退火及碘掺杂对提高聚合物太阳能电池性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1986年,C.W. Tang提出了双层有机太阳能电池的结构;1995年,Heeger提出了体异质结太阳能电池的概念;二十一世纪,聚合物太阳能电池能量转换效率超过7%。经过二十多年的发展,聚合物太阳能电池取得了一个又一个的突破。本论文以P3HT:PCBM体系聚合物太阳能电池为主体,研究退火和碘掺杂前后器件性能的变化,分析了退火和碘掺杂对该体系太阳能电池性能的影响。得到以下两个结论:i)基于P3HT:PCBM的聚合物太阳能电池经过120℃、10min退火处理后,能量转换效率提高,从0.26%到2.00%;ii)有源层P3HT:PCBM中掺杂了质量比为5%的碘,短路电流密度从4 mA/cm2上升到8.7 mA/cm2,能量转换效率提高了38.5%。对比这两组实验,发现退火和碘掺杂都有效地提高了聚合物太阳能电池的性能。具体实验结果如下:
     利用旋涂方法制备了以P3HT:PCBM为有源层的聚合物太阳能电池。器件结构为ITO/PEDOT:PSS/P3HT:PCBM/Al,研究了退火温度对聚合物太阳能电池性能的影响。实验发现:聚合物薄膜经过120℃、10min退火处理后,开路电压达到0.64V,短路电流密度为10.25 mA/cm2,填充因子38.1%,光电转换效率达到2.00%。为了讨论其内在机制,对不同退火条件下聚合物薄膜进行了各种表征。从紫外-可见吸收光谱中发现,退火处理使P3HT:PCBM混合薄膜在可见光范围内吸收加强且吸收峰展宽,特别是在560和610 nm处的吸收强度明显增大;X射线衍射(XRD)结果表明,12℃退火后P3HT在(100)晶面上的衍射强度是未退火薄膜的2.8倍,有利于光生载流子的输运;原子力显微镜(AFM)研究结果表明,退火增大了P3HT:PCBM薄膜的相分离程度,提高了激子解离的几率;傅里叶变换红外(FTIR)光谱验证了退火并没有引起聚合物材料物性的变化。
     通过对有源层P3HT:PCBM进行不同比例的碘掺杂,制备了体异质结太阳能电池。当掺杂质量比为5%时得到最佳的性能,短路电流密度从4 mA/cm2上升到8.7mA/cm2,伴随着开路电压的略微减小,从0.63 V下降到0.52 V。最佳的能量转换效率达到1.51%。主要归因于可见光吸收的加强(吸收光谱红移、展宽),以及更好的载流子传输和收集。利用AFM测试了不同碘掺杂浓度有源层薄膜的相分离和表面形貌。掺杂了碘以后薄膜表面的相分离程度和表面粗糙度增大,有利于激子的解离,提高了P3HT:PCBM聚合物太阳能电池的性能。
In 1986,C.W. Tang put forward the structure of the double layers organic solar cells. In 1995, Heeger proposed the concept of bulk-heterojunction solar cells. The 21st century, the power conversion efficiency of polymer solar cells increased to more than 7%. After twenty years of development, polymer solar cells (PSCs) have achieved breakthroughs in one after another. The thesis based on P3HT:PCBM bulk-heterojunction solar cells focus on the effect of annealing and doping treatments on the performance of PSCs. Get the following two conclusions:i) these devices were treated at 120℃for 10 min in an ambient atmosphere and the best power conversion efficiency (PCE) of 2.00% was obtained; ii) the distinguished enhancement of short circuit current density (Jsc) and the PCE of PSCs with 5% concentration iodine doping were obtained. Comparing annealing and iodine doping, both of them improve the performance of PSCs. Specific results are as follows:
     Several PSCs consisting of ITO/PEDOT:PSS/P3HT:PCBM/Al were fabricated by spin coating. The influence of annealing temperature on the performance of the polymer solar cells was studied using absorption spectra, photoluminescence spectra, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and atomic force microscopy (AFM). These devices were treated at 120℃for 10 min in an ambient atmosphere and the best power conversion efficiency (PCE) of 2.00% was obtained at an open circuit voltage (Voc) of 0.64 V, Jsc of 10.25 mA/cm2, and a fill factor (FF) of 38.1%. The intensities of the absorption peaks at 560 and 610 nm increased after annealing treatment. XRD spectra showed that the intensity of the diffraction peaks at (100) for P3HT increased 1.8 times by comparison with that of the cells that did not undergo annealing treatment. The P3HT:PCBM phase separation increased markedly after annealing treatment, which is valuable for exciton dissociation. FTIR results also showed that the polymer materials did not deteriorate during the annealing treatment process.
     A series of poly(3-hexylthiophene) (P3HT)/(6,6)-phenyl C60 butyric acid methyl ester (PCBM) bulk hetero-junction polymer solar cells were fabricated with different iodine (I2) doping concentrations. The Jsc was increased to 8.7 mA/cm2 from 4 mA/cm2, meanwhile Voc was decreased to 0.52V from 0.63V when the iodine doping concentration is 5%. The optimized PCE of PSCs with iodine doping is about 1.51%, which should be attributed to the better charge carrier transport and collection, and the more photon harvesting due to the red shift of absorption peaks and the widened absorption range to the longer wavelength. The morphology and phase separation of polymer thin films were measured by AFM. The phase separation of P3HT and PCBM has been distinctly increased, which is beneficial to the exciton dissociation. Improve the performance of P3HT:PCBM PSCs.
引文
[1]Yu G., Gao J., Hummelen J. C., Wudl F., Heeger A. J. Polymer photovoltaic cells:enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995.570.1789
    [2]Yongye Liang, Zheng Xu, Jiangbin Xia, Szu-Ting Tsai, Yue Wu, Gang Li, Claire Ray and Luping Yu. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater.2010.22.1-4
    [3]Hsiang-Yu Chen, Jianhui Hou, Shaoqing Zhang, Yongye Liang, Guanwen Yang, Yang Yang, Luping Yu, YueWu and Gang Li. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics.2009.3.649-653
    [4]Pardhasaradhi Vemulamada, Gong Hao, Thomas Kietzke and Alan Sellinger. Efficient bulk heterojunction solar cells from regio-regular-poly(3,3-didodecyl quaterthiophene)/PC7oBM blends. Org. Electron.2008.9.661-666
    [5]Guangjin Zhao, Youjun He, Chang He, Haijun Fan, Yun Zhao, Yongfang Li. Photovoltaic properties of poly(benzothiadiazole-thiophene-co-bithiophene) as donor in polymer solar cells. Sol. Energy Mater. Sol. Cells.2011.95.704-711
    [6]Zhuo ZL, Zhang FJ, Xu XW, Wang JA, Lu LF, Xu Z. Photovoltaic performance improvement of P3HT:PCBM polymer solar cells by annealing treatment. Acta Phys-Chim. Sin.2011.27.875-880
    [7]Liu XD, Zhang FJ, Xu Z, Zhao SL, Song JL, Li JM, Song DD, Wang YS. Influence of the active layer thickness on the performance of bulk heterojunction solar cell. Spectrosc. Spect. Anal.2010. 30.1752-1755
    [8]Zhang FJ, Zhao DW, Zhuo ZL, Wang H, Xu Z, Wang YS. Inverted small molecule organic solar cells with Ca modified ITO as cathode and MOO3 modified. Sol. Energy Mater. Sol. Cells.2010.94. 2416-2421
    [9]Fujun Zhang, Xiaowei Xu, Weihua Tang, Jian Zhang, Zuliang Zhuo, Jian Wang, Jin Wang, Zheng Xu, Yongsheng Wang. Recent development of the inverted configuration organic solar cells. Sol. Energy Mater. Sol. Cells.2011.95.1785-1799
    [10]Jeong Ah Chang, Jae Hui Rhee, Sang Hyuk Im, Yong Hui Lee, Hi-jung Kim, Sang Ⅱ Seok, Md. K. Nazeeruddin and Michael Gratzel. High-performance nanostructured inorganic-organic heterojunction solar cells. Nano Lett.2010.10.2609-2612
    [11]M.C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.L. Brabec, Design rules for donors in bulk-heterojunction solar cells-towards 10% energy conversion efficiency, Adv. Mater.2006.18.789-794
    [12]Konarka Company,/http://www.konarka.comS
    [13]Solarmer Energy, Inc./http://www.solarmer.com/S
    [14]Heliatek GmbH,/http://www.heliatek.comS
    [15]Mitsubishi Chemical,http://www.crunchgear.com/2011/04/06/Mitsubishi-chemical-to-commercialize-printable-solar-cells-next-year
    [16]Patrick Boland, Keejoo Lee, James Dean, Gon Namkoong. Design of organic tandem solar cells using low-and high-bandgap polymer:fullerene composites. Sol. Energy Mater. Sol. Cells.2010.94. 2170-2175
    [17]Bong Joon Lee, Hyo Jung Kim, Won-ik Jeong, Jang-Joo Kim. A transparent conducting oxide as an efficient middle electrode for flexible organic tandem solar cells. Sol. Energy Mater. Sol. Cells. 2010.94.542-546
    [18]Gilles Dennler, Markus C. Scharber, and Christoph J. Brabec. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater.2009.21.1-16
    [19]W Shockley, H. J. Queisser. Maximum efficiency in a single p-n junction solar cell. J. Appl. Phys.1961.32.510-519
    [20]Pingli Qina, Guojia Fang, Nanhai Sun, XiFan, Qiao Zheng, Fei Chen, Jiawei Wan, Xingzhong Zhao. Composition-dependent phase separation effects of organic solar cells using P3HT:PCBM as active layer and chromium oxide as hole transporting layer. Appl. Surf. Sci.2011.257.3952-3958
    [21]Hyojung Cha, Hoyoul Kong, Dae Sung Chung, Won Min Yun, Tae Kyu An, Jihun Hwang, Yun-Hi Kim, Hong-Ku Shim, Chan Eon Park. Thermally stable amorphous polymeric semiconductors containing fluorene and thiophene for use in organic photovoltaic cells. Org. Electron.2010.11.1534-1542
    [22]Franz Padinger, Roman S. Rittberger and Niyazi S. Sariciftci. Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater.2003.13.85-88
    [23]Minjung Shin, Hwajeong Kim, Youngkyoo Kim. Effect of film and device annealing in polymer:polymer solar cells with a LiF nanolayer. Mater. Sci. Engin. B.2011.176.382-386
    [24]Xiaoniu Yang, Joachim Loos, Sjoerd C. Veenstra, Wiljan J.H.Verhees, Martijn M. Wienk, Jan M. Kroon, Matthias A. J. Michels and Rene A. J. Janssen. Nanoscale morphology of high-performance polymer solar cells. Nano letters.2005.5.579-583
    [25]Maher Al-lbrahim and Oliver Ambacher. Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene):Fullerene. Appl. Phys. Lett.2005.86. 201120
    [26]Heejoo Kim, Won-Wook So, Sang-Jin Moon. The importance of post-annealing process in the device performance of poly(3-hexylthiophene):Methanofullerene polymer solar cell. Sol. Energy Mater. Sol. Cells.2007.91.581-587
    [27]Chunfu Zhang, S. W. Tong, Chunxiang Zhu, Changyun Jiang, E. T. Kang and D. S. H. Chan. Enhancement in open circuit voltage induced by deep interface hole traps in polymer-fullerene bulk heterojunction solar cells. Appl. Phys. Lett.2009.94.103305
    [28]Wanli Ma, Cuiying Yang, Xiong Gong, Kwanghee Lee and Alan J.Heeger. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater.2005.15.1617-1622
    [29]L. J. A. Koster, V. D. Mihailetchi, H. Xie and P. W. M. Blom. Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells. Appl. Phys. Lett.2005.87. 203502
    [30]Chiu-Sheng Ho, E-Ling Huang, Wei-Chou Hsu, Ching-Sung Lee, Ying-Nan Lai and Wen-Hsuan Lai. Effects of annealing on polymer solar cells with high polythiophene-fullerene concentrations. Japan. J. Appl. Phys.2011.50.04DK21
    [31]Tao Wang, Andrew J. Pearson, David G. Lidzey and Richard A. L. Jones. Evolution of structure, optoelectronic properties, and device performance of polythiophene:fullerene solar cells during thermal annealing. Adv. Funct. Mater.2011.21.1383-1390
    [32]Kyungkon Kim, Jiwen Liu, Manoj A. G. Namboothiry and David L. Carroll. Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics. Appl. Phys. Lett. 2007.90.163511
    [33]Wing C. Tsoi, Steve J. Spencer, Li Yang, Amy M. Ballantyne, Patrick G. Nicholson, Alan Turnbull, Alex G. Shard, Craig E. Murphy, Donal D. C. Bradley, Jenny Nelson, and Ji-Seon Kim. Effect of crystallization on the electronic energy levels and thin film morphology of P3HT:PCBM blends. Macromolecules.2011.44.2944-2952
    [34]Zhang F. J., Xu Z., Zhao D.W., Zhao S. L., Jiang W.W., Yuan G. C., Song D., Wang Y. S., Xu X. R. Influence of evaporation conditions of Alq3 on the performance of organic light emitting diodes. J. Phys. D:Appl. Phys.2007.40.4485-4488
    [35]Cheng C. H., Wang J., Du G. T., Shi S. H., Du Z. J., Fan Z. Q., Bian J. M., Wang M. S. Organic solar cells with remarkable enhanced efficiency by using a Cul buffer to control the molecular orientation and modify the anode. Appl. Phys. Lett.2010.97.083305
    [36]Brabec C. J., Gowrisanker S., Halls J. J. M., Laird D., Jia S. J., Williams S. P. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater.2010.22.3839
    [37]Hu Z. J., Gesquiere A. J. PCBM concentration dependent morphology of P3HT in composite P3HT/PCBM nanoparticles. Chem. Phys. Lett.2009.476.51-55
    [38]Sundarrajan S., Murugan R., Nair A. S., Ramakrishna, S. Fabrication of P3HT/PCBM solar cloth by electrospinning technique. Mater. Lett.2010.64.2369-2372
    [39]Bisquert J., Garcia-Belmonte G., Munar A., Sessolo M., Soriano A., Bolink H. J. Model for P3HT:PCBM organic bulk heterojunctions under illumination. Chem. Phys. Lett.2008. 465.57-62
    [40]Bartholomew, G. P.; Heeger, A. J. Infiltration of regioregular poly[2,2'-(3-hexyl-thiophene)] into random nanocrystalline TiO2 networks. Adv. Funct. Mater.2005.15.677-682
    [41]Kim J. Y., Lee K., Coates N. E., Moses D., Nguyen T. Q., Dante M., Heeger, A. J. Efficient tandem polymer solar cells fabricated by all-solution processing. Science.2007.317. 222-225
    [42]Liao H. H., Chen L. M., Xu Z., Li G., Yang Y. Highly efficient inverted polymer solar cell by low temperature annealing of CS2CO3 interlayer Appl. Phys. Lett.2008.92.173303
    [43]Guo T. F., Wen T. C., Pakhomov G. L., Chin X. G., Liou S. H., Yeh P. H., Yang C. H. Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells. Thin Solid Films 2008.516.3138
    [44]Feng Z. H., Hou Y. B., Shi Q. M., Liu X. J., Teng F. Effect of slow-solvent-vapour treatment on performance of polymer photovoltaic devices. Chin. Phys. B.2010.19.098601
    [45]Zhang F., Vollmer A., Zhang J., Xu Z., Rabe J. P., Koch N. Energy level alignment and morphology of interfaces between molecular and polymeric organic semiconductors. Org. Electron.2007.8.606-614
    [46]Bao Z. N., Dodabalapur A., Lovinger A. J. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl. Phys. Lett.1996.69.4108
    [47]Nunzi J. M. Analytic model of carrier mobility in doped disordered. Materials and devices C. R. Physique.2003.3.523-542
    [48]Jain A., Kapoor A. A new approach to study organic solar cell using Lambert W-function. Sol. Energy Mater. Sol. Cells 2005.86.197-205
    [49]L. Bakueva, D. Matheson, S. Musikhin, E. H. Sargent, Luminescence of pure and iodine doped PPV: internal energetic structure revealed through spectral signatures, Synth. Met.2002.126. 207-211
    [50]Bin Li, Liduo Wang, Bonan Kang, Peng Wang, Yong Qiu. Improvement of photovoltaic performance of solid-state dye-sensitized solar cells by iodine doping in conjugated polymer. Journal of Photochemistry and Photobiology A:Chemistry.2005.172.135-139
    [51]H. Shirakawa, E. J. Louis, A. G. MacDiarmid. Synthesis of electrically conducting organic polymers:halogen derivatives of polyacetylene, (CH)x, Chem. Commun.1977.16.578-580
    [52]C. E. Lee, C. H. Lee, J. I. Jin, Critical dynamics in I2-doped PBMPV conducting polymers, Synth. Met.2001.117.27-31
    [53]F. Huang, A. G. Macdiarmid, B. R. Hsieh, An iodine-doped polymer light-emitting diode, Appl. Phys.Lett.1997.71.2415
    [54]J.M. Schon, C. Kloc, E. Bucher, B. Batlogg, Efficient organic photovoltaic diodes based on doped pentacene, Nature 2000.403.408-410
    [55]Y. Zhao, Z.Y. Xie, Y. Qu, Y.H Geng, L.X. Wang, Solvent-vapor treatment induced performance enhancement of poly(3-hexylthiophene):methanofullerene bulk-heterojunction photovoltaic cells Appl. Phys. Lett.2007.90.043504
    [56]J.G. Liu, S.Y. Shao, H.F. Wang, K. Zhao, L.J. Xue, X. Gao, Z.Y. Xie, YC. Han, The mechanisms for introduction of n-dodecylthiol to modify the P3HT/PCBM morphology, Org. Electron.2010.11.775-783

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700