炭微球的水热制备、表征及活化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统炭材料相比,球形炭材料特殊几何形状使其具有独特的优势:球形结构完整,表面光滑,粒径均一,填充密度高,耐磨性好,机械强度高等,目前已广泛用于电极、吸附剂、催化剂载体及化学防护等领域。
     本论文以葡萄糖为原料,采用水热法制备炭球。并讨论了水热反应温度、反应时间、葡萄糖浓度及二次水热对炭球的影响。利用元素分析、扫描电镜(SEM)、红外光谱分析(FTIR)、X射线衍射(XRD)、光电子能谱(XPS)等方法对产物的粒径、形貌、化学结构进行分析。结果表明:以葡萄糖为原料,采用水热法,制备粒径在300-1200 nm的炭球。炭球的粒径均一、表面光滑、球形结构完整,水热制备过程中可通过改变葡萄糖的浓度,水热反应时间,温度调节炭球的形貌、粒径、均一度及化学结构。炭球的粒径随水热温度的升高而增大,球形度及粒径的均一度随之先增大后减小;反应时间对球体的粒径影响不大但对其球形度及球体间的交联现象影响较大:随反应时间的延长,球形度降低,球体间的交联现象增加;炭球的粒径随葡萄糖的浓度增大而增加,其球形度、表面光滑度及粒径的均一度变化不大。通过对炭球化学结构分析可知,炭球由C、H、O三种元素组成,其中O含量在30%以上,球体表面有大量含氧官能团(以-OH、C=O为主),含氧官能团的种类、数量均受水热反应条件影响。葡萄糖在水热过程中经羟醛缩合、芳环化反应聚合成晶核,再经炭化,陈化得到炭球。随水热温度、时间及葡萄糖浓度的增大,芳环化更加完全;葡萄糖浓度的增大有助于羟醛过程的发生。
     以炭球为吸附剂,并以Pb2+为模型物,通过原子吸收光谱检测炭球的吸附性能。结果表明,炭球对Pb2+的最大饱和吸附量约为2.4 mmol/g,其表面的含氧官能团与金属离子形成化学键为吸附提供了活性点。
     以炭球为前驱体,以KOH为活化剂,分别讨论了研磨法、浸渍法制备多孔炭微球。经讨论,研磨法易导致前驱体球形结构的破坏。浸渍法能得到球形结构完整、表面光滑、比表面积和孔容积较大的多孔炭微球,其孔隙结构以微孔为主。活化过程中,活化温度、活化时间、浸渍比均对产物的形貌、粒径及孔结构影响较大。经分析认为,炭球经“汽化”、“活化”得到多孔炭微球。
Compared with traditional carbon material, spherical carbonous materials with specific advantages, due to its unique geometrical structure, have good shape, smooth outer surface, monodispersed size and high dentisity, which were used in the areas of electronic, adsorbent, catalyst, chemical protection and so on.
     This synthesis was focused on the preparation of carbon sphere in a glucose hydrothermal treatment. The experimental conditions (hydrothermal temperature, reaction time, glucose concentration and a second treatment) were investigated, which play the key role in the shape and chemical structural control. Scanning electron microscopy (SEM), elemental C/H/O chemical analysis, Fourier transform diffuse reflectance infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) were applied in identifying its shapes, sizes and functional groups. It can be noted that, carbon spheres with smooth outer surface, tunable and monodispersed size and perfect spherical shape were prepared in 300-1200 nm. With the increasing temperature, its diameter increase obviously, however, its morphology and monidisperity changed without a simple tendency. The reaction time plays an important role in shape-control, but has few relationships with its diameter. Extending feeding time, CS with irregular shapes (such as peanut shape, liner strucutre) appears, due to the fusion. Higher glucose concentration is available to the formation of larger spheres with good morphology. CS is consisted of C, H and O, a higher oxygen content in the core. The ratios of O/C are about 35%, indicating large numbers of functional groups in CS. The number of functional groups (mainly -OH and C=O) on the outer surface were determined by experimental factors.
     The possible mechanism of CS may maintain two steps, which were "nucleation" and "growth of nuclea". A second hydrothermal treatment separating the process of "nucleation" and "the growth process" effectively is helpful to prepare a larger CS with smooth outer surface, prefect spherical morphology and a narrow size distribution. The process was named as "aging".
     The maximum adsorption capacity of CS to Pb2+ was 2.4 mmol/g, which is bigger than other traditional adsorbent materials. The higher adsorption resulted from ionic bonds or covalent bonds between oxygen-containing groups on the surface and Pb2+.
     Porous carbon spheres (PCS) were prepared by KOH activation. Two different methods were applied to mix KOH and CS, which were mechanical mixing and immersion method. It resulted that PCS has irregular morphologies and various sizes following the mechanical mixing, which suggested the process of mechanical mixing is unsuitable to PCS. PCS prepared after a process of immersion were discussed. CS activated at 350℃for 30 min under nitrogen enviroment were more suitable to the preparation of PCS than CS. PCS with perfect spherical structure, smooth outer-surface, small size and a narrow distribution were prepared at 700℃for 60 min under nitrogen enviroment, its BET surface areas 967.19 m2/g, pore volumes 0.453 cm3/g, whereas the ratio of micropores volume is 88.3%. The Process of KOH activation includes "gasification" and "activation".
引文
[1]Figueiredo J. L., Pereira M. F. R., Freitas M. M. A. Modification of the surface chemistry of activated carbons[J]. Carbon,1999,37(9):1379-1389
    [2]Park S J, Park B J, Ryu S K. Electrochemical treatment on activated carbon fibers for increasing the amount and rate of Cr(VI) [J]. Carbon,1999,37(8):1223-1226
    [3]Sun X M, Li Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angew. Chem. Int. Ed.,2004,43:597-601
    [4]Wang Q, Li H, Chen L Q, Huang X. Novel spherical microporous carbon as anode material for Li-ion batteries[J]. J. Solid State Ionics,2002,152-153:43-50
    [5]Yu S H, Cui X J, Li L L, ect. From starch to metal/carbon hybrid nanostructures: hydrothermal metal-catalyzed carbonization[J]. Adv. Mater.,2004,16:1636-1640 [6] Sun X M, Li Y D. Ga2O3 and GaN semiconductor hollow spheres[J]. Angew. Chem.,2004, 43(5):597-601
    [7]Luo L B, Yu S H, Qian H S, and ect. Large scale fabrication of flexible Ag/Cross-linked PVA coaxial nanocables by a facile solution approach[J]. J. Am. Chem. Soc.,2005,127: 2822-2829
    [8]Serp P, Feurer R, Kalck P, et al. A chemical vapour deposition process for the production of carbon nanospheres[J]. Carbon,2001,39(4):621-626
    [9]Wang Q, Cao F Y, Chen Q W. Preparation of carbon micro spheres by hydrothermal treatment of methylcellulose sol[J]. Mater. Lett.,2005,59(28):3738-3741.
    [10]Yi Z H, Liang Y G, Lei X F. Lower-temperature synthesis of nanosized disordered carbon spheres as anode material for lithium ion batteries[J], Mater. Lett.,2007:13-17
    [11]Sun X, Li Y D. Ga2O3 and GaN semiconductor hollow spheres[J]. Angew. Chem. Int. Ed., 2004,43:597-601
    [12]Jin Y Z, Gao C, Hu W K, et al. Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons[J]. Carbon,2001,39(14):12211-12214
    [13]Song Y Y, Li Y, Xia X H. One step pyrolysis process to synthesize dispersed Pt/carbon hollow nanospheres catalysts for electrocatalysis[J]. Electrochemistry Communication,2007, 9(2):201-205
    [14]李永峰,邱介山,王云鹏.一种新颖煤基球形炭及其形成机理[J].大连理工大学学报,2002,42(6):663-668
    [15]Hou H Q, Schaper A K, Weller F et al. Carbon Natubes and spheres produced by modified ferrocene pyrolysis[J]. Chemistry of Material,2002,14(9):3990-3994
    [16]Pol V G, Motiei M, Gedanken A et al. Carbon spherules:synthesis, properties and mechanistic elucidation[J]. Carbon,2004,42(1):111-116
    [17]Liu J W, Shao M W, Tang Q, et al. A medial-reduction route to hollow carbon spheres[J]. Letter to Editor/Carbon,2002,411(8):1645-1687
    [18]Hu G, Ma D, Cheng M et al. Direct synthesis of uniform hollow carbon spheres by self-assembly template approach[J]. Chemical Communication,2002(17):1948-1949
    [19]林起浪,郑敏枝,覃涛等.新型炭微球的制备及性能研究[J].功能材料,2009,40(7):1119-1123
    [20]Liu Y C, Qiu X P, Huang Y Q, et al. Methanol electro-oxidation on mesocarbon microbed supported Pt catalysts[J]. Carbon,2002,40:2375-2380
    [92]Wang Z X, Yu L P, Zhang W, et al. Large-scale synthesis of carbon spheres by reduction of supercritical CO2 with metallic calcium[J]. Physics Letters A,2003,307:249-252
    [21]Mi Y Z, Hu W B, Dan Y M, et al. Synthesis of carbon-spheres by a glucose hydrothermal method[J]. Mater. Lett.,2008,62:1194-1196
    [22]Chen C Y, Sun X D, Jiang X C, et al. A two-step hydrothermal synthesis approach to monodispersed colloidal carbon spheres[J]. Nanoscale Res. Lett.,2009,4:971-976
    [23]Li J H, Wang Q, Zhang Q, et al. Hollow carbon sphere with wide size distribution as anode catalyst support for direct methanol fuel cells[J]. Electrochem. Commun.,2007,9:1867-1872
    [24]Tang S C, Zhao X N, Tang Y F, et al. Super-hydrophobic transparent surface by femtosecond laser micro-patterned catalyst thin film for carbon nanotube cluster growth[J]. Applied Surface Sci.,2009,255:6011-6016
    [25]Wang Z H, Liu J W, Chen X Y, et al. Prevalence of the metabolic syndrome and overweight among adults in China[J]. Chem. Eur. J.,2005,11:160-163
    [26]Sevilla M, Fuertes A B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. J. Chem. Eur.,2009,15:4195-4203
    [27]Sevilla M, Fuertes A B. The production of carbon materials by hydrothermal carbonization of cellulose[J]. Carbon,2009,47:2281-2289
    [28]Zheng M T, Liu Y L, Jiang K M, et al. Alcohol-assisted hydrothermal carbonization to fabricate spheroidal carbons with a tunable shape and aspect ratio[J]. Carbon,2010,48(4): 1224-1233
    [29]Wang Q, Cao F Y, Chen Q W, et al. Preparation of carbon micro-spheres by hydrothermal treatment of methycellulose sol[J]. Materials Letters,2005,59(28):3738-3741
    [30]Li W R, Jiang Z Y, Li Z, Shi Y F, et al. Nitrogen-containing carbon spheres with very large uniform microporoes:the superior electrode material for EDLC in organic electrolyte[J]. Electrochem. Commun.,2007,9:569-573
    [31]Pol V G, Pol S V, Jose M C M, et al. High yield one-step synthesis of carbon spheres produced by dissociating individual hydrocarbons at their autogenic pressure[J]. Carbon,2006,44: 3285-3292
    [32]沈曾民.新型炭材料(Novel Carbon Materials)[M]北京:化学工业出版社(Beijing Chemical Industry Press),2003.241
    [33]Wang Q, Li Hong, Huang X J, ect. Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon,2001,39:2211-2214
    [34]Guo X M, Liu X Q, Xu B S, et al. Synthesis and characterization of carbon sphere-silica core-shell structure hollow silica spheres[J]. Colloid and Surfaces A:Physicochem. Eng. Aspects,2009,345:141-146
    [35]Sun X M, Li Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angew. Chem. Int. Edit.,2004,43(5):597-601
    [36]Joo J B, Kim P, Kim W Y, et al. Simple preparation of hollow carbon spheres via templating method[J]. Current Applied physics,2008,8:814-817
    [37]Wang W Z, Huang J Y, Wang Z F, et al. Low-temperature hydrothermal synthesis of multiwall carbon nanotubes[J]. Carbon,2005,43:1328-1331
    [38]Manafi S, Nadali H, Irani H R. Economical synthesis of nano alumina powder using an aqueous sol-gel method[J]. Mater. Lett.,2008,62:4175-4176
    [39]周菊红,王涛,陈友存CdSe纳米制备方法的研究进展[J].科技资讯,2007,27:6-9
    [40]Jin M S, Kuang Q, Jiang Z Y, et al. Direct synthesis of silver/polymer/carbon nanocables via a simple hydrothermal route[J]. Solid State Chem.,2008,181:2359-2363
    [41]Ma M G, Zhu J F, Sun R C. Monetie formed in mixed solvents of water and ethylene glycol and its transformation to hydroxyapatite[J]. Mater. Lett.,2009,63:2513-2515
    [42]Xu L Q, Ding Y W, Xi G, et al. Large-scale synthesis of crystalline tellurirm nanowire with controlled diameters via a hydrothermal-reduction process[J]. Chem. Lett.,2004,33(5): 592-593
    [43]Deng H, Li X L, Li YD, et al. Monodisperse magnetic single-crystal ferrite microspheres[J]. Angew. Chem. Int. Ed.,2005,117:2842-2845
    [44]顾相伶.沉淀聚合制备单分散高分子微球及自组装[D].山东大学博士论文.2010:97-98
    [45]Huang Y, Duan X F, Cui Y, et al. Logic gates and computation from assembled nanowire building blocks[J]. Science,2001,294:1313-1317
    [46]Nirmal M, Dabbousi B O, Bawendi M G, et al. Fluorescene intermittency in single cadmium selenide nanocrystals[J]. Nature,1996,383:802-804
    [47]Tenne R, Margulis L, Genut M, et al. Polyhedral and cylindrical struxtures of tungsten disulphide[J]. Nature,1992,360:444-446
    [48]Han W Q, Fan S S, Li Q Q, et al. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction[J]. Science,1997,277:1287-1289
    [49]Goldberger, He R R, Zhang Y F, et al. Single-crystal gallium nitride nanotube[J]. Nature,2003, 422:599-602
    [50]Yu S H, Luo L B, Qian H S, et al. Synthesis of uniform Te@carbon-rich composite nanocables with photoluminescene properties and carbonaceous nanofibers by the hydrothermal carbonization of glucose[J]. Chemcomm.,2006:793-795
    [51]Chen A H, Li X Y, Wang H Q. Formation process of silver-polypyrrole coaxial nanocables synthesized redox by redox reaction between AgNO3 and pyrrole in the presence of poly(vinylpyrrolidone) [J]. Chem. Commun.,2005:1863-1864
    [52]Wang P, Wei J Y, Huang B B, et al. Synthesis and characterization of carbon spheres prepared by chemical vapour deposition[J]. Mater. Lett.,2007,6:4854-4856
    [53]Lee C Y, Kim S J, Hwang In-S, et al. Glucose-mediated hydrothermal synthesis and gas sensing characteristic of WO3 hollow microspheres[J]. Sens. Actuators, B,2009,142:236-242
    [54]Wang C H, Chu X F, Wu M M. Membrane-activated microfluidic rotary devices for pumping and mixing[J]. Sens. Actuators, B,2007,120:508-513
    [55]Zhang J, Wang S R, Wang Y, et al. ZnO hollow spheres:preparation, characterization, and gas sensing properties[J]. Sens. Actuators, B,2009,139:411-417
    [56]Luo L. B., Yu S. H., Qian H.S., et al. Large scale synthesis of uniform silver@carbon rich composite sub-microcables by a facile green chemistry carbonization[J]. Chem. Commun., 2006:793-795
    [57]Wang Q, Li Hong, Huang X J, et al. Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon,2001,39:2211-2214
    [58]Joo J B, Yi J, Kim Y J, et al. Large area few-layer graphene films on arbitary substrates by chemical vapor deposition[J]. Catal. Commun.,2008,10:267-271
    [59]Yuan D S, Chen J X, et al. Preparation and characterization of novel structure Co-B hydrogen storage alloy[J]. Electrochem. Commun.,2008,10:1067-1070
    [60]任平,官建国,等.空心微球的制备和研究进展[J].材料导报,2004,18:200-203
    [61]Zhang W M, Hu J S, Guo Y G, et al. Tin-nanoparticles encapsulated elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries[J]. Adv. Mater.,2008,20: 1160-1165
    [62]Liu S X, Sun J, Huang Z H. Carbon spheres activated carbon composite material with high Cr(VI) [J]. J Hazard. Mater.,2009,173:377-383
    [63]薜锐生,沈曾民.不同KOH配比对中间相活性炭微球结构形态的影响[J].材料科学与要艺,2002,20(4):346-351
    [64]Liu D, Lei J H, Guo L P, et al. Simple hydrothermal synthesis of ordered mesoporous carbons from resorcinol and hexamine[J]. Carbon 49(2011):2113-2119
    [65]王丽红,藤田正仁,豊田昌宏等.玻璃炭球的二步活化法-一种高活化收率的途径[J].新型炭材料,2007,22(22):102-108
    [66]Yuan D S, Chen J, Zeng J H, et al. Preparation of monodisperse carbon nanospheres for electrochemical capacitors[J]. Electrochemistry Communication 10(2008):1067-1070
    [67]钱慧娟.国外活性炭生产信息[J].国外林产工业文摘,2001,35(4):70
    [68]郑经堂,张引枝,王茂章.多孔炭材料的研究进展及前景[J].化学进展,1996,8(3):241-251
    [69]Ciniak.S, SzymanskiG. The Characterization of activated carbon with oxygen and nitrogen surface group[J]. Carbon,1997,35:1799-1810
    [70]杨俊兵,康飞宇.球形活性炭及其应用[J].材料导报,2002,16(5):59-62
    [71]李红芳,席红安,王若丁.模板法制备多孔碳材料的研究[J].材料导报,2005,19(12):91-94
    [72]魏娜,赵乃勤,贾威.活性碳的制备及应用研究进展[J].炭素技术,2003,23:29-34
    [73]Yoon S H, Park Y D, Mochida I. Preparation of carbonaceous spheres from suspensions of pitch materials[J]. Carbon,1992,30(5):781-786
    [74]杨俊兵,康飞宇,黄正宏,等.添加聚乙二醇对酚醛树脂基球形活性炭结构和性能的影响[J].离子交换与吸附,2001,17(3):193-198
    [75]谭三香,谭绍早,刘应亮等.载铜活性炭微球的制备及抗菌性能[J].无机材料学报,2010,25(3):299-305
    [76]胡建军,周书喜,王强.胶体炭微球的活化及其亚甲基蓝液相吸附性能的研究[J].化工新型材料,2009,37(6):55-61
    [77]Dabrowski A., Adsorption and its applieations in industry and proteetion[M]. Elsevier,1999: 561-565.
    [78]张雷,李丹君,李晶,等.淀粉基炭及其制备对重金属离子的吸附性能[J].精细化工,2010,27(5):476-479.
    [79]张利波.烟杆基活性炭的制备及吸附处理重金属废水的研究[D].昆明理工大学博士论文,2007:62-63.
    [80]Yu L, Kumi H, Ninako F, et al. Layered lithium transition metal nitrides as novel anodes for lithium secondary batteries[J]. J. Electrochimica Acta,2004,49(21):3487-3496.
    [81]Hu X B, Cheng G, Zhao B, et al. Catalytic effect of dopants on micr ostructure and performance of MCMB-derived carbon laminations[J]. Carbon,2004,42(2):381-386.
    [82]Marsh H, Crawford D, O'Grady TM et al. Carbons of high surface area, A study by adsorption and high resolution electron microscopy[J]. Carbon,1982,20(5):419-426
    [83]张文辉,袁国军,李书荣,等.浸渍KOH研制煤基高比表面活性炭[J].新型炭材料,1998,13(4):55-59
    [84]陈进富,李兴存,李术元.碱活化法制备石油焦基活性炭及活化机理的研究[J].燃料化学学报,2004,32(1):54-58
    [85]张引枝,贺福,王茂章等.高比表面积聚丙烯晴_PAN_系活性碳纤维的研制[J].材料科学与工程,1996,14(1):50-55
    [86]肖仁贵,廖霞.KOH为化学活化剂的活化过程[J].贵州化工,28(5):26-27
    [87]Lu Chunlan, Xu S P, Gan Y X et al. Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH[J]. Carbon,43(2005):2295-2301
    [88]成果,谢应波,龙东辉等.超级电容器用新型微晶炭的结构及其电容性能[J].华东理工大学学报,2009,6(35):803-808

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700