andB1 coating go with Weibull distribution, and microhardness, adhesionstrength and resist crack spread force of S1 coating excel those of B1coating. Cross-section microhardnesses of two coatings excel theirsurface microhardnesses.
     (7)The wear properties of S1 coating and B1 coating were examined.The experimental results show that the frictional coefficients of twocoatings reduce with load rising, the frictional coefficient of S1 coating against stainless steel in low load condition is lower than that of B1coating against stainless steel. But in high load condition, the frictionalcoefficients against stainless steel of two coatings tend to accord. Duringfriction process, wear properties of S1 coating excel that of B1 coating.At the same time, the wear principles of two coatings against stainlesssteel in different loads were studied.
引文
1.林新华.等离子喷涂纳米结构氧化铝—3wt%氧化钛涂层的制备及表征:[博士学位论文].上海:中国科学院上海硅酸盐研究所,2003
    2.高濂,李蔚.纳米陶瓷[M].北京:化学工业出版社,2002:1
    3.张立德,牟季美.纳米材料与纳米结构[M].北京:科学出版社,2001:8
    4.朱屯,王福明,王习东.国外纳米材料技术进展与应用[M].北京:化学工业出版社,2002:1
    5.王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002:3
    6.高丽丽,刘力.纳米材料的研究[J].化工科技,2006(14)1:62-65
    7.刘奎立,李建.纳米材料及其应用[J]周口师范学院学报,2005,22(2):27-35
    8.白春礼.纳米科技及其发展前景[J].科学通报,2001,46:89-91.
    9.夏和生,王琪.纳米技术进展[J].高分子材料科学与工程,2001,4:1-6.
    10.米丽琴.纳米科学技术概述[J].现代物理知识,2005,17(1):19-21
    11.张中太,林元华,唐子龙,张俊英.纳米材料及其技术的应用前景[J].材料工程,2000,2:42—48
    12.巩雄,张桂兰,汤国庆,陈文驹,杨宏秀.纳米晶体材料研究进展[J].化学进展,1997,9:349—360
    13. Maurice Gell. Application opportunities for nanostructured materials and coatings[J]. Mater. Sci. Eng. A. 1995, 204:246-251
    14.夏和生,王琪.纳米技术进展[J].高分子材料科学与工程,2001,4:1-6
    15.任斌,黄河,余成.纳米复合材料的研究进展[J].信息记录材料,2004,5(2):45-48
    16.文玉华,周富信,刘曰武.纳米材料的研究进展[J].力学进展,2001,31:47-61
    17.瞿华嶂,李建保,黄勇.纳米材料和纳米科技的进展、应用及产业化现状[J] 材料工程,2001,11:43—48
    18.倪永红,葛学武,徐相凌.纳米材料制备研究的若干新进展[J].无机材料学报,2000,15:9—15
    19.钱军民,李旭祥,黄海燕.纳米材料的性质及其制备方法[J].化工新型材料,2001,7:1—5
    20.徐滨士,马世宁,朱绍华等.表面工程与再制造工程的进展[J].中国表面工程,2001,14(1):8—14
    21. Lu K, Lu J, Surface nanocrystallization (SNC) of metallic materials—presentation of the concept behind a new approach [J]. Mater. Sci. Technol, 1999, 15(3):193-197
    22.周健儿,李家科,江伟辉.金属基陶瓷涂层的制备、应用及发展[J].陶瓷学报,2004,25(3):179-185
    23.栗卓新,王江萍,蒋建敏,等.纳米涂层的几种制备方法[J].机械工程材料,2005,28(1):29-32
    24. Orel B. Structure and properties of Fe/Ti oxide films[J]. Journal of Physics Chemistry 1994, 225(5):1022-1024
    25. Chen Q, Qian Y, Li X. Preparation of zirconia thin films by the hydrother mal method[J]. Nanostructured Materials, 1996, 7(4):467-471
    26.武光明.用喷涂热分解法制备MgO薄膜[J].材料研究学报,2000,14(1):72-75
    27. Skirkhanzadeh M. Fabrication and characterization of alkoxy-derived nanophase Tiq coatings[J]. Nanostructured Materials, 1995, 5(1):33-40
    28. Lu Jiongping, Wang Jenqdaw, Raj Ris hi. Solution precursor chemical vapor deposition of titanium oxide[J]. Thin Solid Film, 1997, 204(1):13-17
    29.申盛民.纳米薄膜和纳米晶材料的制备和性能研究[博士学位论文].兰州:兰州大学,2001
    30. Kotov N A, Meldrum F C. Fabrication of nano-phase titanium oxide thin films by Langmuir Blodgett[J].Journal of Physics Chemistry, 1994, 98(13):8827-8830
    31.曹茂盛,徐群.材料合成与制备方法[M].哈尔滨:哈尔滨工业大学出版社,1999:57-59
    32. Gutarra A, Azens A, Stjerna B. Electrochromism of sputtered fluorinated Titanium oxide thin films[J]. Applied Physics, 1994, 64(13):1604-1606
    33.徐龙堂.电刷镀镍基含纳米涂层复合镀层性能结构和共沉积机理[博士学位论文].北京:北京工业大学,2001
    34. Jiang H G, Lau M L, Lavemia E J. Synthesis of nanostructured engineering coating by high velocity oxygen fuel(HVOF) thermal spraying[J]. Therm. Spray. Techn., 1998, 7(3):412-413
    35.陈煌.等离子喷涂纳米氧化锆涂层的结构与性能研究:[博士学位论文].上海:中国科学院上海硅酸盐研究所,2002
    36. Tomas Chraska, Alexander H King. Transmission electron-microscopy study of rapid solidification of plasma sprayed zirconia[J].Thin Solid Film, 2001, 397(1):30-39
    37.胡传忻,张科,李晋炜,等.火焰喷涂法制备纳米改性陶瓷涂层[J].新技术新工艺,2002,(8):44-46
    38. Stadel mann P, Leifer K, Verdon C. EDS and EELS using a TEM—FEG microscope[J]. Ultramicroscopy, 1995, 58(1):35-41
    39. Grimberg I, Weiss B Z , Bouaifi B, et al. Tungsten carbide coatings deposited by high-velocity oxy-fuel spraying on metallized polymeric substrate[J]. Surface and Coatings Technology, 1997, 90(12):82-90
    40.邵贝羚,刘安生,王晓华,等.喷涂硬质合金界面的研究[J].稀有金属,1997,21(1):1-6
    41. Wong T T, Liang G Y. Formmion and crystallization of amorphous structure in the laser-claddng plasma-sprayed coating of Ai-Si alloy[J]. Materials Characterizatio, 1997, 38(1):85-89
    42.梁工英,李成劳,苏俊义.Al-Si合金等离子涂层Ni-Cr-B-Si的激光重熔[J].金属学报,1997,33(3):315-319
    43. Alkimov A P, Kosarev V F, Papyrin A N. A method of cold gas dynamic deposition, Dokl. Akad. Nauk. SSSR, 1990, 315:1062-1065
    44. McCune R C, Donlon W T, Popoola O O, et al. Characterization of copper layers produced by cold gas-dynamic spraying[J], rherm. Spray. Technol, 2000, 9:73-82
    45. Gilmore D L, Dykhuizen R C, Neiser R A, et al.-Particle velocity and deposition efficiency in the cold spray process[J]. Therm. Spray. Technol, 1999, 8:576-582
    46. Brown J. HVIF/Cold spray. Spraytime, Forth Quarter, 2001, 8:7
    47. Karthikeyan J, Berndt C C. Preparation of nanophase materials by thermal spray processing of liquid precursors[J]. Nanostruct. Mater. 1997, 9:137-140
    48. Wittmann K, Blein F, Coudert J F, Fauchais P. Control of the injection of an alumina suspension containing nanograins in a de plasma, Thermal Spray 2001:new surfaces for a new millennium, 375-382
    49. Young E J, Mateeva E, Moore J J, Mishra B and Loch M. Low pressure plasma spray coatings[J]. Thin Solid Film, 2000, 377-378:788-792
    50.徐滨士,欧忠文,马世宁.纳米表面工程基本问题及其进展[J].中国表面工程, 2001,3:6—12
    51.师昌绪,徐滨士,张平,刘世参.21世纪表面工程的发展趋势[J].中国表面工程,2001,1:1—7
    52.刘刚,雍兴平,卢柯.金属材料表面纳米化的研究现状[J].中国表面工程,2001,3:1—5
    53.徐滨士,刘世参,王海斗.二十一世纪的纳米表面工程[J].机械制造与自动化,2005,34(3):1-4
    54.贾嘉.溅射法制备纳米薄膜材料及进展[J].半导体技术,2004,29(7):70-73
    55. Charles E B, Eric J B, Richard J K, et al. Microwave absorber employing acicular magnetic metallic filaments. US Patent: 5085931, 1992.
    56. Weyermuller A P.A primer on its doctrine and operational use. AD-A247 951/7/XAD, u9213, Stealth Employment in the Tactical Air Force (TAF), 1992:33.
    57.咸才军.快速发展的纳米复合功能涂料技术[J].现代制造,2005,21:68-70
    58.闫长海,陈贵清,孟松鹤,杜善义.红外热反射涂层的研究进展[J].化工进展,2006,25(2):167-170
    59.游毓聪,杜仕国,施冬梅,鲁彦玲.热红外隐身材料的发展状况[J].河北化工,2006,29(3):6-8
    60.毕松,苏勋家,侯根良,王德鹏.涂覆型雷达/红外复合隐身材料研究现状[J].化工新型材料,2006,34(3):8-11
    61. Wykoff R W G. Crystal Structures. Interscience Publishers, 1963
    62.刘继进.(CaO/y2O3)-ZrO2超细粉的制备及其电解质性能的研究:[博士学位论文].长沙:湖南大学,2002
    63. Yang Jing, Lian Jianshe, Dong Qizhi, Guan Qingfeng, Chen Jiwei, Guo Zuoxing. Synthesis of YSZ nanocrystalline particles via the nitrate- citrate combustion route using diester phosphate (PE) as dispersant[J]. Materials Letters, 2003, 57(19):2792-2797
    64. Belov V, Belov I, Harel L. Preparation of spherical yttria-stabilized zirconia powders by reactive-spray atomization[J]. Am Ceram Soc, 1997, 80(4): 982-990
    65. Michael, Rodney, Andrew E. Nanocrytallization and phase transformation in monodispersed ultrafine zirconia particles from various homogeneous precipitation methods[J]. J. Am. Cream. Soc., 1999, 82(9):2313-2320
    66. Juricic D, Pickering S, Mcgarry D, et al. The properties of zirconia powders produced by homogeneous precipitation[J]. Ceram Int, 1995, 21:195-206.
    67. He Daiping, Ding Yunjie, Luo Hongyuan, Li Can. Effects of zirconia phase on the synthesis of higher alcohols over zirconia and modified zirconia[J]. Journal of Molecular Catalysis A: Chemical, 2004, 208(1-2):267-271
    68. Duan Guorong, Yang Xujie, Huang Guohong, Lu Lude, Wang Xin. Water/span80/Triton X-100/n-hexyl alcohol/n-octane microemulsion system and the study of its application for preparing nanosized zirconia[J]. Materials Letters, 2006, 60(13-14): 1582-1587
    69.彭勇,韩丽,朱明燕,侯书恩.微乳液法合成微量Al掺杂Y稳定ZrO_2纳米粉体[J].矿产保护与利用,2004,5:41-45
    70. Guo Yiming, Zhao Jingzhe, Yang Shaofeng. Preparation and characterization of monoclinic sulfur nanoparticles by water-in-oil microemulsions technique[J]. Powder Technology, 2006, 162(2):83-86
    71. Tai Clifford Y, Hsiao Bor-Yuan, Chiu Hsien-Yi, Preparation of spherical hydrous-zirconia nanoparticles by low temperature hydrolysis in a reverse microemulsion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 237(1-3):105-111
    72. Huang Yong, Ma Tian, Yang Jinlong, Preparation of spherical ultrafine zirconia powder in microemulsion system and its dispersibility[J]. Ceramics International, 2004, 30(5):675-681
    73. Matsui K, Ohgai M. Formation mechanism of hydrous-zirconia particles produced by hydrolysis of ZrOCl2 Solutions[J].Am Ceram Soc, 1997, 80(8):1949-1956
    74. Matsui K, Ohgai M. Formation mechanism of hydrous-zirconia particles produced by hydrolysis of ZrOCl2 SolutionsⅡ[J]. Am Ceram Soc, 2001, 83(6):1386-1392
    75. Matsui K, Ohgai M. Formation mechanism of hydrous-zirconia particles produced by hydrolysis of ZrOC12 Solutions:Ⅲ, Kinetics study for the nucleation and crystal-growth process of primary particles[J]. Am Ceram Soc, 2001, 84(10):2303-2312
    76.谭强强.有机物对低温超强碱法制备纳米四方多晶氧化锆粉体性能的影响[J].耐火 材料,2004,38(36):76-78
    77. Masanori Hirano, Chiaki Nakahara, Keisuke Ota. Photoactivity and phase stability of ZrO2-doped anatase-type TiO2 directly formed as nanometer-sized particles by hydrolysis under hydrothermal conditions[J]. Journal of Solid State Chemistry, 2003, 170(1): 39-47
    78. Mondal A, Ram S. Controlled phase transformations in Al3+ stabilized ZrO2 nanoparticles via forced hydrolysis of metal cations in water, Materials Letters, 2003, 57(11): 1696-1706
    79. Yoldas B E. Zirconium oxides formed by hydrolytic condensation of alkoxides and parameters that defect their morphology[J]. Mater Sci, 1986, 21:1080-1086
    80.曹化强,王弘.醇盐受控水解法制备YSZ超细粉及其表征[J].中国科学技术大学学报,1997,27(4):436-439
    81. Shi J L, Gao J H. Preparation of spherical zirconium salt particles by homogeneous precipitation[J]. Mater Sci, 1995, 30:793-799
    82. Hu M Z—C, Harris M T, Byers C H. Nucleation and growth kinetics for synthesis of nanometrics zirconia particles by forced hydrolysis [J]. Colloid Interface Sci, 1998, 198:87-99
    83.李蔚,王浚,高濂.分散剂在醇一水溶液加热法制备球形粉体过程中的作用[J].硅酸盐学报,2000,28(6):582-584
    84.吴其胜.醇水加热水热法制备稳定Y-Ce-ZrO_2纳米粉体[J].硅酸盐学报,2004,32(9):1170-1173
    85. Laberty-Robert Christel, Ansart Florence, Castillo Simone, Richard Guillaume. Synthesis of YSZ powders by the sol-gel method: surfactant effects on the morphology[J]. Solid State Sciences, 2002, 4(8):1053-1059
    86. Dell Agli G, Mascolo G. Low temperature hydrothermal synthesis of ZrO2-CaO solid solutions[J]. Mater Sci, 2000, 35:661-665
    87. Vasylkiv O, Sakka Y. Synthesis and colloidal processing of zirconia nanopowder[J]. Am Ceram Soc, 2001, 84(11): 2489-2494
    88. Mustafa E, Wilhelm M, Wruss W. Microstructure and phase stability of Y-PSZ codoped with MgO or CaO prepared via polymeric route. 2002, 101(2): 78-83
    89. Pramanik P, Pathak A, Sen A, Kohn C A, and Tahir S F. Novel chemical method for the preparation of nanosized oxide ceramics[J]. Materials Science Forum, 2001, 360-362:623-630
    90. Gulgun M A, Nguyen M H, Kriven W M. Polymerized organic-inorganic synthesis of mixed oxides[J]. Am Ceram Soc, 1999, 82(3): 556-560
    91. Muccillo R, Netto R C B, Muccillo E N S. Synthesis and characterization of calcia fully stabilized zirconia solid electrolytes[J]. Materials Letters, 2001, 49:197-201
    92. Ibrahim D M, EI-Meliegy E A. Calcia stabilized tetragonal zirconia powders prepared by urea formaldehyde polymeric route[J]. Br Ceram Trans, 2000, 99(4):159-163
    93. Jiang Y, Bhide S V, Virkar A V. Synthesis of nanosize yttria-stabilized zirconia by a molecular decomposition process[J]. Solid State Chemistry, 2001, 157:149-159
    94.何向明,赵方辉,蔡砚,于养信.机械化学法合成二氧化锆基纳米超细粉[J].云南大学学报(自然科学版),2005,27(3):70-73
    95. Dodd A C, Raviprasad K, Mccormick P G. Synthesis of ultrafine zirconia powders by mechanochemical processing[J]. Scripta Mater, 2001, 44:689-694
    96. Venkatachari K R, Huang D, Ostrander S P, et al. A combustion synthesis process for synthesizing nanocrystalline zirconia powders[J]. Journal of Materials Research, 1995, 10(3): 748-755
    97. Srdic V V, Winterer M, Hahn H. Sintering behavior of nanocrystalline zirconia prepared by chemical vapor synthesis[J]. Am Ceram Soc, 2000, 83(4): 729-736
    98. Xia B, Duan L Y, Xie Y C. ZrO2 nanopowders prepared by low-temperature vapor-phase hydrolysis[J]. Am Ceram Soc, 2000, 83(5): 1077-1080
    99. Dongare M K, Sinna A P B. Low temperature preparation of stabilized zirconia[J]. Mater Sci, 1984, 19:49-56
    100. Adachi M. Preparation of ultrafine zirconium dioxide particles by thermal decomposition of zirconium alkoxide vapor[J]. Mater Sci, 1989, 24:2275-2280
    101. Zhou Ya, Zhang Zheng-jun, Yue Yang. Study on the formation of circular patterns of α-Fe_2O_3 nanoparticles via chemical vapor deposition with water and ferrocene[J]. Journal of Chinese Electron Microscopy Society, 2006, 25(2):108-112
    102. Ratzer-Scheibe H-J, Schulz U, Krell T. The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings[J]. Surface & Coatings Technology, 2006, 200(18-19):5636-5644
    103.廖恒成,张春燕,孙国雄,等.离子喷涂与先进材料研制[J].材料研究学报,1999,13(2):119-124
    104.赵文轸,金属材料表面新技术[M],西安交通大学出版社,1992:46-51
    105. Robert A Miller. NASA Conference Publication 3312, Ohio, 1995:17
    106. Antonio Maricocchi, Andi Bartz, David Wortman. NASA Conference Publication 3312, Ohio, 1995, 79
    107. Malzbender, J. The use of theories to determine mechanical and thermal stresses in monolithic, coated and multilayered materials with stress-dependent elastic modulus or gradient in elastic modulus exemplified for thermal barrier coatings[J]. Surface and Coatings Technology, 2004, 186(3): 416-422
    108. Song Yo-Seung, Lee In-Gyu, Lee Deuk Yong, Kim Dae-Joon, Kim Seonhwa, Lee Kouhyun. High-temperature properties of plasma-sprayed coatings of YSZ/NiCrAlY on Inconel substrate[J]. Materials Science and Engineering: A, 2002, 332(1-2):129-133
    109. Sharafat S, Kobayashi A, Chen Y, Ghoniem N M. Plasma spraying of micro-composite thermal barrier coatings[J]. Vacuum, 2002, 65(3-4):415-425
    110.徐惠彬,宫声凯,刘福顺,等.航空发动机热障涂层材料体系的研究[J].航空学报,2000,1:18—23
    111. Schulz Uwe, Leyens Christoph, Fritscher Klaus, Peters Manfred, Saruhan-Brings Bilge, etal. Some recent trends in research and technology of advanced thermal barrier coatings[J]. Aerospace Science and Technology, 2003, 7(1):73-80
    112. Hutchinson J W, Evans A G. On the delamination of thermal barrier coatings in a thermal gradient[J]. Surface and Coatings Technology, 2002, 149(2-3): 179-184
    113. Kim J H, Kim M C, Park C G. Evaluation of functionally graded thermal barrier coatings fabricated by detonation gun spray technique[J]. Surface and Coatings Technology, 2003,168(2-3): 275-280
    
    114. Shaw Leon L, Goberman Daniel, Ren Ruiraing, et al, The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions[J]. Surf. Coat. Technol, 2000,130:1-8
    115. Elizabeth J. Yong, Eli Mateeva, John J. Moore, et al. Low pressure plasma spray coatings[J].Thin Solid Films, 2000,377-378:788-792
    116. Lima R S, Kucuk A, Berndt C C. Integrity of nanostructured partially stabilized zirconia after plasma spray processing[J]. Materials Science and Engineering: A, 2001,313(1-2): 75 - 82
    117. Stark Wendelin J, Pratsinis Sotiris E. Aerosol flame reactors for manufacture of nanoparticles[J]. Powder Technology, 2002,126(2): 103-108
    118. 陆九芳, 李总成, 包铁竹.分离过程化学[M].北京:清华大学出版社,1993
    119. Mati jevic E. Production of monodispersed colloidal particles. Ann Rev. Mater. Sci. 1985, 15:483-516
    120. August Janekoic, Egon Matijevic. Preparation of monodispersed colloidal. cadmium compounds[J]. Journal of Colloid and Interface Science, 1985,103(2): 436-447
    121. Egon Matijevic. Colloidal science of ceramic powder' s[J]. Pure&Appl. Chem. 1988,60(10):1479-1491
    122. Stanka Kratdvil, Egon Matijevic. Preparation of copper compounds of different compositions and particle morphologies [J]. Mater Res., 6(4) : 766-777
    123.Egon Matijevic. Monodispersed inorganic colloids: Achievements and problems[J]. Pure&Appl. Chem., 64(1):1703-1707
    124. Her YiE-Shein, Matijevic E, Wilcox W R. Continuous precipitation of monodispersed Yttrium basic carbonate powders[J]. Powder Techology 1990, 61:173-177
    125. Ishikawa T, Matijevic E. Formation of uniform particles of cobalt compounds and cobalt[J]. Colloid&Polymer Science, 1991, 269:179-186
    126. Brune A, Lajavardi M, Fisler D, Wagner J B. The electrical conductivity of yttria-stabilized zirconia prepared by precipitation from inorganic aqueous solutions[J]. Solid State Ionics, 1998, 106:89-101.
    127. Ki Chang Song, Yong Kang. Preparation of high surface area tin oxide powders by a homogeneous precipitation method [J]. Materials Letters, 2000, 42:283-289.
    128. Sugita Satoshi, Cesar Contreras, Hector Juarez, Alberto Aguilera, Juan Serrato Homogeneous precipitation and thermal phase transformation of mullite ceramic precursor[J]. International Journal of Inorganic Materials. 2001, 3: 625-632.
    129. Yeong II, Kima Don, Kima ChoongSub Leeb. Synthesis and characterization of CoFe204 magnetic nanoparticles prepared by temperature-controlled co-precipitation method[J]. Physic B,2003, 337: 42-51.
    130. Li Guoran, Li Wei, Zhang Minghui, Tao Keyi. Characterization and catalytic application of homogeneous nano-composite oxides ZrO2 - Al203 [J]. Catalysis Today , 2004, 93-95: 595-601.
    131. Lee M-H, Tai C Y, Lu C-H. Synthesis of spherical zirconia by precipitation between two water/ oil emulsions[J]. Journal of the European Ceramic Society, 1999, 19:2593-2603.
    132. Tai Clifford Y, Lee Mei-Hwa, Wu Yu-chun. Control of zirconia particle size by using two-emulsion precipitation technique[J]. Chemical Engineering Science, 2001,56:2389-2398.
    133. Joo J, Yu T, Kim Y Y, Park H M, Wu F, Zhang J Z, Hyeon T. Multigran scale synthesis and characterization of monodisperse tetragonal zirconia noancrystal[J]. J. Chem, Soc, 2003, 125:6553-6557.
    134. Blandin A F, Mangin D, Rivoire A, Klein J P, Bossoutrot J M. Agglomeration in suspension of salicylic acid fine particles: influence of some process parameters on kinetics and agglomerate final size [J]. Powder Technology, 2003, 130:316-323.
    135.孙绍曾等译, 表面活性剂[M].北京: 化学工业出版社, 1984: 28
    136. Klug H P, Alexander LE. X -ray diffraction procedures for polystalline and amorphous materials, John Wley & Sons, Inc, London, 1954, pp 491-494
    137. L. Shi, K.Tin, N. Wong, Thermal stability of zirconia membranes[J]. Mater. Sci. 1999, 34, 3367-3374
    138. Kontoyannis C G, Orkoula M. Quantitative determination of the cubic, tetragonal and monoclinic phases in partially stabilized zirconias by Raman spectroscopy[J]. Mater. Sci., 1994, 29, 5316-5320
    139.Miller R A, Smialek J L, Garlick R G. In: Adv in Ceram, Vol3: 241-255, Sci& Technol of Zirconia, ed by Heuer A H and Hobbs L W, Am Ceram Soc, Columbus, O H, 1981
    140. Heuer A H, Rdhle M. In: Adv in Ceram, Vol:2: 1-13, Sci&Technol of Zirconia II, edt by Claussen N, Ruble M and Heuer A H, Am Ceram Soc, Columbus, OH, 1984
    141. Heuer A H, Chaim R, Lanteri V. Adv in Ceram, Vo24A:3- 20, Sci&Technol of Z irconia III, ed by Somiya, Yamamoto N and Yamagida H, Am Ceram Soc,W esterville, OH, 1988
    142. Yashima M, Morimoto M, Shizawa N I, Yoshimura M. In:Sci& Technol of Zirconia V , ed by Bandwal S P S, Bannister M J, Hannink R H. Technomic, Lancaster, PA ,1993,pp 108-116
    143. Ingel R P and Lewis D. Lattice parameters and density for Y2O3-stabilized ZrO2[J].Am Ceram Soc, 1986, 69(1):325-332
    144. Berndt C C. The origins of thermal spray literature[J]. Therm. Spray. Thchnol, 2001,10(2): 199-205
    145. Cao X. Q, Vassen R, Schwartz S, et al, Spray-drying of ceramics for plasma-spray coatingJ. Euro. Ceram. Soc, 2000, 20 (14-15) :2433-2439
    146. Lukasiewicz S J. Spray-drying ceramic powders[J]. Am. Ceram. Soc., 1989,72:617-624.
    147.Denoir jean A, Vardelle A, Lugscheider E, Rass I, Chandler P, McIntyre R, Cosack T and Heijen H L. Comparison of the properties of plasmas prayed stabilized zirconia coatings for different powder morphologies. In Proceedings of the international thermal spray conference & expsition, Orlando, Florida, USA, 1992:967-973
    148. Filmer H L, Hochstrasser J and Nicoll A R. Plasma spray deposition of alumina-based ceramic coatings[J]. Ceram. Bull., 1990,69 (12): 1955-1958.
    149. Chen S L, Siitonen P and Ketunen P . Experimental design and parameter optimization for plasma spraying of alumina coatings, Proceedings of the International Thermal Spray Conference & Exposition, Orlando, Florida, USA, 1992, 51-62.
    150. Berndt C C. Current problems in plasma spray processing[J]. Therm. Spray Technol., 1992, 1(4):341-356
    151. Fisher I A. Variables influencing the characteristics of plasma-sprayed coatings[J].Int. Metal. Rev, 1972, 164(17):117-129.
    152. Sheu T S , Wien T Y, Chen I W. Cubic-to-tetragonal(t') transformation in zirconia-containing systems[J]. A m Ceram Soc, 1992; 75 (5):1108-1116
    153. Brandon J R, Taylor R. Phase stability of zirconia-based thermal barrier coatings Part Ⅰ. Zirconia-yttria alloys[J]. Surf Coat Technol, 1991, 46 (1):75-90
    154. Howard C J, Private comm, Australian Nuclear Sci & Technol Org, NSW, A ustralial 1998
    155. Argyriou D N, Howard C J. Re-investigation of yttria-tetragonal zirconia polycrystal (Y-TZP) by neutron powder diffraction. A cautionary tale[J]. Appl Cryst, 1995, 28 (2):206-208
    156. Gell M, Jordan E H, Sohn Y H, Goberman D, Shaw L, Xiao T D, Development and implementation of plasma sprayed nanostructured ceramic coatings[J]. Surface and Coatings Technology, 2001, 146-147:48-54
    157. Ozer Unal, Terrence E Mitchell, Arthur H Heuer. Microstructures of Y2O3-stabilized ZrO2 electron beam-physical vapor deposition coating on Ni-base superalloys[J]. Am. Ceram. Soc., 1994, 77(4):984-992
    158. Taylor R E, Wang X, Xu X. Thermophysical properties of thermal barrier coatings[J]. Surf. Coat. Technol., 1999, 120-121:89-95
    159. Gu S, Lu T J, Hass D D, et al. Thermal conductivity of zirconia coatings with zig-zag pore microstructures[J]. Acta Mater., 2001, 49 (13):2539-2547
    160.丁彰雄,热障涂层的研究动态及应用[J],中国表面工程,1999,43(2):31-37
    161. Dong Z L, Khor K A, Gu Y W. Microstructure formation in plasma-sprayed functionally graded NiCoCrAlY/yttria-stabilized zirconia coatings[J]. Surf. Coat. Technol., 1999, 114 (2-3):181-186
    162. Kear B H and Skandan G. Thermal spray processing of nanoscale materials[J]. Nanostruct. Mater., 1997, 8(6):765-769
    163.程育仁,疲劳强度[M],中国铁道出版社,北京,1990:78-87
    164. Joshi S Y, Srivastara M P. Life time determining factors during thermal cycling of zirconia based thermal barrier coatings[J]. Surf. Eng., 1995; 11:233-239
    165. Hsurh C H, Haynes J A, Lance M J. Effects of interface roughness on residual stresses in thermal barrier coatings[J]. Am. Ceram. Soc., 1999; 82:1073-1075
    166. Sodeoka S, Iniue T. Thermal barrier coatings with two ZrO2 based ceramic layers[J]. Surf. Eng., 1998, 14:152-154
    167. Wu B C, Chang E, Chang S F. Degradation mechanisms of ZrO2-8wt% Y2O3/NiCrAlY thermal barrier coatings[J]. Am. Ceram. Soc., 1989; 72:212-218
    168. Miller R A, et al. Failure mechanisms of thermal barrier coatings exposed to elevated temperatures[J]. Thin Solid Films, 1982, 95: 250-273
    169. Zheng Qingxing, et al. On the expressions of fatigue life of ceramic with given survivability[J]. Eng. Fract. Mech., 1996, 53 (1): 49-55
    170.陈和兴,周克崧,金展鹏,等离子喷涂热障涂层失效机理的研究[J].广东有色金属学报,2002,12(2):116—119
    171.李美栓,金属高温腐蚀[M],冶金工业出版社,北京,2001:79—100
    172. Slifka, A J, Filla B J, Phelps J M, Bancke G, Berndt C C. Thermal conductivity of a zirconia thermal barrier coating[J]. Journal of Thermal Spray Technology, 1998, 7(1):43-46
    173.关振铎,张中太,无机材料物理性能[M],北京:清华大学出版社,1992,pp132
    174. Fayette S, Smith D S, Smith A, Martin C. Influence of grain size on the thermal conductivity of tin oxide ceramic[J]. Eur. Ceram. Soc., 2000, 20:297-302.
    175. Ravichandran K S, An K, Duton R E, Semiatin S L. Thermal conductivity ofplasma-sprayed monolithic and multiplayer coatings of alumina and ytria-stabilized z irconia[J]. Am. Ceram. Soc., 1999, 82:673-682.
    176. Nan C-W, Biringer R. Determining the Kapitza resistance and the thermal conductivity of polycrystals: A simple model[J]. Phys. Rev. B , 1998, 57:8264-8268.
    177. Yang H S, Bai G R, Thompson L J, Eastman J A. Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia[J].Acta Mater., 2002,50:2309-2317
    178. Leigh S, Lin C, Bemdt CC. Elastic response of thermal spray deposits under indentation tests[J]. Am. Ceram. Soc, 80(1997)2093-2099.
    179. Ostojic P, McPherson R. Indentation toughness testing of plasma sprayed coatings[J]. Mater Forum, 1987, 10:247-254.
    180. Anon, ASTM Designation C 633-Standard of Test for Adhesive of Cohesive Strength of Flame-Sprayed Coatings, 19th Annual book of ASTM Standards, Part 17, ASTM, Philadelphia, PA ,1969,636-642.
    181.Barbezat G, Nicoll A R, Sickinger A. Abrasion, erosion and scuffing resistance of carbide and oxide ceramic thermal sprayed coating for different applications [J]. Wear, 1993,162-164.
    182. Peterlik H. The validity of Weibull estimators [J]. Mater Sci, 1995,30:1972-1976.
    183. McPherson R. ,A review of microstructure and properties of plasma sprayed ceramic coatings[J]. Surf. Coat. Technol., 1989,39-40:173-181
    184. Lopez Cantera E, Mellor B G. Fracture toughness and crack morphologies in eroded WC -Co-Cr thermally sprayed coatings[J].Mater. Lett., 1998,37:201-210.
    185. Pantelis D I, Psyllaki P, Alexopoulos N. Tribological behaviour of plasma-sprayed A1203 coatings under severe wear condition[J].Wear, 2000,237:197-204
    186. Vijande-Diaz R, Belzunoe J, Fernandez E, Rincon A, Perez M C. Wear and microstructure in fine ceramic coatings[J]. Wear, 1991,148:221-233.
    187. Nicoll A R, Gruner H, Wuest G, Keller S. Future developments in plasma spray coating [J].. Mater Sci. Technol., 1986, 2 (3): 214-219
    188. Stachowiak G B, Stachowiak G W, Evans P. Wear and friction characteristics of ion-implanted zirconia ceramics[J]. Wear, 2000,241 (2) :220-227
    189. Zhu Y, Yukimura K, Ding C, Zhang P. Tribological properties of nanostructured and conventional WC -Co coatings deposited by plasma spraying[J]. Thin Solid Films, 2001,388 (1-2) :277-282
    190. Song Y S, Han 5 C, Park M H, et al. Proceedings of the 15th International Thermal Spray Conference, 1998, Nice, France, Vol. 1, 25-29:225-229
    191. He Y, Winnubst L, Burggraaf A J, et al. Grain-size dependence of sliding wear in tetragonal zirconia polycrystals[J]. Am. Ceram. Soc., 1996, 79(12):3090-3096
    192. Yang C T, Wei W J. Effects of material properties and testing parameters on wear properties of fine-grain zirconia (TZP)[J]. Wear, 2000, 242 (1-2):97-104
    193. He Y J, Winnubst A J, Sagel-Ransijn C D, Burggraaf A J, et al. Enhanced mechanical properties by grain boundary strengthening in ultra-fine-grained TZP ceramics[J]. Eur Ceram. Soc, 1996, 16(6): 601-612
    194. Stewart D A, Shipway P H, McCartney D G. Abrasive wear behaviour of conventional and nanocomposite HVOF-sprayed WC -Co coatings[J].Wear, 1999, 225-229:789-798
    195. He J, Ice M, Schoenung J M, Shin D H and Lavernia E J. Thermal stability of Nanostructured Cr3C2-NiCr coatings[5]. Therm. Spray Technol., 2001, 10:293-300.
    196. Chen H, Zhang Y, Ding C. Tribological properties of nanostructured zirconia coatings deposited by plasma spraying[J]. Wear, 2002, 253: 885-893.
    197.张绪寿,刘洪,王秀娥,硬度对碳钢微动磨损行为和磨屑组分的影响[J].摩擦学学报,1995,16(4):303-305
    198. Erickson L C, Hawthorne H M and Troczynski T. Correlations between microstructural parameters, micromechanical properties and wear resistance of plasma sprayed ceramic coatings[J]. Wear, 2001, 250:569-575
    199. Normand B, Fervel V, Coddet C, Nikitine V. Tribological properties of plasma sp rayed alumina-titania coatings: role and control of the microstructure[5]. Surf. Coat. Technol., 2000, 123:278-287
    200. V. Fervel, B. Normand, C. Coddet, Tribological behavior of plasma sprayed A1203-based ceramic coatings, Wear, 230(1999)70-77.
    201. Hines J E, Jr, Bradt R C, Biggers J V. Grain size and porosity effects on the abrasive wear of alumina, in: Glaeser W A, Ludema K C and Rhee S K(Eds.), Wear of Materials, 1977, pp 462-467
    202. Zum Gahr K H, Bundschuh W, Zimmerlin B. Effect of grain size on friction and sliding wear of oxide ceramics[J].Wear, 1993,162-164:269-279

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700