PDK1在小鼠心血管发育过程中的作用和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PI3k/PDK1/Akt (phosphoinositide-3 kinase/phosphoinositide-dependent kinase 1/protein kinase B瞵酸肌醇3激酶/磷脂酰肌醇依赖性激酶1/蛋白激酶B)信号通路在心血管系统中的作用研究最早是由Walsh和他的团队开始的,他们发现Akt可以促进心肌细胞在体外培养系统中存活。随后一些研究发现,在心肌细胞中过表达Akt可以导致心脏肥厚和心力衰竭。紧接着Akt在胚胎发育过程中的作用开始受到关注。近期报道,Akt1/3双敲除的小鼠表现出心脏发育异常,这与先前Dario Alessi研究发现和PDK1敲除小鼠表现为严重心脏病表型相一致。PDK1与VEGFR(vascular endothelial growth factor receptor血管内皮生长因子受体)和Tie2受体一样是酪氨酸激酶受体(receptor tyrosine kinases,RTKs)的一个重要的下游信号分子,在发育和肿瘤发生过程中扮演了重要的角色。在过去的二十年,PI3k/PDK1信号通路在心肌肥厚和心脏保护方面的功能研究比较详细,但是PDK1在心血管发育过程中的作用仍没有阐明。本实验目的即研究PDK1在心血管发育过程中的作用及其机制。
     为此我们在小鼠的内皮细胞中特异性的敲除了PDK1,这些小鼠在胚胎期表现为多部位的出血和心包积液,大约在胚胎期11.5天死亡。组织学分析解释存在血管重构和发育的缺陷,在心脏中心内膜和肌小梁/心肌结构紊乱,由于内皮向间充质细胞转化(epithelial/endothelial-mesenchymal transdifferentiation,EMT)过程的缺陷和肉皮细胞凋亡的增加导致不能形成心内膜垫和瓣膜。体外培养房室管(atrioventricular canal,AVC)显示爬出的间充质细胞明显减少。在内皮细胞中Snail蛋白明显减少,并且在核外聚集.在体外培养的AVC细胞中加入SnailS6A突变的病毒,能够有效地挽救EMT的缺陷。另外在体外培养过程加入过表达Akt的腺病毒同样能挽救EMT的缺陷。同时敲除PDK1和PTEN(phosphatase and tensin homolog deleted on chromosome ten,人第10号染色体缺失的磷酸酶及张力蛋白同源的基因)可以使内皮细胞内单独敲除PDK1的小鼠死亡时间延后一天,并且心内膜垫的发育趋正常。
     综上所述,这些结果表明PDK1在心血管发育过程中通过Akt和Snail扮演了重要的角色。本研究在不久的将来可能可以为临床治疗提供理论支持,可以通过调节Akt信号通路治疗心血管疾病。
The role of PI3k/PDK1/Akt pathway in cardiac system was first revealed by the pioneering study performed by Walsh and colleagues which documented Akt's function to promote cardiomyocyte survival in vivo. Shortly after. several groups reported almost simultaneously. cardiac hypertrophy and failure in transgenic mice with Akt overexpression in cardiomyocytes. Afterwards. PI3k/PDK1/Akt pathway's involvement in embryonic development has been unveiled along with the generation and characterization of Akt individual knockout mice and subsequent compound Akt deletion mice. We first reported a heart developmental defect in Akt1/3 double knockout mice, which is in consistency with the earlier work performed in Dario Alessi's group showing severe cardiac phenotype in PDK (phosphoinositide-dependent kinase 1) germ-line deletion mice. One essential downstream signaling pathway of receptor tyrosine kinases (RTKs). such as vascular endothelial growth factor receptor (VEGFR) and the Tie2 receptor. is the phosphoinositide-3 kinase (PI3K)-phosphoinositide-dependent protein kinase 1 (PDK1)-Akt/protein kinase B (PKB) cascade that plays a criticalrole in development and tumorigenesis. In the past decade. the function of PI3k/PDKl pathway in heart hypertrophy and cardiac protection has been extensively investigated while PDK1's role in heart development is much less studied. The aim of present study was to show the role and mechanism of PDK 1 in cardiovascular development.
     Here, we deleted PDK1 specifically in endothelial cells in mice. These mice displayed hemorrhage and hydropericardium and died at approximately embryonic day 11.5 (El1.5). Histological analysis revealed defective vascular remodeling and development and disrupted integrity between the endothelium and trabeculae/ myocardium in the heart. The atrioventricular canal (AVC) cushion and valves failed to form, indicating a defect in epithelial-mesenchymal transition (EMT). together with increased endothelial apoptosis. Consistently, ex vivo AVC explant culture showed impeded mesenchymal outgrowth. Snail protein was reduced and was absent from the nucleus in AVC cells. Delivery of the Snail S6A mutant to the AVC explant effectively rescued EMT defects. Furthermore. adenoviral Akt delivery rescued EMT defects in AVC explant culture, and deletion of PTEN delayed embryonic lethality of PDK1 endothelial deletion mice by 1 day and rendered normal development of the AVC cushion in the PDK1-deficient heart.
     Taken together. these results have revealed an essential role of PDK1 in cardiovascular development through activation of Akt and Snail. The data presented here could be promising for therapeutic applications. In the future. it will be helpful to modulate Akt signaling to improve cardiovascular complications in human patients.
引文
[1]Blume-Jensen. P., and T. Hunter.Oncogenic kinasc signalling. Nature 2001.411:355-365.
    [2]Schlessinger,J. Cell signaling by receptor tyrosine kinases. Cell.2000.103: 211-225.
    [3]Davis, R. Signal transduction by the JNK group of MAP kinases. Cell,2000, 103:239-252.
    [4]Vanhaesebroeck B. Alessi D. The PI3K-PDK1 connection:more than just a road to PKB. Biochem J,2000.346:561-76.
    [5]Datta SR, Brunet A, Greenberg ME. Cellular survival:a play in three Akts. Genes Dev,1999.13:2905-27.
    [6]Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection:more than just a road to PKB. Biochem J,2000,346 Pt 3:561-76.
    [7]Williams, M., J. Arthur. A. Balendran.J. van der Kaay. V. Poli. P. Cohen, and D. Alessi.2000. The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells. Curr.Biol.2000,10:439-448.
    [8]Manning B. Cantley L. Rheb fills a GAP between TSC and TOR. Trends in Biochemical Sciences,2003,28:573-5.
    [9]Pullen N, Thomas G. The modular phosphorylation and activation of p70s6k. FEBS letters,1997,410:78-82.
    [10]Gingras A, Kennedy S, O'Leary M. Sonenberg N. Hay N.4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt (PKB) signaling pathway. Genes & Development.1998.12:502.
    [11]Cohen P. Frame S. The renaissance of GSK3. Nature Reviews Molecular Cell Biology,2001,2:769-76.
    [12]Sarbassov DD, Ali SM, Sengupta S. et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Molecular Cell,2006.22:159-68.
    [13]Baudry, A., Z. Yang, and B. Hemmings. PKBa is required for adipose differentiation of mouse embryonic fibroblasts. J. Cell Sci.2006.119:889-897.
    [14]Datta, S., A. Brunet, and M. Greenberg. Cellular survival:a play in three Akts. Genes Dev,1999,13:2905-2927.
    [15]Dummler, B., and B. Hemmings. Physiological roles of PKB/Akt isoforms in development and disease. Biochem. Soc. Trans.2007,35:231-235.
    [16]Dummler. B., O. Tschopp. I). Hynx.Z. Yang. S. Dirnhofer. and B. Hemmings Life with a single isoform of Akt:mice lacking Akt2 and Akt3 are viable but display impaired glucose homeostasis and growth deficiencies. Mol.Cell.Biol. 2006.26:8042-8051.
    [17]Fayard, E., L. Tintignac. A. Baudry. and B. Hemmings. Protein kinase B/Akt at a glance.1. Cell Sci.2005.118:5675-5678.
    [18]Hay. N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell.2005.8:179-183.
    [19]Hemmings. B., D. Restuccia. and N. Tonks. Targeting the kinome II. Curr. Opin. Cell Biol.2009.21:135-139.
    [20]Tschopp. O..Z. Yang. I). Brodbeck. B. Dummler. M. Hemmings-Mieszczak. T. Watanabe. T. Michaelis.J. Frahm. and B. Hemmings. Essential role of protein kinase B gamma (PKB gamma/Akt3) in postnatal brain development but not in glucose homeostasis. Development.2005.132:2943-2954.
    [21]Yang. Z.Z.,O. Tschopp. A. Baudry. B. Dummler. D. Hynx. and B. Hemmings. Physiological functions of protein kinase B/Akt. Biochem. Soc. Trans,2004. 32:350-354.
    [22]Yang. Z.Z.O. Tschopp. M. Hemmings-Mieszczak. J. Feng, D. Brodbeck. E Perentes. and B. Hemmings. Protein kinase B_/Aktl regulates placental development and fetal growth. J. Biol. Chem.2003.278:32124-32131.
    [23]Yang. Z. Z., O. Tschopp. N. Di-Poi. E. Bruder, A. Baudry, B. Dummler, W. Wahli. and B. Hemmings. Dosage-dependent effects of Akt1/protein kinase B (PKB) and Akt3/PKB on thymus, skin. and cardiovascular and nervous system development in mice. Mol. Cell. Biol.2005.25:10407-10418.
    [24]Nobukuni, T., S. Kozma. and G. Thomas. hvps34, an ancient player, enters a growing game:mTOR complex1/S6K1 signaling. Curr. Opin. Cell Biol. 2007.19:135-141.
    [25]Lang. F.. C. Bohmer. M. Palmada. G. Seebohm, N. Strutz-Seebohm. and V. Vallon. (Patho) physiological significance of the serum-and glucocorticoid-inducible kinase isoforms. Physiol. Rev.2006,86:1151.
    [26]Hauge. C., and M. Frodin. RSK and MSK in MAP kinase signalling.J. Cell Sci. 2006.119:3021.
    [27]Newton. A. Regulation of the ABC kinases by phosphorylation:protein kinase C as a paradigm. Biochem. J.2003,370:361-371.
    [28]Bayascas. J., S. Wullschleger. K. Sakamoto. J. Garcia-Martinez. C. Clacher. D. Komander. D. van Aalten. K. Boini. F. Lang, C. Lipina, I. Logie. C. Sutherland. J. Chudek. J. van Diepen. P. Voshol, J. Lucocq. and D. Alessi. Mutation of the PDK1 PH domain inhibits protein kinase B/Akt, leading to small size and insulin resistance. Mol. Cell. Biol,2008,28:3258.
    [29]Collins. B., M. Deak, J. Arthur, L. Armit. and D. Alessi. In vivo role of the PIF-binding docking site of PDK1 defined by knock-in mutation. EMBO J, 2003.22:4202-4211.
    [30]Collins. B., M. Deak. V. Murray-Tait, K. Storey, and D. Alessi. In vivo role of the phosphate groove of PDK1 defined by knockin mutation. J. Cell Sci. 2005.118:5023-5034.
    [31]Lawlor, M., A. Mora, P. Ashby, M. Williams, V. Murray-Tait, L. Malone. A. Prescott J. Lucocq, and D. Alessi. Essential role of PDK1 in regulating cell size and development in mice. EMBO J,2002,21:3728-3738.
    [32]McManus, E., B. Collins. P. Ashby, A. Prescott, V. Murray-Tait, L. Armit, J. Arthur, and D. Alessi. The in vivo role of PtdIns(3,4,5)P3 binding to PDK1 PH domain defined by knockin mutation. EMBO J,2004,23:2071-2082.
    [33]Mora, A., A. Davies. I,. Bertrand. I. Sharit. G. Budas. S. Jovanovic. V. Mouton, C. Kahn. J. Lucocq. G. Gray. A. Jovanovic. and. D. R. Alessi. Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. EMBO J,2003.22:4666-4676.
    [34]Felix Rintelen. Hugo Stocker. George Thomas, Ernst Hafen. PDK1 regulates growth through Akt and S6K in Drosophila.PNAS.2001,98(26): 15020-15025
    [35]Kaoru Ito, Hiroshi Akazawa. Masaji Tamagawa. Norio Suda. Wataru Ogawa, Masato Kasuga, Haruaki Nakaya, Issei Komuro. Circulation, 2006.114:Ⅱ-136-Ⅰ-137
    [36]Kisanuki. Y. Y., R. E. Hammer, ,I.-I. Miyazaki, S. C. Williams, J. A. Richardson. and M. Yanagisawa. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev. Biol.2001. 230:230-242.
    [1]Mora A. Komander D. van Aalten D M, et al. PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Riol.2004.15:161~170.
    [2]Manning G, Whyte D B. Martinez R, et al. The protein kinase complement of the human genome. Science,2002.298:1912-1934.
    [3]Peterson R T, Schreiber S L. Kinase phosphorylation:keeping it all in the family. Curr Biol.1999.9:R521~R524.
    [4]Alessi D R. James S R. Downes C P, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B. Curr Biol,1997,7(4):261~269.
    [5]Stokoe D. Stephens L R, Copeland T. et al. Dual role of phosphatidylinositol-3. 4,5-trisphosphateintheactivation of protein kinase B. Science.1997.277: 567~570.
    [6]Lawlor M A, Mora A, Ashby P R, et al. Essential role of PDK1 in regulating cell size and development in mice. EMBO J,2002.21:3728~3738.
    [7]Felix Rintelen. Hugo Stocker, George Thomas, Ernst Hafen. PDK1 regulates growth through Akt and S6K in Drosophila.PNAS,2001,98(26):15020-15025.
    [8]Kaoru Ito. Hiroshi Akazawa. Masaji Tamagawa, Norio Suda. Wataru Ogawa. Masato Kasuga. Haruaki Nakaya, Issei Komuro. Circulation. 2006.114:Ⅱ136-Ⅱ137.
    [9]Kisanuki. Y. Y., R. E. Hammer, J.-I. Miyazaki, S. C. Williams. J. A. Richardson. and M. Yanagisawa. Tie2-Cre transgenic mice:a new model for endothelial cell-lineage analysis in vivo. Dev. Biol,2001,230:230-242.
    [10]Adams. R., and K. Alitalo. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol,2007,8:464-478.
    [11]Coultas, L., K. Chawengsaksophak, and J. Rossant. Endothelial cells and VEGF in vascular development. Nature.2005.438:937-945.
    [12]Mora A. Komander D. van Aalten I) M. et al. PDK1. the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol.2004.15:161-170.
    [13]Yang. Z., O. Tschopp. A. Baudry. B. Dummler. D. Hynx, and B. Hemmings. Physiological functions of protein kinase B/Akt. Biochem. Soc. Trans.2004. 32:350-354.
    [14]Yang. Z., O. Tschopp. M. Hemmings-Mieszczak. J. Feng. D. Brodbeck. E Perentes, and B. Hemmings. Protein kinase B_/Aktl regulates placental development and fetal growth. J. Biol. Chem.2003.278:32124-32131.
    [15]Yang. Z. Z., O. Tschopp. N. Di-Poi. E. Bruder. A. Baudry. B. Dummler. W. Wahli, and B. Hemmings. Dosage-dependent effects of Aktl/protein kinase B (PKB) and Akt3/PKB on thymus. skin. and cardiovascular and nervous system development in mice. Mol. Cell. Biol,2005.25:10407-10418.
    [16]Nobukuni, T., S. Kozma. and G. Thomas. hvps34. an ancient player, enters a growing game:mTOR complexl/S6K1 signaling. Curr. Opin. Cell Biol.2007. 19:135-141.
    [17]Garg V. Muth AN. Ransom JF. Schluterman MK. Barnes R. King IN. Grossfeld PD, Srivastava D. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005,437:270-274.
    [18]Reamon-Buettner SM. Borlak J. TBX5 mutations in non-Holt-Oram syndrome (HOS) malformed hearts. Hum Mutat.2004,24:104.
    [19]Schott JJ. Benson DW. Basson CT. Pease W. Silberbach GM. Moak JP. Maron BJ, Seidman CE. Seidman JG. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science.1998.281:108-111.
    [20]Okubo A, Miyoshi O, Baba K, Takagi M. Tsukamoto K. Kinoshita A. Yoshiura K, Kishino T, Ohta T, Niikawa N. Matsumoto N. A novel GATA4 mutation completely segregated with atrial septal defect in a large Japanese family. J Med Genet.2004.41:e97.
    [21]Durocher D. Charron F. Warren R. Schwartz RJ, Nemer M. The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J,1997. 16:5687-5696.
    [221 Ko"nig K. Will JC. Berger F. Mu ller D, Benson DW. Familial congenital heart disease. progressive atrioventricular block and the cardiac homeobox transcription factor gene NKX2.5:identification of a novel mutation. Clin Res Cardiol, 2006,95:499-503.
    [23]Camenisch. T.. J. Schroeder, J. Bradley. S. Klewer. and J. McDonald. Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nat. Med,2002.8:850-855.
    [24]Cho H. Thorvaldsen J. Chu Q. Feng F. Birnbaum M. Aktl/PKB is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. Journal of Biological Chemistry.2001.276:38349.
    [25]Cho H, Mu J. Kim J. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBbeta). Science. 2001.292:1728.
    [26]Easton R. Cho H, Roovers K, et al. Role for Akt3/protein kinase B{gamma} in attainment of normal brain size. Molecular and Cellular Biology,2005,25:1869.
    [27]Shiojima 1. Yefremashvili M, Luo Z, et al. Akt signaling mediates postnatal heart growth in response to insulin and nutritional status. Journal of Biological Chemistry.2002,277:37670.
    [28]Wilkins B. Dai Y, Bueno O, et al. Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circulation research,2004,94:110.
    [29]Haq S, Choukroun G. Lim H, et al. Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation,2001,103:670.
    [30]Matsui T, Li L, Wu J, et al. Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. Journal of Biological Chemistry 2002,277:22896.
    [31]Condorelli G, Drusco A, Stassi G, et al. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America.2002.99:12333.
    [32]Matsui T. Tao J. del Monte F, et al. Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation.2001. 104:330.
    [33]Shiojima I, Sato K. Izumiya Y, et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. Journal of Clinical Investigation,2005.115:2108-18.
    [34]DeBosch B. Treskov I, Lupu TS. et al. Aktl is required for physiological cardiac growth. Circulation,2006.113:2097-104.
    [35]DeBosch B, Sambandam N, Weinheimer C. Courtois M, Muslin AJ. Akt2 regulates cardiac metabolism and cardiomyocyte survival. J Biol Chem.2006. 281:32841-51.
    [36]Li J. Yen C. Liaw D. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science,1997,275:1943.
    [37]Myers M, Pass I. Batty I, et al. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proceedings of the National Academy of Sciences of the United States of America,1998.95:13513.
    [38]Gu J, Tamura M, Yadama KM. Tumor suppressor PTEN in-hibits intergrin and growth factor-mediated mitogen-activated protein(MAP)kinase signaling pathways. J Cell Biol,1998,143:1375-1383.
    [39]Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phos-phatidylinositol3,4, 5-trisphosphate. J Biol Cbem,1998,273:13375-13378.
    [40]Myers MP, Stolarov JP, Eng C, et al. PTEN is a dual-specifici-typhosphatase. Proc Natl Acad Sci USA,1997,94:9052-9057.
    [41]Furnari FB, Huang HJ, Cavanee WK. The phosphoinositol phosphatase activity of PTEN m ediates a serum-sensitive G 1 growth arrest in glioma cells. Cancer Res,1998,58:5002-5008.
    [42]Cristofano A, Pesce B. Cordon-Cardo C. Pandolfi P. Pten is essential for embryonic development and tumour suppression. nature genetics,1998,19: 348-55.
    [43]Tamura M, Gu J, Matsumoto K, et al. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science,1998,280: 1614-1617.
    [44]Kalluri. R.. and E. Neilson. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest.2003.112:1776-1784.
    [45]Grille. S., A. Bellacosa. J. Upson. A. Klein-Szanto, F. Roy. S. Lee-Kwon. M. Donowitz, P. Tsichlis, and L. Larue. The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res.2003.63:2172-2178.
    [46]Zhou. B., J. Deng, W. Xia, J. Xu. Y. Li. M. Gunduz. and M. Hung. Dual regulation of Snail by GSK-3 mediated phosphorylation in control of epithelial-mesenchymal transition. Nat. Cell Biol,2004,6:931-940.
    [47]Hemmings, B., D. Restuccia. and N. Tonks. Targeting the kinome Ⅱ. Curr. Opin. Cell Biol.2009.21:135-139.
    [48]Lawlor MA. Mora A. Ashby PR. et al. Essential role of PDK1 in regulating cell size and development in mice. KMBO J.2002,21:3728-38.
    [49]Mora A. Davies AM. Bertrand L. et al. Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. EMBO J.2003.22:4666-76.
    [50]Ito K. Akazawa H. Tamagawa M. et al. PDK1 coordinates survival pathways and beta-adrenergic response in the heart. Proc Natl Acad Sci U S A,2009.106:8689-94.
    [1]Basson CT. Bachinsky DR. Lin RC. Levi T, Elkins JA. Soults J, Grayzel D. Kroumpouzou E. Traill TA. Leblanc-Straceski J, Renault B. Kucherlapati R. Seidman JG. Seidman CE (1997) Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 15:30-35.
    [2]Langford K. Sharland G. Simpson J. Relative risk of abnormal karyotype in fetuses found to have an atrioventricular septal defect (AVSD) on fetal echocardiography. Prenat Diagn,2005,25:137-139.
    [3]Tartaglia M. Mehler EL. Goldberg R. Zampino G. Brunner HG. Kremer H. van der Burgt I. Crosby AH. Ion A. Jeffery S. Kalidas K. Patton MA. Kucherlapati RS. Gelb BD. Mutations in PTPN11. encoding the protein tyrosine phosphatase SHP-2. cause Noonan syndrome. Nat Genet, 2001.29:465-468.
    [4]Campbell M. Incidence of cardiac malformations at birth and later, and neonatal mortality. Br Heart J.1973.35:189-200.
    [5]Loffredo CA, Chokkalingam A, Sill AM, Boughman JA. Clark EB. Scheel J, Brenner JI.Prevalence of congenital cardiovascular malformations among relatives of infants with hypoplastic left heart. coarctation of the aorta, and d-transposition of the great arteries. Am J Med Genet A.2004.124:225-230.
    [6]Samane'k M. Congenital heart malformations:prevalence, severity, survival, and quality of life. Cardiol Young.2000,10:179-185.
    [7]Digilio MC. Marino B. Toscano A. Giannotti A, Dallapiccola B. Atrioventricular canal defect without Down syndrome:a heterogeneous malformation. Am J Med Genet.1999,85:140-146.
    [8]Robinson SW, Morris CD, Goldmuntz E, Reller MD, Jones MA, Steiner RD, Maslen CL. Missense mutations in CRELD1 are associated with cardiac atrioventricular septal defects. Am J Hum Genet.2003.72:1047-1052.
    [9]Sheffield VC. Pierpont ME. Nishimura D, Beck JS. Burns TL, Berg MA. Stone EM. Patil SR. Lauer RM. Identification of a complex congenital heart defect susceptibility locus by using DNA pooling and shared segment analysis. Hum Mol Genet.1997.6:117-121.
    [10]Zatyka M. Priestley M, Ladusans EJ. Fryer AE. Mason J, Latif F. Maher ER. Analysis of CRELD1 as a candidate 3p25 atrioventicular septal defect locus (AVSD2). Clin Genet.2005.67:526-528.
    [11]Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN. Butler CA. Rothrock CR. Eapen RS, Hirayama-Yamada K, Joo K. Matsuoka R. Cohen JC, Srivastava D. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature,2003,424:443-447.
    [12]Garg V. Muth AN. Ransom JF, Schluterman MK, Barnes R. King IN. Grossfeld PD. Srivastava D. Mutations in NOTCH1 cause aortic valve disease. Nature.2005,437:270-274.
    [13]Reamon-Buettner SM, Borlak J. TBX5 mutations in non-Holt-Oram syndrome (HOS) malformed hearts. Hum Mutat,2004.24:104.
    [14]Schott JJ, Benson DW, Basson CT, Pease W, Silberbach GM, Moak JP. Maron BJ, Seidman CE, Seidman JG. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science,1998,281:108-111.
    [15]Okubo A, Miyoshi O, Baba K, Takagi M, Tsukamoto K, Kinoshita A. Yoshiura K. Kishino T, Ohta T, Niikawa N, Matsumoto N. A novel GATA4 mutation completely segregated with atrial septal defect in a large Japanese family. J Med Genet,2004,41:e97.
    [16]Durocher D, Charron F, Warren R, Schwartz RJ, Nemer M. The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J, 1997.16:5687-5696.
    [17]Konig K. Will JC, Bcrger F, Muller I). Benson DW. Familial congenital heart disease, progressive atrioventricular block and the cardiac homeobox transcription factor gene NKX2.5:identification of a novel mutation. Clin Res Cardiol,2006,95:499-503.
    [18]Eisenberg LM, Markwald RR. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res.1995,77:1-6.
    [19]Lakkis MM. Epstein JA. Neurofibromin modulation of ras activity is required for normal endocardialmesenchymal transformation in the developing heart. Development.1998,125:4359-4367.
    [20]Moorman A. Webb S, Brown NA. Lamers W. Anderson RH. Development of the heart:(1) formation of the cardiac chambers and arterial trunks. Heart, 2003,89:806-814.
    [21]Moorman AF, Christoffels VM. Cardiac chamber formation:development. genes, and evolution. Physiol Rev,2003.83:1223-1267.(?)
    [22]Moorman AF. Christoffels VM. Development of the cardiac conduction system:a matter of chamber development. Novartis Found Symp250:25-34. Discussion,2003,34-43.276-279.
    [23]Runyan RB, Mercado-Pimentel ME. Multiple TGF-β isoforms and receptors function during EMT in the embryonic heart. Cells Tissues Organs.2007. 185(1-3):146-156.
    [24]Armstrong EJ. Bischoff J. Heart valve development endothelial cell signaling and differentiation. Circ Res,2004.95(5):459-470.
    [25]McFadden DG. Olson EN. Heart development:learning from mistakes, Curr Opin Genet Dev.2002,12(3):328-335.
    [26]Runyan, RB, Markwald RR. Invasion of mesenchyme into three-dimensional collagen gels:a regional and temporal analysis of interaction in embryonic heart tissue. Dev Biol.1983.95 (1):108-114.
    [27]Schroeder JA, Jackson LF. Lee DC. et al. Form and function of developing heart valves:coordination by extracellular matrix and growth factor signaling. J Mol Med,2003.81(7):392-403.
    [28]Bernanke DH. Markwald RR. Migratory behavior of cardiac cushion tissue cells in a collagen-lattice culture system. Dev Biol.1982.91(2):235-245.
    [29]Wagner M. Siddiqui MAQ. Signal transduction in early heart development (Ⅱ), Exp Biol Med.2007.232(7):866-880.
    [30]Vigetti D, Ori M. Viola M. Genasetti A. Karousou E, Rizzi M, Pallotti F. Nardi I. Hascall VC. De Luca G. Passi A. Molecular cloning and characterization of UDP-glucose dehydrogenase from the amphibian Xenopus laevis and its involvement in hyaluronan synthesis. J Biol Chem.2006, 281:8254-8263.
    [31]Walsh EC. Stainier DY. UDPglucose dehydrogenase required for cardiac valve formation in zebrafish. Science.2001.293:1670-1673.
    [32]Abu-Issa R. Smyth G. Smoak I.Yamamura K. Meyers EN. Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development,2002,129:4613-4625.
    [33]Camenisch TD. Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML. Calabro A Jr. Kubalak S. Klewer SE. McDonald JA. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest,2000, 106:349-360.
    [34]Camenisch TD, Schroeder JA, Bradley J, et al. Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nat Med.2002.8(8):850-855.
    [35]Bakkers J, Kramer C. Pothof J. Quaedvlieg NE. Spaink HP. Hammerschmidt M. Has2 is required upstream of Racl to govern dorsal migration of lateral cells during zebrafish gastrulation. Development.2004.131:525-537.
    [36]Mjaatvedt CH. Yamamura H. Capehart AA. Turner D, Markwald RR. The Cspg2 gene, disrupted in the hdf mutant, is required for right cardiac chamber and endocardial cushion formation. Dev Biol.1998.202:56-66.
    [37]Xu GF, O'Connell P, Viskochil D. el al. The neurofibromatosis type 1 gene encodes a protein related to GAP, Cell.1990,62 (3):599-608.
    [38](iitler AD. Zhu Y, Ismat FA, Lu MM. Yamauchi Y. Parada LF. Epstein JA. Nfl has an essential role in endothelial cells. Nat Genet.2003.33:75-79.
    [39]Ichida M. Finkel T. Ras regulates NFAT3 activity in cardiac myocytes..1 Biol Chem.2001.276:3524-3530.
    [40]Gitler AD. Zhu Y, Ismat FA. et al. Nfl has an essential role in endothelial cells. Nat Genet,2003.33(1):75-79.
    [41]Ichida M. Finkel T. Ras regulates NFAT3 activity in cardiac myocytes.J Biol Chem.2001,276(5):3524-3530.
    [42]de la Pompa JL. Timmerman LA, Takimoto H. Yoshida H. Elia AJ. Samper E. Potter J, Wakeham A, Marengere L, Langille BL, Crabtree GR. Mak TW. Role of the NFATc transcription factor in morphogenesis of cardiac valves and septum. Nature.1998,392:182-186.
    [43]Dor Y. Camenisch TD, Itin A, Fishman GI, McDonald JA. Carmeliet P. Keshet E. A novel role for VEGF in endocardial cushion formation and its potential contribution to congenital heart defects. Development,2001. 128:1531-1538.
    [44]Miquerol L, Langille BL, Nagy A. Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development,2000.127:3941-3946.
    [45]Qing M, Gorlach A. Schumacher K, Woltje M. Vazquez-Jimenez JF, Hess J, Seghaye MC. The hypoxiainducible factor HIF-1 promotes intramyocardial expression of VEGF in infants with congenital cardiac defects. Basic Res Cardiol,2007,102:224-232.
    [46]Molkentin JD, Lu JR, Antos CL. Markham B. Richardson J, Robbins J. Grant SR. Olson EN. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell, 1998.93:215-228.
    [47]Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev.2003.17:2205-2232.
    [48]Iwamoto R, Yamazaki S. Asakura M. Takashima S. Hasuwa H. Miyado K, Adachi S. Kitakaze M. Hashimoto K. Raab G. Nanba D. Higashiyama S, Hori M, Klagsbrun M. Mekada E. Heparin-binding EGF-like growth factor and ErbB signaling is essential for heart function. Proc Natl Acad Sci USA,2003. 100:3221-3226.
    [49]Jackson LF, Qiu TH. Sunnarborg SW. Chang A. Zhang C. Patterson C. Lee DC. Defective valvulogenesis in HB-EGF and TACE-null mice is associated with aberrant BMP signaling. EMBO,2003. J 22:2704-2716.
    [50]O zcelik C, Erdmann B. Pilz B. Wettschureck N. Britsch S. Hubner N. Chien KR, Birchmeier C. Garratt AN. Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc Natl Acad Sci USA,2002,99:8880-8885.
    [51]Camenisch TD, Schroeder JA. Bradley J. Klewer SE, McDonald JA. Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nat Med,2002,8:850-855.
    [52]Gassmann M, Casagranda F. Orioli D. Simon H. Lai C, Klein R. Lemke G. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature,1995.378:390-394
    [53]Azhar MJ. Schultz Jel. Grupp 1. et al. Transforming growth factor β in cardiovascular development and function, Cytokine Growth Factor Rev.2003. 14(5):391-407.
    [54]Camenisch TD. Molin DG. Person A. et al. Temporal and distinct TGFβ ligand requirements during mouse and avian endocardial cushion morphogenesis. Dev Biol.2002,248(1):170-181.
    [55]Boyer AS, Ayerinskas II. Vincent EB. McKinney LA, Weeks DL, Runyan RB. TGFbeta2 and TGFbeta3 have separate and sequential activities during epithelial-mesenchymal cell transformation in the embryonic heart. Dev Biol. 1999.208:530-545.
    156] Molin DG. Bartram U. Van der Heiden K, Van Iperen L, Speer CP, Hierck BP, Poelmann RE, Gittenbergerde-Groot AC. Expression patterns of Tgfbetal-3 associate with myocardialisation of the outflow tract and the development of the epicardium and the fibrous heart skeleton. Dev Dyn,2003.227:431-444.
    [57]Boyer AS. Ayerinskas Ⅱ, Vincent EB. et al. TGFβ2 and TGFβ3 have separate and sequential activities during epithelial-mesenchymal cell transformation in the embryonic heart. Dev Biol.1999.208(2):530-545.
    [58]Akhurst RJ. Lehnert SA, Faissner A. et al. TGFβ in murine morphogenetic processes:the early embryo and cardiogenesis, Development,1990.108(4): 645-656 [23] Dickson MC. Slager HG, Duffie E, et al. RNA and protein localisations of TGF-β2 in the early mouse embryo suggest an involvement in cardiac development, Development,1993,117(2):625-639.
    [59]Potts JD, Vincent EB, Runyan RB, et al. Sense and antisense TGFβ3 mRNA levels correlate with cardiac valve induction. Dev Dyn.1992,193(4): 340-345.
    [60]Sanford LP, Ormsby I. Gittenberger-de Groot AC. et al. TGFβ2 knockout mice have multiple developmental defects that are non-overlapping with other TGFβ knockout phenotypes. Development,1997,124(13):2659-2670.
    [61]Dunker N. Krieglstein K. Tgfβ2-/- Tgfβ3-/- double knockout mice displa severe midline fusion defects and early embryonic lethality. Anat Embryol (Berl),2002.206(1-2):73-83.
    [62]Desgrosellier JS. Mundell NA, McDonnell MA, et al. Activin receptor-like kinase 2 and Smad6 regulate epithelial-mesenchymal transformation during cardiac valve formation. Dev Biol.2005.280(1):201-210.
    [63]Lai YT. Beason KB. Brames GP, et al. Activin receptor-like kinase 2 can mediate atrioventricular cushion transformation, Dev Biol,2000.222(1): 1-11.
    [64]Brown CB, Boyer AS. Runyan RB, et al. Antibodies to the type Ⅱ TGF-β receptor block cell activation and migration during atrioventricular cushion transformation in the heart, Dev Biol.1996,174(2):248-257.
    [65]Brown CB, Boyer AS. Runyan RB, et al. Requirement of type Ⅲ TGF-β receptor for endocardial cell transformation in the heart. Science.1999, 283(5410):2080-2082.
    [66]Mercado-Pimentel ME. Hubbard AD, Runyan RB. Endoglin and ALK5 regulate epithelial-mesenchymal transformation during cardiac valve formation. Dev Biol,2007,304(1):420-432.
    [67]Wang J, Sridurongrit S, Dudas M, et al. Atrioventricular cushion transformation is mediated by ALK2 in the developing mouse heart. Dev Biol, 2005,286(1):299-310.
    [68]Sridurongrit S. Larsson J. Schwartz R. et al. Signaling via the TGF-β type Ⅰ receptor Alk5 in heart development. Dev Biol.2008.322(1):208-218.
    [69]Oshima M. Oshima H. Taketo MM. TGF-β receptor type Ⅱ deficiency results in defects of yolk sac hematopoiesis and vasculogenesis, Dev Biol.1996. 179(1):297-302.
    [70]Jiao K. Langworthy M. Batts L. Brown CB. Moses HL. Baldwin HS. TGF-βsignaling is required for atrioventricular cushion mesenchyme remodeling during in vivo cardiac development. Development,2006. 133:4585-4593.
    [71]Stenvers KL, Tursky ML. Harder KW. et al. Heart and liver defects and reduced transforming growth factor β2 sensitivity in transforming growth factor β type Ⅲ receptor-deficient embryos. Mol Cell Biol.2003.23(12): 4371-4385.
    [72]Sorensen LK. Brooke BS. Li DY. et al. Loss of distinct arterial and venous boundaries in mice lacking endoglin. a vascularspecific TGF-β coreceptor, Dev Biol.2003,261(1):235-250.
    [73]Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol,2002.3(3):155-166.
    [74]Cano A, Perez-Moreno MA, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol.2000.2(2):76-83.
    [75]Gaussin V. Morley GE. Cox L. Zwijsen A, Vance KM, Emile L, Tian Y, Liu J, Hong C, Myers D, Conway SJ. Depre C. Mishina Y. Behringer RR, Hanks MC, Schneider MD. Huylebroeck D. Fishman GI, Burch JB, Vatner SF. Alk3/Bmprla receptor is required for development of the atrioventricular canal into valves and annulus fibrosus. Circ Res,2005,97:219-226.
    [76]Kaartinen V. Dudas M. Nagy A. Sridurongrit S, Lu MM, Epstein JA. Cardiac outflow tract defects in mice lacking ALK2 in neural crest cells. Development. 2004.131:3481-3490.
    [77]Wang J. Sridurongrit S. Dudas M. Thomas P. Nagy A. Schneider MD. Epstein JA. Kaartinen V. Atrioventricular cushion transformation is mediated by ALK2 in the developing mouse heart. Dev Biol.2005.286:299-310.
    [78]Euler-Taimor G. Heger J. The complex pattern of SMAD signaling in the cardiovascular system. Cardiovasc Res.2006.69:15-25.
    [79]Chang H. Huylebroeck D. Verschueren K. Guo Q. Matzuk MM, Zwijsen A. Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development,1999.126:1631-1642.
    [80]Tremblay KD. Dunn NR. Robertson EJ. Mouse embryos lacking Smadl signals display defects in extra-embryonic tissues and germ cell formation. Development.2001.128:3609-3621.
    [81]Arnold SJ. Maretto S. Islam A. Bikoff EK. Robertson EJ. Dosedependent Smadl. Smad5 and Smad8 signaling in the early mouse embryo. Dev Biol. 2006.296:104-118.
    [82]Chen D. Zhao M. Mundy GR. Bone morphogenetic proteins.Growth Factors. 2004.22:233-241.
    [83]Galvin KM, Donovan MJ. Lynch CA, Meyer RI. Paul RJ, Lorenz JN. Fairchild-Huntress V. Dixon KL. Dunmore JH. Gimbrone MA Jr, Falb D. Huszar D. A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet,2000,24:171-174.
    [84]Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, Hahn S, Wakeham A, Schwartz L, Kern SE, Rossant J. Mak TW. The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev.1998.12:107-119.
    [85]Brewer AC. Alexandrovich A, Mjaatvedt CH, Shah AM. Patient RK. Pizzey JA. GATA factors lie upstream of Nkx 2.5 in the transcriptional regulatory cascade that effects cardiogenesis. Stem Cells Dev.2005.14:425-439.
    [86]Brown CO. Chi X. Garcia-Gras E. Shirai M. Feng XH. Schwartz RJ. The cardiac determination factor, Nkx2-5. is activated by mutual cofactors GATA-4 and Smadl/4 via a novel upstream enhancer. J Biol Chem.2004. 279:10659-10669.
    [87]Sepulveda JL. Belaguli N. Nigam V. Chen CY. Nemer M. Schwartz RJ. GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets:role for regulating early cardiac gene expression. Mol Cell Biol.1998.18:3405-3415.
    [88]Flagg AE. Earley JU. Svensson EC. FOG-2 attenuates endothelialto-mesenchymal transformation in the endocardial cushions of the developing heart. Dev Biol,2007,304:308-316.
    [89]Pizzuti A. Sarkozy A. Newton AL. Conti E. Flex E. Digilio MC. Amati F. Gianni D. Tandoi C. Marino B. Crossley M. Dallapiccola B. Mutations of ZFPM2/FOG2 gene in sporadic cases of tetralogy of Fallot. Hum Mutat.2003. 22:372-377.
    [90]Clouthier DE, Hosoda K, Richardson JA, Williams SC, Yanagisawa H, Kuwaki T. Kumada M. Hammer RE, Yanagisawa M. Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice. Development, 1998.125:813-824.
    [91]Kurihara Y. Kurihara H. Oda H. Maemura K. Nagai R, Ishikawa T. Yazaki Y. Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-1. J Clin Invest,1995.96:293-300.
    [92]Yanagisawa H. Hammer RE. Richardson JA, Emoto N. Williams SC, Takeda S, Clouthier DE, Yanagisawa M. Disruption of ECE-1 and ECE-2 reveals a role for endothelin converting enzyme-2 in murine cardiac development. J Clin Invest,2000.105:1373-1382.
    [93]Yanagisawa H, Yanagisawa M, Kapur RP. Richardson JA. Williams SC. Clouthier DE. de Wit D. Emoto N. Hammer RE. Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development,1998.125:825-836.
    [94]Liu C, Li Y, Semenov M, Han C. Baeg GH. Tan Y.Zhang Z, Lin X. He X. Control of beta-catenin phosphorylation/ degradation by a dualkinase mechanism. Cell.2002.108:837-847.
    [95]Brade T, Manner J, Kuhl M. The role of Wnt signalling in cardiac development and tissue remodeling in the mature heart. Cardiovasc Res.2006. 72:198-209.
    [96]Hurlstone AF, Haramis AP, Wienholds E. Begthel H. Korving J. Van Eeden F. Cuppen E. Zivkovic D. Plasterk RH. Clevers H. The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature.2003.425:633-637.
    [97]Person AD, Garriock RJ, Krieg PA, Runyan RB. Klewer SE. Frzb modulates Wnt-9a-mediated betacatenin signaling during avian atrioventricular cardiac cushion development. Dev Biol.2005.278:35-48.
    [98]Liebner S, Cattelino A, Gallini R, Rudini N. Iurlaro M. Piccolo S. Dejana E. Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol,2004.166:359-367.
    [99]Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling:cell fate control and signal integration in development. Science.1999.284:770-776.
    [100]Timmerman LA, Grego-Bessa J, Raya A, Bertra'n E. Pe'rez-Pomares JM. Diez J, Aranda S, Palomo S, McCormick F.Izpisu'a-Belmonte JC, de la Pompa JL. Notch promotes epithelialmesenchymal transition during cardiac development and oncogenic transformation. Genes Dev,2004.18:99-115.
    [101]Beis D. Bartman T. Jin SW. Scott IC. D'Amico L.A. Ober EA. Verkade H. Frantsve J. Field HA. Wehman A.Baier H. Tallafuss A. Bally-Cuif L. Chen JN, Stainier DY. Jungblut B. Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development,2005. 132:4193-4204.
    [102]Mohamed SA. Aherrahrou Z, Liptau H. Erasmi AW, Hagemann C, Wrobel S. Borzym K. Schunkert H. Sievers HH. Erdmann J. Novel missense mutations (p.T596M and p.P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochem Biophys Res Commun.2006.345:1460-1465.
    [103]Eldadah ZA. Hamosh A. Biery NJ. Montgomery RA. Duke M. Elkins R. Dietz HC. Familial Tetralogy of Fallot caused by mutation in the jaggedl gene. Hum Mol Genet.2001.10:163-169.
    [104]McDaniell R. Warthen DM. Sanchez-Lara PA. Pai A. Krantz ID. Piccoli DA. Spinner NB. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet.2006,79:169-173.
    [105]Fischer A. Steidl C, Wagner TU. Lang E. Jakob PM, Friedl P. Knobeloch KP. Gessler M. Combined loss of Heyl and HeyL causes congenital heart defects because of impaired epithelial to mesenchymal transition. Circ Res.2007. 100:856-863.
    [106]Zhao F. Lufkin T. Gelb BD. Expression of Tfap2d, the gene encoding the transcription factor Ap-2 delta. during mouse embryogenesis. Gene Expr Patterns.2003,3:213-217.
    [107]Zhao F, Weismann CG. Satoda M. Pierpont ME, Sweeney E, Thompson EM. Gelb BD. Novel TFAP2B mutations that cause Char syndrome provide a genotype-phenotype correlation. Am J Hum Genet.2001,69:695-703.
    [108]Bamforth SD. Braganc a J. Farthing CR, Schneider JE. Broadbent C. Michell AC. Clarke K. Neubauer S, Norris D. Brown NA. Anderson RH, Bhattacharya S. Cited2 controls leftright patterning and heart development through a Nodal-Pitx2c pathway. Nat Genet,2004,36:1189-1196.
    [109]Weninger WJ. Floro KL, Bennett MB. Withington SL. Preis JI. Barbera JP. Mohun TJ, Dunwoodie SL. Cited2 is required both for heart morphogenesis and establishment of the left-right axis in mouse development. Development. 2005.132:1337-1348.
    [110]Sperling S. Grimm CH. Dunkel I, Mebus S, Sperling HP, Ebner A. Galli R. Lehrach H, Fusch C. Berger F. Hammer S. Identification and functional analysis of CITED2 mutations in patients with congenital heart defects. Hum Mutat.2005.26:575-582.
    [111]Alsan BH, Schultheiss TM. Regulation of avian cardiogenesis by Fgf8 signaling. Development,2002,129:1935-1943.
    [112]Meyers EN, Martin GR. Differences in left-right axis pathways in mouse and chick:functions of FGF8and SHH. Science.1999.285:403-406.
    [113]Schlange T, Arnold HH, Brand T. BMP2 is a positive regulator of Nodal signaling during left-right axis formation in the chicken embryo. Development. 2002.129:3421-3429.
    [114]Kumar A, Novoselov V, Celeste AJ, Wolfman NM, ten Dijke P, Kuehn MR. Nodal signaling uses activin and transforming growth factor-beta receptor-regulated Smads. J Biol Chem,2001,276:656-661.
    [115]Amendt BA, Semina EV, Alward WL. Rieger syndrome:a clinical, molecular. and biochemical analysis. Cell Mol Life Sci,2000,57:1652-1666.
    [116]Gage PJ, Suh H, Camper SA. Dosage requirement of Pitx2 for development of multiple organs. Development.1999,126:4643-4651.
    [117]Kitamura K, Miura H. Miyagawa-Tomita S. Yanazawa M. Katoh-Fukui Y. Suzuki R. Ohuchi H. Suehiro A, Motegi Y. Nakahara Y. Kondo S. Yokoyama M. Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart. extra-and periocular mesoderm and right pulmonary isomerism. Development, 1999.126:5749-5758.
    [118]Nowotschin S. Liao J. Gage PJ. Epstein JA. Campione M. Morrow BE. Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field. Development,.2006.133:1565-1573.
    [119]Reamon-Buettner SM. Borlak J. Somatic NKX2-5 mutations as a novel mechanism of disease in complex congenital heart disease. J Med Genet.2004. 41:684-690.
    [120]Phelan SA, Ito M. Locken MR. Neural tube defects in embryos of diabetic mice:role of the Pax-3 gene and apoptosis. Diabetes,1997.46:1189-1197.
    [121]Poelmann RE. Gittenberger-de Groot AC. Apoptosis as an instrument in cardiovascular development. Birth Defects Res C Embryo Today,2005. 75:305-313.
    [122]snapshot:mTOR. cell 2007.
    [123]Sarbassov DD. Guertin DA. Ali SM. Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005:307: 1098-101.
    [124]Vanhaesebroeck B, Alessi D. The PI3K-PDK1 connection:more than just a road to PKB. BIOCHEMICAL JOURNAL-LONDON-2000:346:561-76.
    [125]Datta SR. Brunet A. Greenberg ME. Cellular survival:a play in three Akts. Genes Dev 1999; 13:2905-27.
    [126]Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection:more than just a road to PKB. Biochem J 12000;346 Pt 3:561-76.
    [127]Manning B, Cantley L. Rheb fills a GAP between TSC and TOR. Trends in Biochemical Sciences 2003:28:573-5.
    [128]Pullen N. Thomas G. The modular phosphorylation and activation of p70s6k. FEBS letters 1997:410:78-82.
    [129]Gingras A, Kennedy S, O'Leary M, Sonenberg N. Hay N.4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt (PKB) signaling pathway. Genes & Development 1998:12:502.
    [130]Cohen P, Frame S. The renaissance of GSK3. Nature Reviews Molecular Cell Biology 2001:2:769-76.
    [131]Sarbassov DD, Ali SM. Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Molecular Cell,2006.22:159-68.
    [132]Y. Fujio. T. Nguyen. D. Wencker. R. N. Kitsis and K. Walsh:Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. C irculation,2000,101(6),660-7.
    [133]G. Condorelli, A. Drusco. G. Stassi. A. Bellacosa, R. Roncarati, G. Iaccarino. M. Russo, Y. Gu. N. Dalton and C. Chung:Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proceedings of the National A cademy of Sciences,2002.99(19),12333-12338.
    [134]S. Cook. T. Matsui, L. Li and A. Rosenzweig:Transcriptional Effects of Chronic Akt Activation in the Heart. J ournal of Biological Chemistry,2002. 277(25),22528-22533.
    [135]S. Kovacic, C. Soltys, A. Barr. I. Shiojima, K. Walsh and J. Dyck:Akt Activity Negatively Regulates Phosphorylation of AMP-activated Protein Kinase in the Heart. Journal of B iological Chemistry,2003,278(41), 39422-39427.
    [136]T. Matsui. L. Li. J. Wu. S. Cook. T. Nagoshi. M. Picard. R. Liao and A. Rosenzweig:Phenotypic Spectrum Caused by Transgenic Overexpression of Activated Akt in the Heart.J ournal of Biological Chemistry.2002.277(25). 22896-22901.
    [137]T. Shioi.J. McMullen. P. Kang, P. Douglas. T. Obata. T. Franke. L. Cantley and S. Izumo:Akt/Protein Kinase B Promotes Organ Growth in Transgenic Mice. Molecular a nd Cellular Biology.2002.22(8),2799-2809.
    [1381 W. Chen. P. Xu. K. Gottlob. M. Chen. K. Sokol. T.Shiyanova.I. Roninson. W. Weng. R. Suzuki and K. Tobe:Growth retardation and increased apoptosis in mice with homozygous disruption of the Aktl gene. Genes & D evelopment.. 2001.15(17).2203-2208.
    [139]H. Cho. J. Thorvaldsen. Q. Chu, F. Feng and M. Birnbaum:Akt 1/PKBalpha Is Required for Normal Growth but Dispensable for Maintenance of Glucose Homeostasis in Mice. Journal of Biological Chemistry.2001.76(42).38349-38352.
    [1401 B.Dummler and B. Hemmings:Physiological roles of PKB/Akt isoforms in development and disease. B iochemical Society Transactions.2007.35(2). 231-235.
    [141]B. Dummler. O. Tschopp. D. Hynx. Z. Yang. S. Dirnhofer and B. Hemmings: Life with a single isoform of Akt:mice lacking Akt2 and Akt3 are viable but display impaired glucose homeostasis and growth deficiencies. M olecular and Cellular Biology,2006,26(21).8042-8051.
    [142]X. Peng. P. Xu, M. Chen, A. Hahn-Windgassen. J. Skeen. J. Jacobs. D. Sundararajan, W. Chen, S. Crawford and K. Coleman:Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Aktl and Akt2. G enes & Development, 17(11),1352-1365(2003)
    [143]O. Tschopp. Z. Yang, D. Brodbeck. B. Dummler. M. Hemmings-Mieszczak. T. Watanabe, T. Michaelis. J. Frahm and B. Hemmings:Essential role of protein kinase Bgamma (PKBgamma/Akt3) in postnatal brain development but not in glucose homeostasis. Development.2005.132(13).2943-2954.
    [144]Z. Yang. O. Tschopp. A. Baudry. B. Dummler. D. Hynx and B.Hemmings: Physiological functions of protein kinase B/Akt. Biochemical Society Transactions,2004,32(2).350-354.
    [145]Z. Yang, O. Tschopp. M. Hemmings-Mieszczak. J. Feng, D. Brodbeck, E. Perentes and B. Hemmings:Protein Kinase Ba/Aktl Regulates Placental Development and Fetal Growth. Journal of Biological Chemistry.2003,78(34), 32124-32131.
    [146]Z. Yang, O. Tschopp, D.-P. N. E. Bruder. A. Baudry. B. Dummler, W. Wahli and B. Hemmings:Dosage-Dependent Effects of Akt1/Protein Kinase Ba (PKBa) and Akt3/PKBg on Thymus. Skin, and Cardiovascular and Nervous System Development in Mice. Molecular and Cellular Biology.2005,25(23), 10407-10418.
    [147]M. Lawlor, A. Mora. P. Ashby. M. Williams, V. Murray-Tait. L. Malone, A. Prescott. J. Lucocq and D. Alessi:Essential role of PDK1 in regulating cell size and development in mice. The EMBO Journal,2002.21(14).3728-3738.
    [148]D. Brazil. Z. Yang and B. Hemmings:Advances in protein kinase B signalling: AKTion on multiple fronts.Trends in Biochemical Sciences,2004,29(5), 233-242.
    [149]S. Datta, A. Brunet and M. Greenberg:Cellular survival:a play in three Akts. Genes & Development,1999,13(22),2905-2927.
    [150]A. Mora, D. Komander, D. van Aalten and D. Alessi:PDK1, the master regulator of AGC kinase signal transduction. Seminar in Cell and Developmental Biology.2004.15,161-170.
    [151]J. Woodgett:Recent advances in the protein kinase B signaling pathway. Current opinion in cell biology.2005.17(2).150-157.
    [152]Feng QT. Di RM. Tao F. Chang Z. Lu SS, Fan WJ. Shan CJ. Li XL and Yang ZZ. PDK1 regulates vascular remodeling and promotes epithelial-mesenchymal transition in cardiac development. Mol Cell Biol. 2010:30:14:3711-3721.
    [153]H. Cho. J. Thorvaldsen. Q. Chu. F. Feng and M. Birnbaum:Aktl/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in m ice. J Biol Chem.276(42),38349-52 (2001)
    [154]B. DeBosch. I. Treskov. T. Lupu. C. Weinheimer. A. Kovacs. M. Courtois and A. Muslin:Aktl is required for physiological cardiac growth. Circulation. 2006.113(17).2097.
    [155]Suzuki A. de la Pompa JL, Stambolic V. Elia AJ, Sasaki T. del Barco Barrantes I et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol.1998.8: 1169-1178.
    [156]Hamada K. Sasaki T. Koni PA, Natsui M, Kishimoto H, Sasaki J et al. The PTEN/PI3K pathway governs normal ascular development and tumor angiogenesis. Genes Dev,2005,19:2054-2065.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700