低温保护剂抑制冰晶生成的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温生物学是研究生物体在低温环境下表现出的各种生命现象的变化规律及其相互关系,以及实现对细胞、组织、器官乃至整个生物体在低温环境下长期保存的一门涉及生物学、化学、物理学和医学等领域的边缘交叉学科。低温生物学中的低温保存技术已经广泛地应用于工业、农业、医学、畜牧业等诸多领域。低温保存技术是通过人为地制造出低温环境,使具有活性的生物体暂时地减慢细胞代谢速率从而达到长期保存的目的。低温保存技术在发展过程中受到的最大阻碍就是低温损伤,因此研究者采用各种方法来减少或消除低温损伤带来的影响。其中,低温保护剂是最有效且被广泛采用的一种方式。然而,在低温保护剂的使用过程中,如果低温保护剂的使用量不足,则不能达到理想的低温保存效果:而如果低温保护剂的用量过多,则会对生物细胞造成损伤。因此,如何合理地选取低温保护剂的用量是一个始终困扰研究者们的难题。这主要是因为人们对于低温保护剂作用机理的认识还不是很清楚,因此很难设计出合理而有效的低温保护剂配方和使用方法。所以,对低温保护剂作用机理的研究,对于低温保护技术的改进和低温生物学的发展具有深远的意义,同时也是目前低温生物领域的科研人员所面临的重要难题。
     本文对四种不同类型的低温保护剂(包括:甲醇、乙二醇、甘油和二甲基亚砜)水溶液在不同的浓度和温度条件下进行了分子动力学模拟,并分析了各溶液体系的氢键统计特性和氢键动力学行为。研究发现,低温保护剂分子有助于抑制水分子之间的氢键作用,并且会通过氢键作用束缚越来越多的水分子,使溶液中“束缚水”的比例逐渐增加。这一结果对于解释低温保护剂水溶液在冻结过程中出现的未冻结水现象具有十分重要的意义。此外,研究还发现,随着低温保护剂水溶液浓度的增加,低温保护剂分子与水分子之间的氢键生存周期逐渐延长。这一结果则从另一个侧面说明了低温保护剂分子有助于通过氢键作用将水分子束缚住。这种未冻结水量与保护剂分子-水分子氢键作用之间的相关性,证明了低温保护剂分子通过氢键作用对冰晶抑制的直接原因。
     本文还进一步分析了溶液浓度和温度对低温保护剂水溶液中水分子自扩散运动的影响。结果显示,随着溶液浓度的增加和温度的降低,水分子的自扩散系数逐渐减小;并且水分子所具有的氢键数越多,它在溶液中的自扩散运动就越缓慢。这些现象都说明了低温保护剂分子通过氢键作用减缓了溶液中水分子的自扩散运动,进而抑制了水分子向晶核的运动趋势,并使其处于保护剂分子的周围,为玻璃化的形成提供了有利的条件。此外,本文还对低温保护剂水溶液的亲水性和疏水性团簇结构进行了分析,并从团簇结构的角度解释了保护剂分子对水分子扩散运动的抑制机理。研究发现,保护剂分子能够通过烃基间疏水性吸引作用形成团簇结构,并且这种团簇尺寸随着浓度的增加而不断增大。这种疏水性团簇结构能够有效地阻碍溶液中水分子的扩散运动,而这种团簇结构的生长又有利于分解水分子间通过氢键作用形成的团簇结构,从而能够有效地削弱水分子形成冰晶的驱动力。
     根据二甲基亚砜水溶液的氢键分析结果,本文还分析了几何准则和能量准则的合理性。两种氢键准则在氢键统计上都存在一定的不合理性,但是在一般情况下它们对结果的影响是可以接受的。然而,这两种氢键准则在氢键动力学特性的分析上却存在比较大的差异,这主要是因为能量准则缺少对分子间相对取向角的限制。因此,本文建议在对低温保护剂水溶液进行定量的氢键分析时应当采用几何-能量混合型氢键准则。
Cryobiology is an inter-and trans-disciplinary subject involving biology, chemistry, physics and medicine, etc., of which the aim is to study various biological phenomenons and their relationships of living organisms, and to preserve cell, tissue, organ and a whole organism at low temperature for a long term. Cryopreservation is a sub-discipline of cryobiology, which is widely applied to industry, agriculture, medicine, livestock, etc. By means of artificial environment of low temperature, the metabolism of the cells in living organism will be slowed down temporarily, resulting in long-term cryopreservation. Cryoinjury is the biggest impediment to the development of cryopreservation. Thus researchers employ several methods to reduce or eliminate the effect of cryoinjury, of which cryoprotectant is the most effective and widely used one. However, for the application of cryoprotectant, too little cryoprotectant will not take enough cryoprotective effect, and too much cryoprotectant will damage to cells. Thus it is difficult to employ proper amount of cryoprotenctant. This is mainly because that the cryoprotective mechanism of cryoprotectant is not well understood, and it is hard to design a reasonable and effective method of using cryoprotectant. Hence, investigation of the cryoprotective mechanism of cryoprotectant is of significant importance to the improvement of cryopreservation technology, and is an major challenge to the researchers in the field of cryobiology.
     In the present dissertation, the aqueous solutions of four types of cryoprotectants (including methanol, ethylene glycol, glycerol and dimethyl sulfoxide) are studied by molecular dynamics simulation, and the hydrogen bonding statistics and hydrogen bonding dynamics of the solutions are analyzed. The cryoprotectants help to inhibit the interaction of hydrogen bonding between water molecules, and they also constraint water molecules by hydrogen bonds, resulting in the proportion of "bound water" increases with increasing the concentration. This finding is of significant importance to interpret the the emergence of unforzen water in the freezing process. Moreover, the increasing concentration of cryoprotectant will increase the lifetime of the hydrogen bonds between cryoprotectant and water molecules. This is another indication that cryoprotectant molecule contributes to producing "bound water". Unfrozen water is correlated with the cryoprotectant-water hydrogen bond, which proves that the cryoprotectant-water hydrogen bond is directly responsible for the ice inhibition.
     This dissertation further analyzes the effects of concentration and temperature on the self-diffusion of water in the aqueous solutions of cryoprotectant. It shows that as the concentration increases and temperature decreases, the self-diffusion coefficient of water molecule has a decreasing tendency. The more hydrogen bonds one water molecule has, the slower its self-diffusion is. Thus the cryoprotenctant molecules slow down the self-diffusion motion of water by hydrogen bonding interaction, resulting in the inhibition of the motion of water towards the ice nucleation. The hydrogen bonded water molecules tend to surround the cryoprotectant molecules, which is benefit to achieving vitrification. This dissertation also analyzes the structures of the hydrophilic and hydrophobic clusters in the aqueous solutions of cryoprotectant, and inteprets the mechanism of the inhibition from the cryoprotectant to water self-diffusion in the point of view of cluter. The hydrophobic cluter is resulted from the attraction between intermolecular alkyl groups, and the cluster size increases with increasing the concentration. It is found that the hydrophobic cluster has significant retardation to the diffusion of water moelcules, and the increasing cluster size with concentration tends to break down the hydrogen bonded water cluster, both of which could effectively reduce the driving force of ice formation.
     On the basis of the hydrogen bonding analysis of the aqueous solution of dimethyl sulfoxide, the dissertation evaluates the geometric and energetic criteria. Both of the hydrogen bonding criteria are found to have deficiency in the hydrogen bonding statistics, but the effect on the hydrogen bonding analysis could be accepted. Nevertheless, the criteria have large distinction in the analysis of hydrogen bonding dynamics due to that energetic criterion is lack of the limitation to the intermolecular angle of relative orientation. Therefore, extended criterion involving both geometric and engetic thresholds is recommended in the hydrogen bonding analysis of aqueous solution of cryoprotenctant.
引文
[1]REFERENCE C. The New American Desk Encyclopedia [M]. Signet,1997.
    [2]KARLSSON J 0 M, TONER M. Long-term storage of tissues by cryopreservation:critical issues [J]. Biomaterials,1996,17:243-256.
    [3]HAN B, BISCHOF J C. Engineering challenges in tissue preservation [J]. Cell Preservation Technology,2004,2:91-112.
    [4]NIU L, MU F, ZHANG C, et al. Cryotherapy protocols for metastatic breast cancer after failure of radical surgery [J]. Cryobiology,2013,67:17-22.
    [5]RZACA M, TARKOWSKI R. Paget's disease of the nipple treated successfully with cryosurgery:A series of cases report [J]. Cryobiology,2013,67:30-33.
    [6]HENRY P. Experimental Philosophy [M]. London,1664.
    [7]POLGE C, SMITH A, PARKES A. Revival of spermatozoa after vitrification and dehydration at low temperatures [J]. Nature,1949,164:666.
    [8]LOVELOCK J E, POLGE C. The immobilization of spermatozoa by freezing and thawing and the protective action of glycerol [J]. Biochemical Journal,1954,58:5.
    [9]SHERMAN J K. Freezing and freeze-drying of human spermatozoa [J]. Fertility And Sterility,1954,5:357.
    [10]TROUNSON A, MOHR L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo [J]. Nature,1983,305:3.
    [11]CHEN C. PREGNANCY AFTER HUMAN OOCYTE CRYOPRESERVATION [J]. The Lancet,1986,327: 884-886.
    [12]MAGLI M C, LAPPI M, FERRARETTI A P, et al. Impact of oocyte cryopreservation on embryo development [J]. Fertility And Sterility,2010,93:510-516.
    [13]MENEZO Y. Fertilization in vitro. Perspectives for improving the technics [J]. Revue Francaise de Gynecologie et d Obstetrique,1987,82:745-749.
    [14]PALERMO G, JORIS H, DERDE M P, et al. Sperm characteristics and outcome of human assisted fertilization by subzonal insemination and intracytoplasmic sperm injection [J]. Fertility And Sterility,1993,59:826-835.
    [15]BOLTEN M, WEI BACH L, KADEN R. Kryokonservierte humane Spermadepots [J]. Der Urologe,2005,44:904-908.
    [16]GANDINI L, LOMBARDO F, LENZI A, et al. Cryopreservation and sperm DNA integrity [J]. Cell Tissue Bank,2006,7:91-98.
    [17]ROWE A W, EYSTER E, KELLNER A. Liquid nitrogen preservation of red blood cells for transfusion:A low glycerol — Rapid freeze procedure [J]. Cryobiology,1968,5: 119-128.
    [18]TAKEHARA I, ROWE A W. Increase in ATPase activity in red cell membranes as a function of freezing regimen [J]. Cryobiology,1971,8:559-565.
    [19]MILLER R H, MAZUR P. Survival of frozen-thawed human red cells as a function of cooling and warming velocities [J]. Cryobiology,1976,13:404-414.
    [20]RINDLER V, L NEBERGER S, SCHWINDKE P, et al. Freeze-Drying of Red Blood Cells at Ultra-Low Temperatures [J]. Cryobiology,1999,38:2-15.
    [21]JAMIESON N V, SUNDBERG R, LINDELL S, et al. A comparison of cold storage solutions for hepatic preservation using the isolated perfused rabbit liver [J]. Cryobiology,1988, 25:300-310.
    [22]LLOYD T R, ORR S, SKETT P, et al. Cryopreservation of hepatocytes:a review of current methods for banking [J]. Cell and Tissue Banking,2003,4:3-15.
    [23]WANG X, MAGALH ES R, WU Y, et al. Development of a modified vitrification strategy suitable for subsequent scale-up for hepatocyte preservation [J]. Cryobiology,2012,65: 289-300.
    [24]BROWN J, KEMP J A, HURT S, et al. Cryopreservation of human fetal pancreas [J]. Diabetes,1980,29 Suppl 1:70-73.
    [25]MCHUGH Y E, VOLENEC F J, VOSS H F. Cryopreservation and transplantation of proliferated human fetal pancreas cells [J]. Cryobiology,1988,25:572.
    [26]HULLETT D A, BETHKE K P, LANDRY A S, et al. Successful long-term cryopreservation and transplantation of human fetal pancreas [J]. Diabetes,1989,38:448-453.
    [27]LEWIS J P, PASSOVOY M, TROBAUGH JR F E. The transplantation efficiency of marrow cooled to-100℃ at 2℃ per minute [J]. Cryobiology,1966,3:47-52.
    [28]MALININ T I, PEGG D E, PERRY V P, et al. Long-term storage of bone marrow cells at liquid nitrogen and dry ice temperatures [J]. Cryobiology,1970,7:65-69.
    [29]VAN DE OUWELAND F, DE WITTE T, GEERDINK P, et al. Enrichment and cryopreservation of bone marrow progenitor cells for autologous reinfusion [J]. Cryobiology,1982,19: 292-298.
    [30]MAY S R, DECLEMENT F A. Skin banking methodology:An evaluation of package format, cooling and warming rates, and storage efficiency [J]. Cryobiology,1980,17:33-45.
    [31]华泽钊,常兆华,忻雅雯,et al.皮肤低温保存的方法和工艺研究[J].中国生物医学工程学报,1991,118-126.
    [32]VILLALBA R, BENITEZ J, DE NO-LOWIS E, et al. Cryopreservation of Human Skin with Propane-1,2-diol [J]. Cryobiology,1996,33:525-529.
    [33]SPERLING S. Cryopreservation of human cadaver corneas regenerated at 31 degrees C in a modified tissue culture medium [J]. Acta Ophthalmologica,1981,59:142-148.
    [34]TAYLOR M J. Clinical cryobiology of tissues:Preservation of corneas [J]. Cryobiology,1986,23:323-353.
    [35]ROUTLEDGE C, ARMITAGE W J. Cryopreservation of cornea:a low cooling rate improves functional survival of endothelium after freezing and thawing [J]. Cryobiology,2003,46: 277-283.
    [36]ROWE A W. Low temperature preservation in medicine and biology [M]. Baltimore: University Park Press,1980.
    [37]ARRHENIUS S. Ober die reacktionsgeschwindigkeit bei der inversion von rohrzucker durch sauren [J]. Z. Physik. Chem,1889,4:23.
    [38]HARTENSTEIN R. Principles of Physiology [M]. Van Nostrand Reinhold Co.,1972.
    [39]华泽钊,任禾盛.低温生物医学技术[M].北京:科学出版社,1994.
    [40]FULLER B J. Cryoprotectants:the essential antifreezes to protect life in the frozen state [J]. Cryoletters,2004,25:375-388.
    [41]DUDZINSKI D M. Ethical issues in fertility preservation for adolescent cancer survivors:oocyte and ovarian tissue cryopreservation [J]. Journal of Pediatric and Adolescent Gynecology,2004,17:97-102.
    [42]CA AVATE J P, LUBINN L M. Some aspects on the cryopreservation of microalgae used as food for marine species [J]. Aquaculture,1995,136:277-290.
    [43]HE Z, LIU H-C, ROSENWAKS Z. Cryopreservation of nuclear material as a potential method of fertility preservation [J]. Fertility and Sterility,2003,79:347-354.
    [44]NEUHUBER B, GALLO G, HOWARD L, et al. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells:Disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype [J]. Journal of Neuroscience Research, 2004,77:192-204.
    [45]SYME R, BEWICK M, STEWART D, et al. The role of depletion of dimethyl sulfoxide before autografting:on hematologic recovery, side effects, and toxicity [J]. Biology of Blood And Marrow Transplantation,2004,10:135-141.
    [46]MARESCHI K, NOVARA M, RUSTICHELLI D, et al. Neural differentiation of human mesenchymal stem cells:evidence for expression of neural markers and eag K+ channel types [J]. Experimental Hematology,2006,34:1563-1572.
    [47]KAROW A M. Cryoprotectants—a new class of drugs [J]. Journal of Pharmacy and Pharmacology,1969,21:209-223.
    [48]DOEBBLER G F, RINFRET A P. Rapid freezing of human blood:Physical and chemical considerations of injury and protection [J]. Cryobiology,1965,1:205-211.
    [49]CONNOR W, ASHWOOD-SMITH M J. Cryoprotection of mammalian cells in tissue culture with polymers; possible mechanisms [J]. Cryobiology,1973,10:488-496.
    [50]SPUTTEK A, RAU G. Cryopreservation of human erythrocytes with hydroxyethyl starch (HES)—Part 1: The procedure [J]. Infusionstherapie und Transfusionsmedizin,1992,19: 269-275.
    [51]SPUTTEK A, SPUTTEK R. Life in the frozen state [M]. Boca Raton:CRC Press,2004.
    [52]MALINS D C, SARGENT J R. Biochemical and biophysical perspectives in marine biology [M]. Academic Press,1974.
    [53]DUMAN J G, OLSEN T M. Thermal Hysteresis Protein Activity in Bacteria, Fungi, and Phylogenetically Diverse Plants[J]. Cryobiology,1993,30:322-328.
    [54]YEH Y, FEENEY R E. Antifreeze Proteins:Structures and Mechanisms of Function [J]. Chemical Reviews,1996,96:601-618.
    [55]SCHOLANDER P F, VAN DAM L, KANWISHER J W, et al. Supercooling and osmoregulation in arctic fish [J]. Journal of Cellular and Comparative Physiology,1957,49:5-24.
    [56]GORDON M S, AMDUR B H, SCHOLANDER P F. FREEZING RESISTANCE IN SOME NORTHERN FISHES [J]. The Biological Bulletin,1962,122:52-62.
    [57]DEVRIES A L, WOHLSCHLAG D E. Freezing Resistance in Some Antarctic Fishes [J]. Science,1969,163:1073-1075.
    [58]DEVRIES A L, KOMATSU S K, FEENEY R E. Chemical and Physical Properties of Freezing Point-depressing Glycoproteins from Antarctic Fishes [J]. Journal of Biological Chemistry, 1970,245:2901-2908.
    [59]SCHOLANDER P F, MAGGERT J E. Supercooling and ice propagation in blood from arctic fishes [J]. Cryobiology,1971,8:371-374.
    [60]DUMAN J G, DEVRIES A L. Freezing behavior of aqueous solutions of glycoproteins from the blood of an Antarctic fish [J]. Cryobiology,1972,9:469-472.
    [61]LIN Y, DUMAN J G, DEVRIES A L. Studies on the structure and activity of low molecular weight glycoproteins from an antarctic fish [J]. Biochemical And Biophysical Research Communications,1972,46:87-92.
    [62]RAYMOND J A, DEVRIES A L. Freezing behavior of fish blood glycoproteins with antifreeze properties [J]. Cryobiology,1972,9:541-547.
    [63]VUTYAVANICH T, PIROMLERTAMORN W, NUNTA S. Rapid freezing versus slow programmable freezing of human spermatozoa [J]. Fertility And Sterility,2010,93:1921-1928.
    [64]MAZUR P. Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing [J]. Journal of General Physiology,1963,47:347-369.
    [65]黄萍,刘伟信,赵成元,et al.不同冷冻保护剂和冷冻方法对小鼠胚胎发育的影响[J].实用医院临床杂志,2007,36-38.
    [66]CHI H-J, KOO J-J, KIM M-Y, et al. Cryopreservation of human embryos using ethylene glycol in controlled slow freezing [J]. Human Reproduction,2002,17:2146-2151.
    [67]EMILIANI S, VAN DEN BERGH M, VANNIN A-S, et al. Comparison of ethylene glycol, 1,2-propanediol and glycerol for cryopreservation of slow-cooled mouse zygotes,4-cell embryos and blastocysts [J]. Human Reproduction,2000,15:905-910.
    [68]韩威,李碧春,朱云芬,et al.鸡胚19期原始生殖细胞慢速冷冻和玻璃化冷冻保存的研究[J].中国畜牧兽医,2007,55-59.
    [69]ACOSTA-SALM N H, JERRY D R, SOUTHGATE P C. Effects of cryoprotectant agents and freezing protocol on motility of black-lip pearl oyster (Pinctada margaritifera L.) spermatozoa [J]. Cryobiology,2007,54:13-18.
    [70]TASDEMIR U, B Y KLEBLEBICI S, TUNCER P B, et al. Effects of various cryoprotectants on bull sperm quality, DNA integrity and oxidative stress parameters [J]. Cryobiology,2013, 66:38-42.
    [71]STOREY K B, BAUST J G, BUESCHER P. Determination of water "bound" by soluble subcellular components during low-temperature acclimation in the gall fly larva, Eurosta solidagensis [J]. Cryobiology,1981,18:315-321.
    [72]LI S, DICKINSON L C, CHINACHOTI P. Mobility of "Unfreezable" and "Freezable" Water in Waxy Corn Starch by 2H and 1H NMR [J]. Journal of Agricultural and Food Chemistry, 1998,46:62-71.
    [73]FRANKS F. Solute—Water interactions:Do polyhydroxy compounds alter the properties of water? [J]. Cryobiology,1983,20:335-345.
    [74]FAHY G M. Prevention of toxicity from high concentrations of cryoprotective agents [M]. Springer Netherlands,1982.
    [75]FAHY G M. Vitrification:a new approach to organ cryopreservation [J]. Prog Clin Biol Res,1986,224:305-335.
    [76]FAHY G M, TAKAHASHI T, MERYMAN H T, Practical Aspects of ICE-free Cryopreservation, in:C. T. Sibinga, P. C. Das, T. J. Greenwalt (Eds.) Future Developments in Blood Banking, Springer US,1986, pp.111-122.
    [77]MAZUR P, LEIBO S P, CHU E H. A two-factor hypothesis of freezing injury. Evidence from Chinese hamster tissue-culture cells [J]. Experimental Cell Research,1972,71: 345-355.
    [78]LOVELOCK J E. The haemolysis of human red blood-cells by freezing and thawing [J]. Biochimica et Biophysica Acta,1953,10:414-426.
    [79]ZADE-OPPEN A M M. Posthypertonic Hemolysis in Sodium Chloride Systems [J]. Acta Physiologica Scandinavica,1968,73:341-364.
    [80]FARRANT J, WOOLGAR A E. Human red cells under hypertonic conditions; A model system for investigating freezing damage:1. Sodium chloride [J]. Cryobiology,1972,9:9-15.
    [81]MERYMAN H T. Freezing Injury and its Prevention in Living Cells [J]. Annual Review of Biophysics and Bioengineering,1974,3:341-363.
    [82]ISHIGURO H, RUBINSKY B. Mechanical Interactions between Ice Crystals and Red Blood Cells during Directional Solidification [J]. Cryobiology,1994,31:483-500.
    [83]ACKER J P, ELLIOTT J A W, MCGANN L E. Intercellular Ice Propagation:Experimental Evidence for Ice Growth through Membrane Pores [J]. Biophysical Journal,2001,81: 1389-1397.
    [84]FUJIKAWA S. Freeze-fracture and etching studies on membrane damage on human erythrocytes caused by formation of intracellular ice [J]. Cryobiology,1980,17:351-362.
    [85]ACKER J P, MCGANN L E. Membrane damage occurs during the formation of intracellular ice [J]. Cryo-Letters,2001,22:241-254.
    [86]SANTARIUS K A, GIERSCH C. Cryopreservation of spinach chloroplast membranes by low-molecular-weight carbohydrates:Ⅱ. Discrimination between colligative and noncolligative protection [J]. Cryobiology,1983,20:90-99.
    [87]ANCHORDOGUY T J, RUDOLPH A S, CARPENTER J F, et al. Modes of interaction of cryoprotectants with membrane phospholipids during freezing [J]. Cryobiology,1987,24: 324-331.
    [88]SCHEIWE M W, K RBER C. Basic investigations on the freezing of human lymphocytes [J]. Cryobiology,1983,20:257-273.
    [89]LI D-X, LIU B-L, LIU Y-S, et al. Predict the glass transition temperature of glycerol-water binary cryoprotectant by molecular dynamic simulation [J]. Cryobiology, 2008,56:114-119.
    [90]WANG B, LI D-X, LIU B-L, et al. A novel method to predict the glass transition of 70% glycerol aqueous solution [J]. Molecular Simulation,2010,36:1025-1030.
    [91]STILLINGER F H, RAHMAN A. Molecular Dynamics Study of Temperature Effects on Water Structure and Kinetics [J]. The Journal of Chemical Physics,1972,57:1281-1292.
    [92]JORGENSEN W L, CHANDRASEKHAR J, MADURA J D, et al. Comparison of simple potential functions for simulating liquid water [J]. The Journal of Chemical Physics,1983,79: 926-935.
    [93]LUZAR A, CHANDLER D. Structure and hydrogen bond dynamics of water--dimethyl sulfoxide mixtures by computer simulations [J]. The Journal of Chemical Physics,1993,98: 8160-8173.
    [94]PADR J A, SAIZ L, GU RDIA E. Hydrogen bonding in liquid alcohols:a computer simulation study [J]. Journal of Molecular Structure,1997,416:243-248.
    [95]CONRAD P B, DE PABLO J J. Computer Simulation of the Cryoprotectant Disaccharide α,α-Trehalose in Aqueous Solution [J]. The Journal of Physical Chemistry A,1999,103: 4049-4055.
    [96]VISHNYAKOV A, LYUBARTSEV A P, LAAKSONEN A. Molecular Dynamics Simulations of Dimethyl Sulfoxide and Dimethyl Sulfoxide-Water Mixture [J]. The Journal of Physical Chemistry A,2001,105:1702-1710.
    [97]LEI Y, LI H, HAN S. An all-atom simulation study on intermolecular interaction of DMSO-water system [J]. Chemical Physics Letters,2003,380:542-548.
    [98]CHOI Y, CHO K W, JEONG K, et al. Molecular dynamics simulations of trehalose as a 'dynamic reducer' for solvent water molecules in the hydration shell [J]. Carbohydrate Research,2006,341:1020-1028.
    [99]TROITZSCH R Z, VASS H, HOSSACK W J, et al. Molecular Mechanisms of Cryoprotection in Aqueous Proline:Light Scattering and Molecular Dynamics Simulations [J]. The Journal of Physical Chemistry B,2008,112:4290-4297.
    [100]CHEN C, LI W Z, SONG Y C, et al. A molecular dynamics study of cryoprotective agent-Water-sodium chloride ternary solutions [J]. Journal of Molecular Structure-THEOCHEM,2009,916:37-46.
    [101]WENG L, CHEN C, ZUO J, et al. Molecular Dynamics Study of Effects of Temperature and Concentration on Hydrogen-Bond Abilities of Ethylene Glycol and Glycerol:Implications for Cryopreservation [J]. The Journal of Physical Chemistry A,2011,115:4729-4737.
    [102]ZHANG X, ZHANG Q, ZHAO D-X. Hydrogen Bond Lifetime Definitions and the Relaxation Mechanism in Water Solutions [J]. Acta Physico-chimica Sinica,2011,27:2547-2552.
    [103]CHEN C, LI W Z, SONG Y C, et al. Formation of water and glucose clusters by hydrogen bonds in glucose aqueous solutions [J]. Computational and Theoretical Chemistry,2012,984: 85-92.
    [104]GHATTYVENKATAKRISHNA P K, UBERBACHER E C. Effect of Temperature and Glycerol on The Hydrogen-Bond Dynamics of Water [J]. Cryoletters,2013,34:166-173.
    [105]EGBERTS E, MARRINK S-J, BERENDSEN H J C. Molecular dynamics simulation of a phospholipid membrane [J]. European Biophysics Journal,1994,22:423-436.
    [106]FELLER S E, ZHANG Y, PASTOR R W. Computer simulation of liquid/liquid interfaces. II. Surface tension-area dependence of a bilayer and monolayer [J]. The Journal of Chemical Physics,1995,103:10267-10276.
    [107]TAKAOKAY, MIYAGAWA H, KITAMURA K. Molecular dynamics simulation of phospholipid bilayer membrane [J]. Fluid Phase Equilibria,1998,144:387-393.
    [108]SHINODA W, OKAZAKI S. A Voronoi analysis of lipid area fluctuation in a bilayer [J]. The Journal of Chemical Physics,1998,109:1517-1521.
    [109]SMONDYREV A M, BERKOWITZ M L. Molecular Dynamics Simulation of DPPC Bilayer in DMSO [J]. Biophysical Journal,1999,76:2472-2478.
    [110]SMONDYREV A M, BERKOWITZ M L. United atom force field for phospholipid membranes: Constant pressure molecular dynamics simulation of dipalmitoylphosphatidicholine/water system [J]. Journal of Computational Chemistry,1999,20:531-545.
    [111]LEEKUMJORN S, SUM A K. Molecular study of the diffusional process of DMSO in double lipid bilayers [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2006,1758: 1751-1758.
    [112]HOFS C, LINDAHL E, EDHOLM 0. Molecular Dynamics Simulations of Phospholipid Bilayers with Cholesterol [J]. Biophysical Journal,2003,84:2192-2206.
    [113]ZHU F, TAJKHORSHID E, SCHULTEN K. Molecular dynamics study of aquaporin-1 water channel in a lipid bilayer [J]. FEBS Letters,2001,504:212-218.
    [114]ROUX B, SCHULTEN K. Computational Studies of Membrane Channels [J]. Structure, 2004,12:1343-1351.
    [115]GULLINGSRUD J, BABAKHANI A, MCCAMMON J A. Computational investigation of pressure profiles in lipid bilayers with embedded proteins [J]. Molecular Simulation,2006, 32:831-838.
    [116]WANG Y, COHEN J, BORON W F, et al. Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics [J]. Journal of Structural Biology, 2007,157:534-544.
    [117]MAMONOV A B, COALSON R D, ZEIDEL M L, et al. Water and Deuterium Oxide Permeability through Aquaporin 1:MD Predictions and Experimental Verification [J]. The Journal of General Physiology,2007,130:111-116.
    [118]KANDT C, ASH W L, PETER TIELEMAN D. Setting up and running molecular dynamics simulations of membrane proteins [J]. Methods,2007,41:475-488.
    [119]LINDAHL E, SANSOM M S P. Membrane proteins:molecular dynamics simulations [J]. Current Opinion in Structural Biology,2008,18:425-431.
    [120]XIE J-Y, DING G-H. Studies on sensitivity to tension and gating pathway of MscL by molecular dynamic simulation [J]. Acta Mechanica Sinica,2013,29:256-266.
    [121]PANDIT S A, BOSTICK D, BERKOWITZ M L. Molecular Dynamics Simulation of a Dipalmitoylphosphatidylcholine Bilayer with NaCl [J]. Biophysical Journal,2003,84: 3743-3750.
    [122]LOISON C, MARESCHAL M, SCHMID F. Pores in bilayer membranes of amphiphilic molecules:Coarse-grained molecular dynamics simulations compared with simple mesoscopic models [J]. The Journal of Chemical Physics,2004,121:1890-1900.
    [123]LEEKUMJORN S, SUM A K. Molecular investigation of the interactions of trehalose with lipid bilayers of DPPC, DPPE and their mixture [J]. Molecular Simulation,2006,32: 219-230.
    [124]LEEKUMJORN S, SUM A K. Molecular Simulation Study of Structural and Dynamic Properties of Mixed DPPC/DPPE Bilayers [J]. Biophysical Journal,2006,90:3951-3965.
    [125]KYRYCHENKO A, DYUBKO T S. Molecular dynamics simulations of microstructure and mixing dynamics of cryoprotective solvents in water and in the presence of a lipid membrane [J]. Biophysical Chemistry,2008,136:23-31.
    [126]KOSHIYAMA K, WADA S. Molecular dynamics simulations of pore formation dynamics during the rupture process of a phospholipid bilayer caused by high-speed equibiaxial stretching [J]. Journal of Biomechanics,2011,44:2053-2058.
    [127]WEST A, MA K, CHUNG J L, et al. Simulation Studies of Structure and Edge Tension of Lipid Bilayer Edges:Effects of Tail Structure and Force-Field [J]. The Journal of Physical Chemistry A,2013,
    [128]LYUBARTSEV A P, RABINOVICH A L. Recent development in computer simulations of lipid bilayers [J]. Soft Matter,2011,7:25-39.
    [129]HANSEN F Y, PETERS G H, TAUB H, et al. Diffusion of water and selected atoms in DMPC lipid bilayer membranes [J]. The Journal of Chemical Physics,2012,137: 204910-204915.
    [130]HUGHES Z E, MARK A E, MANCERA R L. Molecular Dynamics Simulations of the Interactions of DMSO with DPPC and DOPC Phospholipid Membranes [J]. The Journal of Physical Chemistry B,2012,116:11911-11923.
    [131]J MBECK J P M, LYUBARTSEV A P. An Extension and Further Validation of an All-Atomistic Force Field for Biological Membranes [J]. Journal of Chemical Theory and Computation,2012,8:2938-2948.
    [132]PIGGOT T J, PI EIRO A, KHALID S. Molecular Dynamics Simulations of Phosphatidylcholine Membranes:A Comparative Force Field Study [J]. Journal of Chemical Theory and Computation,2012,8:4593-4609.
    [133]SODT A J, PASTOR R W. The tension of a curved surface from simulation [J]. The Journal of Chemical Physics,2012,137:234101-234112.
    [134]REDDY A S, WARSHAVIAK D T, CHACHISVILIS M. Effect of membrane tension on the physical properties of DOPC lipid bilayer membrane [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2012,1818:2271-2281.
    [135]陈聪.胞内冰生长的理论分析及保护剂溶液氢键特性的MD模拟[D].大连:大连理工大学,2009.
    [136]翁林岽.细胞低温保存跨膜传质机理及保护剂溶液冻结特性研究[D].大连:大连理工大学,2012.
    [137]LAPLACE P S. Philosophical Essay on Probabilities [M]. New York,1951.
    [138]METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N, et al. Equation of State Calculations by Fast Computing Machines [J]. The Journal of Chemical Physics,1953,21: 1087-1092.
    [139]ALDER B J, WAINWRIGHT T E. Studies in Molecular Dynamics. I. General Method [J]. The Journal of Chemical Physics,1959,31:459-466.
    [140]KIRKWOOD J G. On the Theory of Dielectric Polarization [J]. The Journal of Chemical Physics,1936,4:592-601.
    [141]GIBSON J B, GOLAND A N, MILGRAM M, et al. Dynamics of Radiation Damage [J]. Physical Review,1960,120:1229-1253.
    [142]RAHMAN A. Correlations in the Motion of Atoms in Liquid Argon [J]. Physical Review, 1964,136:A405-A411.
    [143]VERLET L. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules [J]. Physical Review,1967,159:98-103.
    [144]VAN GUNSTEREN W F, BERENDSEN H J C. Algorithms for macromolecular dynamics and constraint dynamics [J]. Molecular Physics,1977,34:1311-1327.
    [145]HANSEN J-P, VERLET L. Phase Transitions of the Lennard-Jones System [J]. Physical Review,1969,184:151-161.
    [146]BARKER J A, HENDERSON D. What is "liquid"? Understanding the states of matter [J]. Reviews of Modern Physics,1976,48:587-671.
    [147]RAHMAN A, STILLINGER F H. Molecular Dynamics Study of Liquid Water [J]. The Journal of Chemical Physics,1971,55:3336-3359.
    [148]STILLINGER F H, RAHMAN A. Improved simulation of liquid water by molecular dynamics [J]. The Journal of Chemical Physics,1974,60:1545-1557.
    [149]MCCAMMON J A, GELIN B R, KARPLUS M. Dynamics of folded proteins [J]. Nature, 1977,267:585-590.
    [150]ANDERSEN H C. Molecular dynamics simulations at constant pressure and/or temperature [J]. The Journal of Chemical Physics,1980,72:2384-2393.
    [151]PARRINELLO M, RAHMAN A. Crystal Structure and Pair Potentials:A Molecular-Dynamics Study [J]. Physical Review Letters,1980,45:1196-1199.
    [152]GILLAN M J, DIXON M. The calculation of thermal conductivities by perturbed molecular dynamics simulation [J]. Journal of Physics C:Solid State Physics,1983,16: 869.
    [153]NOS S. A molecular dynamics method for simulations in the canonical ensemble [J]. Molecular Physics,1984,52:255-268.
    [154]BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, et al. Molecular dynamics with coupling to an external bath [J]. The Journal of Chemical Physics,1984,81:3684-3690.
    [155]HOOVER W G. Canonical dynamics:Equilibrium phase-space distributions [J]. Physical Review A,1985,31:1695-1697.
    [156]CAR R, PARRINELLO M. Unified Approach for Molecular Dynamics and Density-Functional Theory [J]. Physical Review Letters,1985,55:2471-2474.
    [157]B GUIN L, VERNIER A, CHICIREANU R, et al. Direct Measurement of the van der Waals Interaction between Two Rydberg Atoms [J]. Physical Review Letters,2013,110:263201.
    [158]WOODCOCK L V. Isothermal molecular dynamics calculations for liquid salts [J]. Chemical Physics Letters,1971,10:257-261.
    [159]PARRINELLO M, RAHMAN A. Polymorphic transitions in single crystals:A new molecular dynamics method [J]. Journal of Applied Physics,1981,52:7182-7190.
    [160]HOCKNEY R W. The potential calculation and some applications [J]. Methods Comput Phys,1970,9:75.
    [161]TAMAR S. Molecular Modeling and Simulation:An Interdisciplinary Guide [M]. New York:Springer New York,2010.
    [162]BEEMAN D. Some multistep methods for use in molecular dynamics calculations [J]. Journal of Computational Physics,1976,20:130-139.
    [163]C. WILLIAM G. Numerical Initial Value Problems in Ordinary Differential Equations [M]. New Jersey:Pretice-Hall,1971.
    [164]PHILLIPS J C, BRAUN R, WANG W, et al. Scalable molecular dynamics with NAMD [J]. Journal of Computational Chemistry,2005,26:1781-1802.
    [165]MAZUR P. Freezing of living cells:mechanisms and implications [J]. American Journal of Physiology,1984,247:C125-C142.
    [166]BAUDOT A, CACELA C, DUARTE M L, et al. Thermal study of simple amino-alcohol solutions [J]. Cryobiology,2002,44:150-160.
    [167]HUB LEK Z. Protectants used in the cryopreservation of microorganisms [J]. Cryobiology,2003,46:205-229.
    [168]FAHY G M, LEVY D I, ALI S E. Some emerging principles underlying the physical properties, biological actions, and utility of vitrification solutions [J]. Cryobiology, 1987,24:196-213.
    [169]MACFARLANE D R, FORSYTH M. Recent insights on the role of cryoprotective agents in vitrification [J]. Cryobiology,1990,27:345-358.
    [170]RIOS J L J, RABIN Y. Thermal expansion of blood vessels in low cryogenic temperatures, Part II:Vitrification with VS55, DP6, and 7.05 M DMSO [J]. Cryobiology, 2006,52:284-294.
    [171]LI J, KOLESNIKOV A I. Neutron spectroscopic investigation of dynamics of water ice [J]. Journal of Molecular Liquids,2002,100:1-39.
    [172]MACKERELL A D, BASHFORD D, BELLOTT, et al. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins [J]. The Journal of Physical Chemistry B,1998,102:3586-3616.
    [173]REILING S, SCHLENKRICH M, BRICKMANN J. Force field parameters for carbohydrates [J]. Journal of Computational Chemistry,1996,17:450-468.
    [174]MARTYNA G J, TOBIAS D J, KLEIN M L. Constant pressure molecular dynamics algorithms [J]. The Journal of Chemical Physics,1994,101:4177-4189.
    [175]FELLER S E, ZHANG Y, PASTOR R W, et al. Constant pressure molecular dynamics simulation:The Langevin piston method [J]. The Journal of Chemical Physics,1995,103: 4613-4621.
    [176]RYCKAERT J-P, CICCOTTI G, BERENDSEN H J C. Numerical integration of the cartesian equations of motion of a system with constraints:molecular dynamics of n-alkanes [J]. Journal of Computational Physics,1977,23:327-341.
    [177]EISENBERG D, KAUZMANN W. The structure and properties of water [M]. New York: Oxford University Press,1969.
    [178]BERNAL J D, FOWLER R H. A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions [J]. The Journal of Chemical Physics,1933,1: 515-548.
    [179]SARKISOV G N, DASHEVSKY V G, MALENKOV G G. The thermodynamics and structure of liquid water [J]. Molecular Physics,1974,27:1249-1269.
    [180]KALINICHEV A G, GORBATY Y E, OKHULKOV A V. Structure and hydrogen bonding of liquid water at high hydrostatic pressures:Monte Carlo NPT-ensemble simulations up to 10 kbar [J]. Journal of Molecular Liquids,1999,82:57-72.
    [181]MENG E C, KOLLMAN P A. Molecular Dynamics Studies of the Properties of Water around Simple Organic Solutes [J]. The Journal of Physical Chemistry,1996,100: 11460-11470.
    [182]MALENKOV G G, TYTIK D L, ZHELIGOVSKAYA E A. Hydrogen bonds in computer-simulated water [J]. Journal of Molecular Liquids,1999,82:27-38.
    [183]CHEN C, LI W Z, SONG Y C, et al. Hydrogen Bonding Analysis of Hydroxyl Groups in Glucose Aqueous Solutions by a Molecular Dynamics Simulation Study [J]. Bulletin of the Korean Chemical Society,2012,33:9.
    [184]陈聪,李维仲,宋永臣,et al.葡萄糖水溶液氢键结构和动力分析[J].物理化学学报,2011,27:1372-1378.
    [185]CHEN C, LI W, SONG Y, et al. Molecular dynamics simulation studies of cryoprotective agent solutions:the relation between melting temperature and the ratio of hydrogen bonding acceptor to donor number [J]. Molecular Physics,2009,107:673-684.
    [186]JEDLOVSZKY P, TURI L. Role of the C-H...O Hydrogen Bonds in Liquids:A Monte Carlo Simulation Study of Liquid Formic Acid Using a Newly Developed Pair-Potential [J]. The Journal of Physical Chemistry B,1997,101:5429-5436.
    [187]MARQUES M P M, AMORIM DA COSTA A M, RIBEIRO-CLARO P J A. Evidence of C-H...O Hydrogen Bonds in Liquid 4-Ethoxybenzaldehyde by NMR and Vibrational Spectroscopies [J]. The Journal of Physical Chemistry A,2001,105:5292-5297.
    [188]ZHANG R, LI H, LEI Y, et al. All-Atom Molecular Dynamic Simulations and Relative NMR Spectra Study of Weak C-H···O Contacts in Amide-Water Systems [J]. The Journal of Physical Chemistry B,2005,109:7482-7487.
    [189]DOUGAN L, BATES S P, HARGREAVES R, et al. Methanol-water solutions:A bi-percolating liquid mixture [J]. The Journal of Chemical Physics,2004,121:6456-6462.
    [190]TOWEY J J, SOPER A K, DOUGAN L. Preference for Isolated Water Molecules in a Concentrated Glycerol-Water Mixture [J]. The Journal of Physical Chemistry B,2011,115: 7799-7807.
    [191]GU RDIA E, MART J, GARC A-TARR S L, et al. A molecular dynamics simulation study of hydrogen bonding in aqueous ionic solutions [J]. Journal of Molecular Liquids,2005, 117:63-67.
    [192]WASHBURN E W. International Critical Tables of Numerical Data, Physics, Chemistry and Technology (1st Electronic Edition) [M]. Knovel,2003.
    [193]IULIAN O, CIOC RLAN O. Viscosity and density of systems with water,1,4-dioxane and ethylene glycol between (293.15 and 313.15) K. I. Binary systems [J]. Revue Roumaine De Chimie,2010,55:45-53.
    [194]WOWK B, DARWIN M, HARRIS S B, et al. Effects of Solute Methoxylation on Glass-Forming Ability and Stability of Vitrification Solutions [J]. Cryobiology,1999,39: 215-227.
    [195]GU RDIA E, MART J, PADR J A, et al. Dynamics in hydrogen bonded liquids:water and alcohols [J]. Journal of Molecular Liquids,2002,96-97:3-17.
    [196]周国燕,胡桐记,高才,et al.醇类低温保护剂对NaCl水溶液共晶的影响[J].物理化学学报,2006,22:638-643.
    [197]NOSKOV S Y, LAMOUREUX G, ROUX B. Molecular Dynamics Study of Hydration in Ethanol-Water Mixtures Using a Polarizable Force Field [J]. The Journal of Physical Chemistry B,2005,109:6705-6713.
    [198]WENG L, LI W, ZUO J. Two applications of the thermogram of the alcohol/water binary system with compositions of cryobiological interests [J]. Cryobiology,2011,62: 210-217.
    [199]SUN W, CHEN Z, HUANG S-Y. Molecular dynamics simulation of liquid methanol under the influence of an external electric field [J]. Fluid Phase Equilibria,2005,238:20-25.
    [200]OHMINE I, TANAKA H. Fluctuation, relaxations, and hydration in liquid water. Hydrogen-bond rearrangement dynamics [J]. Chemical Reviews,1993,93:2545-2566.
    [201]ZICHI D A, ROSSKY P J. Solvent molecular dynamics in regions of hydrophobic hydration [J]. The Journal of Chemical Physics,1986,84:2814-2822.
    [202]ELOLA M D, LADANYI B M. Computational study of structural and dynamical properties of formamide-water mixtures [J]. The Journal of Chemical Physics,2006,125: 184506.
    [203]MURARKA R K, BAGCHI B. Diffusion and viscosity in a supercooled polydisperse system [J]. Physical Review E,2003,67:051504.
    [204]KOWERT B A, JONES J B, ZAHM J A, et al. Size-dependent diffusion in cycloalkanes [J]. Molecular Physics,2004,102:1489-1497.
    [205]KOWERT B A, TURNER II R M, CALDWELL C V C. Diffusion of 1-alkenes and cyclohexene in alkane solvents [J]. Chemical Physics,2008,344:114-120.
    [206]BHATTACHARYYA S, BAGCHI B. Anomalous diffusion of small particles in dense liquids [J]. The Journal of Chemical Physics,1997,106:1757-1763.
    [207]MILLS R. Self-diffusion in normal and heavy water in the range 1-45. deg [J]. The Journal of Physical Chemistry,1973,77:685-688.
    [208]PRICE W S, IDE H, ARATA Y. Self-Diffusion of Supercooled Water to 238 K Using PGSE NMR Diffusion Measurements [J]. The Journal of Physical Chemistry A,1999,103: 448-450.
    [209]MARK P, NILSSON L. Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K [J]. The Journal of Physical Chemistry A,2001,105:9954-9960.
    [210]SU J T, DUNCAN P B, MOMAYA A, et al. The effect of hydrogen bonding on the diffusion of water in n-alkanes and n-alcohols measured with a novel single microdroplet method [J]. The Journal of Chemical Physics,2010,132:044506-044508.
    [211]陈聪,李维仲,宋永臣,et al.甘油-水-氯化钠三元溶液中甘油浓度对甘油自扩散系数的影响[J].化学学报,2012,70:1043-1046.
    [212]ZHANG N, LI W, CHEN C, et al. Molecular dynamics study on water self-diffusion in aqueous mixtures of methanol, ethylene glycol and glycerol:investigations from the point of view of hydrogen bonding [J]. Molecular Physics,2013,111:939-949.
    [213]ALLEN M P, TILDESLEY D J. Computer Simulation of Liquids [M]. Oxford:Oxford University Press,1989.
    [214]CHANDRA A, ICHIYE T. Dynamical properties of the soft sticky dipole model of water:Molecular dynamics simulations [J]. The Journal of Chemical Physics,1999,111: 2701-2709.
    [215]SMITH P E, PETTITT B M. Efficient Ewald electrostatic calculations for large systems [J]. Computer Physics Communications,1995,91:339-344.
    [216]MAKAROV V A, FEIG M, ANDREWS B K, et al. Diffusion of Solvent around Biomolecular Solutes:A Molecular Dynamics Simulation Study [J]. Biophysical Journal,1998,75:150-158.
    [217]DERLACKI Z J, EASTEAL A J, EDGE A V J, et al. Diffusion coefficients of methanol and water and the mutual diffusion coefficient in methanol-water solutions at 278 and 298 K [J]. The Journal of Physical Chemistry,1985,89:5318-5322.
    [218]AMBROSONE L, D' ERRICO G, SARTORIO R, et al. Dynamic properties of aqueous solutions of ethylene glycol oligomers as measured by the pulsed gradient spin-echo NMR technique at 25[deg]C [J]. Journal of the Chemical Society, Faraday Transactions,1997, 93:3961-3966.
    [219]HE X, FOWLER A, TONER M. Water activity and mobility in solutions of glycerol and small molecular weight sugars:Implication for cryo- and lyopreservation [J]. Journal of Applied Physics,2006,100:074702-074711.
    [220]DAI J, WANG L, SUN Y, et al. Prediction of thermodynamic, transport and vapor-liquid equilibrium properties of binary mixtures of ethylene glycol and water [J]. Fluid Phase Equilibria,2011,301:137-144.
    [221]P LINK S G, HAWLICKA E, HEINZINGER K. Molecular dynamics simulations of water-methanol mixtures [J]. Chemical Physics,1991,158:65-76.
    [222]DASHNAU J L, NUCCI N V, SHARP K A, et al. Hydrogen Bonding and the Cryoprotective Properties of Glycerol/Water Mixtures [J]. The Journal of Physical Chemistry B,2006,110: 13670-13677.
    [223]TOMINAGA T, TENMA S, WATANABE H. Diffusion of cyclohexane and cyclopentane derivatives in some polar and non-polar solvents. Effect of intermolecular and intramolecular hydrogen-bonding interactions [J]. Journal of the Chemical Society, Faraday Transactions,1996,92:1863-1867.
    [224]BAKO I, MEGYES T, BALINT S, et al. Hydrogen bonded network properties in liquid formamide [J]. The Journal of Chemical Physics,2010,132:014506.
    [225]MOUNTAIN R D. Voids and clusters in expanded water [J]. The Journal of Chemical Physics,1999,110:2109-2115.
    [226]OLEINIKOVA A, BROVCHENKO I, GEIGER A, et al. Percolation of water in aqueous solution and liquid--liquid immiscibility [J]. The Journal of Chemical Physics,2002,117: 3296-3304.
    [227]DRIESNER T. The Effect of Pressure on Deuterium-Hydrogen Fractionation in High-Temperature Water [J]. Science,1997,277:791-794.
    [228]FUKUDA M. Clustering of water in polyethylene:A molecular-dynamics simulation [J]. The Journal of Chemical Physics,1998,109:6476-6485.
    [229]FAHY G M, WOWK B, WU J, et al. Improved vitrification solutions based on the predictability of vitrification solution toxicity [J]. Cryobiology,2004,48:22-35.
    [230]SCHICHMAN S A, AMEY R L. Viscosity and local liquid structure in dimethyl sulfoxide-water mixtures [J]. The Journal of Physical Chemistry,1971,75:98-102.
    [231]CATAL N J, D AZ C, GARC A-BLANCO F. Characterization of Binary Solvent Mixtures of DMSO with Water and Other Cosolvents [J]. The Journal of Organic Chemistry,2001,66: 5846-5852.
    [232]ROY S, BANERJEE S, BIYANI N, et al. Theoretical and Computational Analysis of Static and Dynamic Anomalies in Water-DMSO Binary Mixture at Low DMSO Concentrations [J]. The Journal of Physical Chemistry B,2010,115:685-692.
    [233]BANERJEE S, ROY S, BAGCHI B. Enhanced Pair Hydrophobicity in the Water-Dimethylsulfoxide (DMSO) Binary Mixture at Low DMSO Concentrations [J]. The Journal of Physical Chemistry B,2010,114:12875-12882.
    [234]SATO T, CHIBA A, NOZAKI R. Hydrophobic hydration and molecular association in methanol--water mixtures studied by microwave dielectric analysis [J]. The Journal of Chemical Physics,2000,112:2924-2932.
    [235]SATO T, CHIBA A, NOZAKI R. Dynamical aspects of mixing schemes in ethanol--water mixtures in terms of the excess partial molar activation free energy, enthalpy, and entropy of the dielectric relaxation process [J]. The Journal of Chemical Physics,1999,110: 2508-2521.
    [236]SOPER A K, LUZAR A. Orientation of Water Molecules around Small Polar and Nonpolar Groups in Solution:A Neutron Diffraction and Computer Simulation Study [J]. The Journal of Physical Chemistry,1996,100:1357-1367.
    [237]VAISMAN I I, BERKOWITZ M L. Local structural order and molecular associations in water-DMSO mixtures. Molecular dynamics study [J]. Journal of The American Chemical Society,1992,114:7889-7896.
    [238]BORIN I A, SKAF M S. Molecular association between water and dimethyl sulfoxide in solution:A molecular dynamics simulation study [J]. The Journal of Chemical Physics, 1999,110:6412-6420.
    [239]MCLAIN S E, LUZAR A. Investigations on the structure of dimethyl sulfoxide and acetone in aqueous solution [J]. The Journal of Chemical Physics,2007,127:174515.
    [240]SOPER A K. The excluded volume effect in confined fluids and liquid mixtures [J]. Journal of Physics:Condensed Matter,1997,9:2399.
    [241]ZHANG Q, ZHANG X, ZHAO D-X. Polarizable force field for water-dimethyl sulfoxide systems:II properties of mixtures by molecular dynamics simulations [J]. Journal of Molecular Liquids,2009,145:67-81.
    [242]WONG D B, SOKOLOWSKY K P, EL-BARGHOUTHI M I, et al. Water Dynamics in Water/DMSO Binary Mixtures [J]. The Journal of Physical Chemistry B,2012,116:5479-5490.
    [243]SWIATLA-WOJCIK D. Evaluation of the criteria of hydrogen bonding in highly associated liquids [J]. Chemical Physics,2007,342:260-266.
    [244]LOOF H D, NILSSON L, RIGLER R. Molecular Dynamics Simulation of Galanin in Aqueous and Nonaqueous Solution [J]. J. Am. Chem. Soc.,1992,114:4028-4035.
    [245]LUZAR A, CHANDLER D. Effect of Environment on Hydrogen Bond Dynamics in Liquid Water [J]. Physical Review Letters,1996,76:928.
    [246]CHEN C, LI W Z, SONG Y C, et al. Hydrogen bonding analysis of glycerol aqueous solutions:A molecular dynamics simulation study [J]. Journal of Molecular Liquids,2009, 146:23-28.
    [247]MANCERA R L, CHALARIS M, SAMIOS J. The concentration effect on the'hydrophobic' and'hydrophilic'behaviour around DMSO in dilute aqueous DMSO solutions. A computer simulation study [J]. Journal of Molecular Liquids,2004,110:147-153.
    [248]LYUBARTSEV A P, LAAKSONEN A. Concentration Effects in Aqueous NaCl Solutions. A Molecular Dynamics Simulation [J]. The Journal of Physical Chemistry,1996,100: 16410-16418.
    [249]BANERJEE S, GHOSH R, BAGCHI B. Structural Transformations, Composition Anomalies and a Dramatic Collapse of Linear Polymer Chains in Dilute Ethanol-Water Mixtures [J]. The Journal of Physical Chemistry B,2012,116:3713-3722.
    [250]JEDLOVSZKY P, BROVCHENKO I, OLEINIKOVA A. Percolation Transition in Supercritical Water:A Monte Carlo Simulation Study [J]. The Journal of Physical Chemistry B,2007,111:7603-7609.
    [251]SOPER A, LUZAR A. A neutron diffraction study of dimethyl sulphoxide-water mixtures [J]. The Journal of Chemical Physics,1992,97:1320.
    [252]PACKER K J, TOMLINSON D J. Nuclear spin relaxation and self-diffusion in the binary system, dimethylsulphoxide (DMSO)+ water [J]. Transactions of the Faraday Society, 1971,67:1302-1314.
    [253]MARTI J, PADRO J A, GUARDIA E. Molecular dynamics simulation of liquid water along the coexistence curve:Hydrogen bonds and vibrational spectra [J]. The Journal of Chemical Physics,1996,105:639-649.
    [254]GU RDIA E, LARIA D, MART J. Hydrogen Bond Structure and Dynamics in Aqueous Electrolytes at Ambient and Supercritical Conditions [J]. The Journal of Physical Chemistry B,2006,110:6332-6338.
    [255]KALINICHEV A G. Molecular Simulations of Liquid and Supercritical Water: Thermodynamics, Structure, and Hydrogen Bonding [J]. Reviews in Mineralogy and Geochemistry, 2001,42:83-129.
    [256]KALINICHEV A G, BASS J D. Hydrogen bonding in supercritical water:a Monte Carlo simulation [J]. Chemical Physics Letters,1994,231:301-307.
    [257]HAWLICKA E, SWIATLA-WOJCIK D. Molecular dynamics studies of NaCl solutions in methanol-water mixtures.:An effect of NaCl on hydrogen bonded network [J]. Chemical Physics,1998,232:361-369.
    [258]SKARMOUTSOS I, GUARDIA E, SAMIOS J. Hydrogen bond, electron donor-acceptor dimer, and residence dynamics in supercritical CO[sub2]-ethanol mixtures and the effect of hydrogen bonding on single reorientational and translational dynamics:A molecular dynamics simulation study [J]. The Journal of Chemical Physics,2010,133:014504-014513.
    [259]SKARMOUTSOS I, GUARDIA E. Effect of the local hydrogen bonding network on the reorientational and translational dynamics in supercritical water [J]. The Journal of Chemical Physics,2010,132:074502-074510.
    [260]ZHANG N, LI W, CHEN C, et al. Molecular dynamics simulation of aggregation in dimethyl sulfoxide-water binary mixture [J]. Computational and Theoretical Chemistry, 2013,1017:126-135.
    [261]STRADER M L, FELLER S E. A Flexible All-Atom Model of Dimethyl Sulfoxide for Molecular Dynamics Simulations [J]. The Journal of Physical Chemistry A,2002,106: 1074-1080.
    [262]BERENDSEN H J C, GRIGERA J R, STRAATSMA T P. The missing term in effective pair potentials [J]. The Journal of Physical Chemistry,1987,91:6269-6271.
    [263]JORGENSEN W L, MADURA J D. Temperature and size dependence for Monte Carlo simulations of TIP4P water [J]. Molecular Physics,1985,56:1381-1392.
    [264]TOWEY J J, SOPER A K, DOUGAN L. Molecular Insight Into the Hydrogen Bonding and Micro-Segregation of a Cryoprotectant Molecule [J]. The Journal of Physical Chemistry B, 2012,116:13898-13904.
    [265]CHOWDHURI S, CHANDRA A. Hydrogen bonds in aqueous electrolyte solutions: Statistics and dynamics based on both geometric and energetic criteria [J]. Physical Review E,2002,66:041203.
    [266]RAPAPORT D C. Hydrogen bonds in water—Network organization and lifetimes [J]. Molecular Physics,1983,50:1151-1162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700