超临界机组调节级导叶和高压级实验及改型数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展超临界汽轮机组是火电行业落实“十一五”规划纲要中提出的“节能减排”国策的主要措施之一。通过采用现代设计技术,例如子午收缩以及叶片的弯扭掠等对在线运行的超临界汽轮机组进行改型设计,可以进一步提高该类机组的相对内效率,降低煤耗,减少排入大气的NOx等有害气体。同时由于超临界汽轮机组是从国外引进的设计,借助改型设计也能为我国研制具有独立知识产权的超临界汽轮机组提供技术储备。
     欲对国外引入的超临界汽轮机组(原型)进行改型设计,首先必须消化吸收其先进的设计理论与经验。为此,本文选择原型两典型级的具有代表性的三套叶栅,即调节级的导向叶栅以及第八压力级的静、动叶栅作为实验模型在低速风洞上进行静态吹风实验。尽管实验条件未能满足模化理论要求,但仍能相对地根据实验结果分析原型叶栅的气动性能,确认其设计思想。同时,实验数据也用于校核数值模拟软件。
     应用五孔球头测针详细测量了不同冲角下三套叶栅气动参数沿叶高和节距的分布。采用墨迹显示技术,显示了三套叶栅壁面(包括叶片表面和上下端壁)极限流线谱。通过对实验结果的理论分析,讨论了叶片前缘形状、载荷分布、叶片弯掠以及冲角对叶栅气动性能的影响。
     实验结果表明,具有子午收缩外端壁的调节级导向叶栅沿叶高形成的静压分布是均匀的,即抑制了边界层的径向流动又抵消了吸力侧出口逆压梯度段的不利影响;而其后部加载特性可以显著降低流道前部和中部的横向压力梯度,削弱了端壁横向二次流动与吸力侧壁角分离;在±10°冲角范围内,总流动损失变化不大,说明实验叶栅具有良好的冲角适应性。在第八压力级静、动叶栅的设计中,采用沿叶高改变吸力面最低压力点轴向位置的后部加载叶型和正弯叶片,显著降低了上下端壁附近叶片的气动负荷,从而减小了两端壁上的横向压力梯度,端部流动损失被降至最低。此外,叶片的正弯还分别在压力面和吸力面上形成了沿叶高的“C”型静压分布,使吸力侧壁角易堆积的边界层低能气体均匀地扩散进入主流,抑制了叶栅的壁角分离。由叶片表面流动显示可以看出,沿绝大部分叶高叶片型面边界层无径向流动,说明在这两套叶栅中径向二次流很小。
     为了进一步提高超临界汽轮机的气动性能,创立有自主知识产权的设计技术,本文应用经上述实验数据校核的NUMECA软件,分别对调节级导向叶栅和第八压力级静、动叶栅进行了改型设计,通过数值仿真考察了弯扭掠全三维设计技术对叶栅气动性能的影响。最后,对第八压力级进行了掠叶片的匹配设计,数值研究了掠叶片级的设计工况性能。
     调节级导叶改型设计的仿真结果表明,调节级导叶采用正或反弯叶片,叶栅的流动损失大致相同,但正弯叶片气动参数沿叶高的分布比反弯叶片均匀。在不对上端壁进行防磨处理的情况下,建议采用正弯叶片。与正、反弯叶片比较,具有凸型子午收缩的原型导向叶栅流动效率最高,气动参数沿叶高的分布也最均匀,在对上端壁进行防磨处理后,宜采用子午收缩调节级导叶。
     第八级静、动叶采用轴向掠叶片设计的仿真结果显示:与原型静、动叶栅比较,静叶栅采用后掠叶片时的流动损失稍有降低,动叶栅采用后掠叶片时总的流动损失与原型动叶栅的流动损失大致相同,因为在叶栅中部气流比端部在上游进入流道,在相同轴向位置叶栅中部气流有较大的降压比,因此沿叶高形成了两端高中间低的压力分布,即“C”型压力分布。将聚集在叶栅两端低能边界层流体扩散进主流,从而减少了低能流体在端壁壁角的堆积。而前掠静、动叶片的采用则有相反的结果,会增加总流动损失。由于气流在叶栅两端比叶展中部先进入流道,所以在相同轴向位置,形成沿叶高的中间大两端小的反“C”型压力分布,将叶片表面低能边界层流体推向两端壁角,边界层内低能流体堆积在两端,加重了叶栅吸力侧壁角分离。
     高压级设计工况数值仿真结果表明:叶片沿轴向掠后,叶型积迭线沿轴向倾斜对流场压力分布产生了影响。由于在不同叶高气流进入叶栅的轴向位置不同,使得后掠叶片栅沿叶高压力呈“C”型分布,前掠叶片栅压力沿叶高呈反“C”型分布。叶片沿轴向掠也改变了能量损失系数沿叶高的分布,在相同条件下对比原型叶栅级、后掠叶栅级和前掠叶栅级的总能量损失系数,原型叶栅级的最小,后掠叶栅级次之,而前掠叶栅级最大。
The supercritical turboset is being developed to save energe and reduce emission. To improve the relative inner efficiency, depress the coal cost, and reduce the harmful gas discharged into the air, several modern design technologies, such as meridian shrink shroud and bowed, swept and twisted blades, and so on, are applied to modify the on-line running supercritical turboset. In addition the re-design and modification could provide technical reserve for developing Chinese supercretical turboset with independent intellectual property rights.
     To re-design the introduced supercritical turboset, one has to digest and absorb its design theory and experience in the first place. Thus three representative prototype cascades, including the guide vane of the adjusted stage and the eighth stage (stator and rotor), are selected as the test model in the low speed wind tunnel. Although the test conditions don’t satisfy the requirement of modeling theory, one could analyse the aerodynamic performance of the prototype cascade and confirm its design idea according to the experiment. What’s more, the measured data can be employed to validate the CFD code.
     The aerodynamic parameters distributions of the three cascades along the blade hight and pitch at different incidences are detailed measured with the five-hole survey probe. And the limited streamline patterns on the endwalls of the cascades are displaced by the ink trace visualization technique. Based on the theretical analysis on the test results, the effects of the blade leading edge shape, load distribution, bowed and swept blade and incidence on the cascades aerodynamic performances are discussed in the following segment.
     There is an even static pressure distribution along the blade height in the adjusted stage guide vane because of the meridian-shrink shroud. Such pressure distribution could control the radial flow in the boundary layer and decrease the negative influence of the adverse pressure gradient at the suction side exit. The aft-loading characteristic of the vane largely depresses the transverse pressure gradient in the front and at the midst of the passage, and it also decreases the transverse secondary flow at the endwalls and the separation at the suction side corner. The variation of total flow loss is rather small at incidences ranged from -10°to 10°, indicating fine incidence adaptability of the test cascade. For the eighth pressure stage, the aft-loading technique and positive bowed blade profile are employed. Thus the aerodynamic loads on the upper and lower endwalls are remarkably decreased, which leads to reduced local transverse pressure gradient and the lowest flow loss on the endwalls. Due to the positive bowed vane profile, there is“C”type static pressure distributions along blade height on the vane surfaces. Such pressure distributions could decrease corner separation and result in even diffusion of the low energy gas in the corner boundary layer at the suction side into main stream. It is also shown in the test that there is no radial flow in the boundary layer on the blade surface at most of the blade hight.
     To improve the aerodynamic performance of the supercritical steam turbine and found the design technology with independent intellectual property rights, the modification of the adjusted stage guide vane and the eighth pressure stage are carried out. And the solver is NUMECA, which has been validated by the measured data mentioned above. The effects of bowed, twisted and swept blade on the aerodynamic performance of cascade are investigated by numerical simulations. Then the matching design of the eighth pressure stage with swept blades is carried out to study the performance of the stage with swept blades in the design operation condtions.
     The numerical results of the modified adjusted stage vane indicate that the positive blade leads to similar flow loss to negative blade dose, and the former one would bring more even distributions of aerodynamic parameters along the radial direction than the latter one. Without preventing abrading measure on the shroud, the positive blade is suggested to be employed. Compared with the results by positive and negative bowed blades, the prototype adjusted vane cascade, with meridian shrink shroud, is with the highest flow efficiency and the most even aerodynamic parameters distributions along the radial directions. Thus the adjusted stage vane with meridian shrink shroud is advised to be ultilized after preventing abrading measure applied to the shroud.
     The swept techniques, including backward swept one and forward swept one, are applied to the eighth pressure stage. For the backward swept stator and rotor, the fluid flow at radial midst enters into the passage earlier than that near the upper enwall, and greater pressure drop occurs at the passage midst, resulting in the C-type pressure distribution along the radial direction. Such pressure distribution could reduce the low energy fluid at the corner, thus there are slightly decreased and similar flow losses in the stator and rotor, respectively, compared with the prototype stage. For the forward swept stator and rotor, there are opposite effects on pressure distribution and the flow losses. A reverse-C-type pressure distribution occurs along the radial direction, and the low energy fluid flow towards the endwalls, strengthening the corner separation in the corner at the suction side. Therefore the flow loss in the stage is increased.
     To sum up, the pressure distribution of fluid and the energy loss coefficient could be affected by the swept blades. Since the axial positions of fluid at differet radial position differ from each other, the C-type pressure distribution occurs in the backward swept blade, but the reverse-C-type one in the forward swept blade. In addition, the total energy loss coefficient of the prototype stage is the smallest, but that of the forward swept one is the largest.
引文
1 J. D. Denton. Loss Mechanisms in Turbomachines. ASME Paper 93-GT-435. 1993
    2 D. G. Ainley. The Performance of Axial Flow Turbines. Institution of Mechanical Engineers. 1948, 159:230~237
    3 C. H. Sieverding, P. Van den Bosch. The Use of Coloured Smoke to Visualize Secondary Flows in a Turbine-Blade Cascade. Journal of Fluid Mechanics. 1983, 134(9):85~89
    4 J. D. Denton. Loss Mechanism in Turbomachines. ASME Paper 93-GT-435
    5 E. Bailje, R. L. Binsley. Axial Turbine Performance Evaluation. J. Engineering for Power, Trans. ASME 1968
    6 H. R. M. Craig, H. J. A. Cox. Performance Estimation of Axial Flow Turbine. Proc. Instn. Mech. Engrs. 1970: 407~424
    7 F. Martelli, Boretti. Development of an Experimental Correlation for Transonic Turbine Flow. ASME Paper 86-GT-108
    8 Jr. H. W. Prust. Effect of Trailing Edge Geometry and Thickness on the Performance of Certain Turbine Stator Blading. NASA TN D6637, 1972
    9 T. P. Moffitt, S. M. Nosek, R. J. Roelke. Turbine Aerodynamic Considerations for Advanced Turbine. NASA SP259, 1971
    10 G. A. Deich, L. Y. Filoppor, Lazarer. A Loss of Turbine Blade Cascades. G.E.G.B. Trans. 1965: 4563~4564
    11 D. J. Mee, N. C. Baines, M. L. G. Oldfield et al. An Examination of the Contributions to Loss on a Transonic Turbine Blade in Cascade. ASME Journal of Turbomachinery, 1992, 114: 155-162
    12 S. M. Li, T. L. Chu, Y. S. Yoo, et al. Transonic Flow Losses of Two Steam Turbine Blades at Large Incidences. ASME Paper GT-2002-30334, 2002
    13 A. Perdichizzi. Mach Number Effects on Secondary Flow Development Downstream of a Turbine Cascade. ASME Journal of Turbomachinery, 1990, 112: 643-651
    14 F. Bassi, C. Osnaghi, A. Perdichizzi, et al. Secondary Flows in a Transonic Cascade: Comparison Between Experimental and Numerical Results. Journalof Fluids Enginnering, 1989, 111: 369-377
    15 D. Corriveau, S. A. Sjolander. Influence of Loading Distribution on the Performance of Transonic HP Turbing Blades. ASME Paper GT2003- 38079.2003
    16 H. H. Hebbel. Uber den Einfluss den Machzahl und Reynadds-Zahl auf die Aerodynamischen Beiwerte Von Turbinenschaufelgittern. VDI Forschhft 1960
    17 M. E. Deich, G. A. Filoppor, L. Y. Lazarer. A Loss of Turbine Blade Cascades. G.E.G.B. Trans. 1965: 4563~4564
    18 M. K. Mukhtarow. An Experimental Study of Losses in Turbine Blade Cascades at Low Renolds Numbers. Thermal Engineering. 1968, 15
    19 F. Haselbach, H. P. Schiffer, M. Horsman, et al. The Application of Ultra High Lift Blading in the BR715 LP Turbine. ASME Journal of Turbomachinery, 2002, 124: 45-51
    20 F. J. Malzacher, J. Gier, F. Lippl. Aerodesign and Testing of an Aero- Mechanically Highly Loaded LP Turbine. ASME Paper GT2003-38338, 2003
    21 R. Vázquez, D. Cadrecha, D. Torre. High Stage Loading Low Pressure Turbines a New Proposal For An Efficency Chart. ASME Paper GT2003-38374, 2003
    22 R. E. Mayle. The Role of Laminar-Turbulent Transition in Gad Turbine Engines. ASfME Trans., J. Turbomachinery, 1991, 113: 509-537.
    23 J. Hourmouziadis. Aerodynamic Design of Low Pressure Turbines. AGARD-167, 1989
    24 P. Sharma, R. H. Ni, S. Tanrikut. Unsteady Flow in Turbines. AGARD-195, 1994
    25 A.Duden, L. Fottner. Influence of Taper, Reynolds Number and Mach Number on the Secondary Flow Field of a Highly Loaded Turbine Cascade. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1997, 211(4): 309-32
    26 P. W. Giel, D. R. Thurman, I. Lopez, et al. Three-Dimensional Flow Field Measurements in a Transonic Turbine Cascade. ASME Paper 96-GT-113, 1996
    27邹正平,宁方飞,刘火星.雷诺数对涡轮叶栅流动的影响.工程热物理学报, 2004, 25(2): 216-219
    28 M. Ladwig, L. Fottner. Experimental Investigations of the Influence of Incoming Wakes on the Losses of a Liner Turbine Cascade. ASME Paper93-GT-394, 1993
    29 R. Vazquez, A. Antoranz, D. Cadrecha. The Influence of Reynolds Number, Mach Number and Incidence Effects on Loss Production in Low Pressure Turbine Airfoils. 2006-GT-91121. 2006
    30 I. Popovic, J. Zhu, W. Dai, et al. Aerodynamics of a Family of Three Highly Loaded Low-Pressure Turbine Airfoils: Measured Effects of Reynolds Number and Turbulence Intensity in Steady Flow. 2006-GT-91271. 2006
    31 C. Prakash. D. G. Cherry, H. W. Shin, et al. Effect of Loading Level and Distribution on Lpt Losses. 2008-GT-50052. 2008
    32 D. K. Van, T. C.Corke, S. C.Morris. Tip Clearance Flow Visualization of a Turbine Blade Cascade with Active and Passive Flow Control. 2008-GT-50703. 2008
    33 F. Satta, M. Ubaldi, P. Zunino, C. Schipani. An Experimental Investigation of the Wake Shed From a High-Lift Low Pressure Turbine Cascade at Different Reynolds Numbers. ASME Paper 2008-GT-51157. 2008
    34 R. J. Volino. Separated Flow Measurements on a Highly Loaded Low-Pressure Turbine Airfoil. ASME Paper 2008-GT-51445. 2008
    35 Hournouziadis, F. Buckl, P. Bergmann. The Development of the Profile Boundary layer in a Turbine Environment. ASME J. Turbomachinery. 1987, 109(2)
    36 W. J. Solomon. Effects of Turbulence and Solidity on the Boundary Layer Development in a Low Pressure Turbine. ASME Paper 2000-GT-0273, 2000
    37 J. Gier, S. Ardey. On the Impact of Blade Count Reduction on Aerodynamic Performance and Loss Generation in a Three-Stage LP Turbine. ASME Paper 2001-GT-0197, 2001
    38 G. V. M. Ramana, N. Venkatrayulu, Effect of incidence on secondary flows in a linear turbine cascade. ASME Paper 94-GT-381, 1994
    39 A. Perdichizzi, V. Dossena. Incidence Angle and Pitch-Chord Effects on Secondary Flows Downstream of a Turbine Cascade. ASME Journal of Turbomachinery, 1993, 115: 383-391
    40顾中华,韩万今,周逊.冲角对涡轮低压导向器气动特性影响的实验研究.航空动力学报, 2004, 15(2): 137-140
    41朱光宇,俞茂铮,戴丽萍.汽轮机调节级动叶栅大负冲角工况下的三维分离流动研究.动力工程, 2004, 24(2): 189-194
    42安柏涛,韩万今,王松涛.几何参数对涡轮低压导向器变工况性能的影响.航空动力学报, 2004, 19(1): 94-100
    43 D. B. M. jouini, S. A. Ajolander. Aerodynamic Performance of a Transonic Turbine Cascade at Off-Design Conditions. ASME Paper 2000-GT-0482, 2000
    44 M. J. Brear, H. P. Hodson, N. W. Harvey. Pressure Surface Separations in Low-Pressure Turbines-Part 1: Midspan Behavior. ASME Paper 2001-GT-0437, 2001
    45 M. J. Brear, H. P. Hodson, N. W. Harvey. Pressure Surface Separations in Low-Pressure Turbines-Part 2: Interactions with the Secondary Flow. ASME Paper 2001-GT-0438, 2001
    46 S.M. Li, T. L. Chu, Y. S. Yoo, et al. Transonic Flow Losses Of Two Steam Turbine Blades At Large Incidences. ASME paper Gt-2002-30334,2002
    47 R. Willinger, H. Haselbacher. Axial Turbine Tip-Leakage Losses at Off-Design Incidences. ASME Paper GT-2004-53039, 2004
    48 D. Corriveau, S. A. Sjolander. Aerodynamic Performance of a Family of Three High Pressure Transonic Turbine Blades at Off-Design Incidence. ASME Paper GT-2005-68159, 2005
    49 H. Tsujita, S. Mizuki. Numerical Investigation of Effects of Incidence Angle on Aerodynamic Performance of Ultra-Highly Loaded Turbine Cascade. ASME Paper GT-2006-90939, 2006
    50 T. Zoric, I. Popovic, S. A. Sjolander. Comparative Investigation of Three Highly Loaded Lp Turbine Airfoils: Part II -Measured Profile and Secondary Losses at Off-Design Incidence. ASME Paper GT-2007-27539, 2007
    51 P. Pucher, R. Goehl. Experimental Investigation of Boundary Layer Separation with Heated Thin-Film Sensor. ASME J. of Turbomachinery. 1987. 109(2): 303~309
    52 J. P. Gortelow, A. R. Blanden. Investigation of Boundary Layer Transition in an Adverse Pressure Gradients. ASME Paper 88-GT-298
    53 H. P. Hodson. Modeling Unsteady Transition and its Effects on Profile Loss. ASME J. Turbomachinery. 1900, 112(4): 691~701
    54 J. Costa, T. Arts. Boundary Layer Transition under the Pressure of Discrete Frequencies in the Free stream Turbulence Spectrum. ASME paper 91-GT-355
    55 J. P. Gostelow. Cascade Aerodynamics. Pergamon Pres, New York, 1983
    56 H. D. Joslyn, R. P. Dring. Negative Incidence Flow over A Turbine Rotor Blade.ASME paper 82-GT-23
    57 R. P. Dring, H. D .Joslyn, L. W. Hardin,et al. Research on Turbine Rotor Stator Interaction and Rotor Negative Incidence Stall. AFWAL-TR-81-2114 (ADA116341),1981
    58 B. Lakshminarayana. Methods of Predicting the tip Clearance Effects in Axial Flow Turbomachinery. ASME, Journal of Basic Engineering. Sep, 1970
    59叶大均,王仲奇.叶轮机械真实流动损失机理及控制方法的研究,国家自然科学基金会重大项目,工程热物理中关键性问题的研究,第一部分—学术研究总结. 1992
    60 A. Yamamoto, R. Yanagi. Production and Development of Secondary Flows and Losses within a Three-dimensional Turbine Stator Cascade. ASME Paper 85-GT-217
    61 A. Yamamoto. Production and Development of Secondary Flows and Losses within Two Type of Straight Turbine Cascades, Part I: A Stator Case. ASME Paper 86-GT-184
    62 J. Moore, A. Ransmary. Flow in a Turbine Cascade, Part I: Losses and Leading Edge Effects. ASME Paper 83-GT-68
    63 J. H. Horlock. Axial Flow Turbines. Butterworths Press, London. 1966
    64 W. R. Hawthrone. The Application of Secondary Flow Analysis to the Solution of Internal Flow Problems. Fluid Mechanics of Internal Flow. Elsevier, G. Sovran. 1974: 391~401
    65 A. Klein. Untersuchungen uber die Einfluss der Zustr?mgrenzschicht auf die Sekund?rstr?mung in den Beschaufelungen von Axialturbinen. Forsch. Ing., Ba 32, Nr.6
    66 L. S. Langston. Cross Flow in a Turbine Cascade Passage. ASME Journal of Engineering for Power. 1980, 102: 866~874
    67 H. P. Wang, etc. Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blade. ASME Paper 95-GT-7
    68 O. P. Sharma, T. L. Butler. Prediction of End Wall Losses and Secondary Flows in Axial Flow Turbine Cascade. ASME Journal of Turbomachinery. 1987, 109: 229~236
    69 R. J. Goldstein, R. A. Spores. Turbulent Transport on the End Wall in the Region between Adjacent Turbine Blades. ASME Journal of Heat Transfer. 1988, 110: 862~869
    70 J. D. Denton. Loss Mechanisms in Turbomachines Part II: Loss Generation in Turbomachines. Turbomachinery Blade Design Systems. Von Karman Institute for Fluid Dynamics, Belgium. 1999
    71 J. Dunham, P. M. Came. Improvements to the Ainley & Mathieson Method of Turbine Performance Prediction. ASME J. of Eng. for Power. 1970, 92(3): 252~256
    72 W. D. Armstrong. The Secondary Flow in a Cascade of Turbines. R&M 2979. 1985
    73 W. D. Armstrong. The Secondary Flow in a Cascade of Turbines. R&M 2979. 1985
    74 J. R. Turner. An Investigation of the End-Wall Boundary Layer of a Turbine Nozzle Cascade. Trans. ASME 1957, 79
    75 H. Wolf. Die Randverluste in Geraden Schaufelgittern. Wiss. I. Tech. Hochsch. Dresden. 1961, 10(2)
    76 T. E. Dorman, H. Welan, R. W. Lindlauf. The Application of Controlled Vortex Aerodynamics to Advanced Axial Flow Turbine. ASME Paper 68-GT-4. 1968
    77 J. C. Schlegel, H. C. Lin, W. F. Waterman. Reduction of Endwall Effects in a Small Low Aspect Ratio Turbine by Radial Work Distribution. ASME Paper 75-GT-7. 1975
    78李超,张瑞成.可控涡法设计离心叶轮的应用研究.动力工程. 2003, 23(6): 2845~2849
    79姜晓东,戴韧.离心压气机叶轮的可控涡设计及其CFD比较分析.工程热物理学报. 2005, 26(5):782~784
    80 T. Kawai, S. Shinoki, T. Adachi. Optimization of Endwall Boundary Layer Fence in Controlling Secondary Flow in a Turbine Cascade.日本机械学会论文集(B篇). 1988, 54: 3432~3439
    81唐燕平,陈茅章.扩压旋流叶栅实验研究.中国工程热物理学会热机气动热力学学术会议. 1987, No.872036
    82吴国钏.粘性流体力学(下册).南京航空学院出版社. 1985
    83宋彦萍,陈浮,赵桂杰,陈开莹,王仲奇.附面层吸除对大转角压气机叶栅气动性能影响的数值研究.航空动力学报. 2005, 20(4):561~566
    84宋彦萍,陈浮,刘军,王仲奇.采用附面层吸除的扩压叶栅变冲角性能.工程热物理学报. 2006, 27(4):589~591
    85邓昌清,胡骏.大转角压气机静子叶栅附面层吹吸数值研究.燃气涡轮实验与研究. 2007, 120(1):17~20
    86 A. P. Weiβ, L. Fottner. The influence of load distribution on secondary flow in straight turbine cascades. ASME paper 93-GT-86. 1993
    87 P. Marchal, C. H. Sieverding. Secondary Flows within Turbomachinery Bladings, Secondary Flow in Turbomachines. AGARD CP214. 1977
    88 J. A. Hesketh, H. Tritthart, P. Aubry. Modernization of steam Turbines for improved Performance. Symposium on Steam Turbine and Generator. 1994, October 12-14, Monaco
    89 G. Singh, P. J. Walker, B. R. Haller. Development of Three-Dimensional Stage Viscous Time Marching Method for Optimization of Short Height Stages. VDI BERCHTE NR. 1995, 1185:157~181
    90 P. Weiss, L. Fottner. The Influence of Load Distribution on Secondary Flow in Straight Turbine Cascades. ASME Journal of Turbomachinery. 1995, 117(1):348~355
    91徐星仲,朱斌,蒋洪德.一种后部加载型透平静叶的设计.工程热物理学报. 1997, 18(1):48~52
    92周迅,韩万金,王仲奇.前置导叶对后加载叶栅气动性能的影响.工程热物理学报. 2005, 26(4):584~586
    93孙奇,李军,孔祥林.后加载和高负荷前加载叶型气动性能的实验研究.西安交通大学学报. 2007, 41(1):23~27
    94李军,孙奇,晏鑫.前加载和后加载叶片气动性能的数值研究.动力工程. 2007, 27(6):835~839
    95 L. S. Langston. Crossflows in a Turbine Cascade Passage. ASME Journal of Engineering Power. 1980, 102(4):866~847
    96 B. Lakshminarayana. End-Wall and Profile Losses in a Low-Speed Axial Flow Compressor Rotor. ASME Paper 85-GT-174. 1985
    97 M. H. Trsn. Recent Development in Blading to Improve Turbine Efficency. ASME Paper 86-JPGT-Pwr-35. 1986
    98 R. E. Warner, M. H. Tran. Recent Development to Improve High-Pressure and Intermediate-Pressure Turbine Efficiency. IMech EC287/87. 1987
    99 M. E. Deich, A. E. Zaryankin, G. A. Eilippov, et al. Method of Increasing the Efficiency of Turbine Stages With Short Blade. A.E.I.Translation. 1960, No. 2816
    100 J. Moore, J. G. Moore. Entropy Production Rates from Viscous FlowCalculations Part II– Follow in a Rectangular Duct. ASME paper 83-GT-71. 1983
    101 M. J. Atkins. Secondary Losses and End-Wall Profiling in a Turbine Cascade. IMechE. 1987, c255/87
    102 O. P. Sharma, R. A. Graziani. Influence of Endwall Flow on Airfoil Suction Surface Mid-height Boundary Layer Development in a Turbine Cascade. ASME paper 82-GT-127. 1982
    103 J. E. Haas, R. J. Boyle. Analytical and Experimental Investigation of Stator Endwall Contouring in a Small Axial Flow Turbine. NASA-TP-2309. 1984
    104 S. H. Moustapha, U. Okapuu, R. G. Williamson. Influence of Rotor Blade Aerodynamic Loading on the Performance of a Highly Loaded Turbine Stage. ASME paper 85-GT-56. 1986
    105 S. H. Moustapha, R. G. Williamson. Investigation of the Effect of Two Endwall Contours on the Performance of an Annular Nozzle Cascade. AIAA Paper 85-1218. 1985
    106 W. H. Morris, R. G. Hoare. Secondary Loss Measurements in a Cascade of Turbine Blades with Meridional Wall Profiling. ASME paper 75-WA/GT-13. 1975
    107 F. C. Kopper, R. Milano, M. Vanco. An Experimental Investigation of Endwall Profiling in a Turbine Vane Cascade. AIAA paper 80-1089. 1980
    108 J. S. Ewen, F. W. Huber, J. P. Mitchell. Investigation of the Aerodynamic Performance of Small Axial Turbine. ASME paper 73-GT-3. 1973
    109 T. Arts. Effects of Tip Endwall Contouring on the Three-Dimensional Flow Field in an Annular Turbine Nozzle Guide Vane: Part 2– Experimental Investigation. ASME paper 85-GT-108. 1985
    110 E. Boletis. Effects of Tip Endwall Contouring on the Three-Dimensional Flow Field in an Annular Turbine Nozzle Guide Vane: Part 1– Experimental Investigation. ASME paper 85-GT-71. 1985
    111 M. V. Petrovic, G. S. Dulikravich, T. J. Martin. Maximizing Multistage Turbine Efficiency by Optimizing Hub and Shroud Shapes and Inlet and Exit Conditions of Each Blade Row. ASME Paper 99-GT-71. 1999
    112 S. H. Moustapha, R. G. Williamson. Investigation of the Effect of Two Endwall Contours on the Performance of an Annular Nozzle Cascade. AIAA/SAE/ASME/ASEE 21st Joint Propulsion Conference. AIAA-85-1218.1985
    113 S. F. Smith. A Simple Correlation of Turbine Efficiency. Journal Roy. Aero. Soc, 1965, 69(7): 467~470
    114 R. W. Fox, S. J. Kline. Flow Regimes in Curved Subsonic Diffusers. Journal of Basic Engineering. 1962,84(9):303~316
    115 T. Sonoda, T. Arima, M. Oana. The Influence of Downstream Passage on the Flow within an S-Shaped Duct. ASME Paper 97-GT-83. 1997
    116 J. Schnaus, L. Fottner. Experimental and numerical investigations of the influence of endwall inclination and countouring on the flow field of a highly loaded turbine cascade. AIAA IS 123/GE3. 1997, Chattanooga
    117 W. Traupel. Thermische Turbomaschinen. Band I. 1988, Springer-Verlag, Berlin
    118 M. E. Dejc, B. M. Trojanovskij. Untersuchung und Berechnung axialer Turbinenstufen. 1973, VEB Verlag Technik, Berlin.
    119 W. Br?unling, F. Lehthaus. Investigation of the Effect of Annulus Taper on Transonic Turbine Cascade Flow. J. Eng for Gas Turbine and Power. 1986, 108: 285~292
    120 H. M. Zebner. Experimentelle und theoretische Untersuchung der Sekund?rstr?mung durch Turbinengitter mitbesonderer Berücksichtigung der durch die Interaktionen zwischen profil und Seitenwandgrenzschichten entstehenden Verluste. Dissertation, RWTH, Aachen, 1990
    121 A. Duden, L. Fottner. Influence of Taper, Reynolds NUMBEr and Mach Number on the Secondary Flow Field of a Highly Loaded Turbine Cascade. IMech. 1997, A01497
    122 A. Duden, I. Raab, L. Fottner. Controlling the Secondary Flow in a Turbine Cascade by 3D Airfoil Design and Endwall Contouring. ASME paper 98-GT-72. 1998
    123 A. Duden, L. Fottner. Controlling the Secondary Flow in a Turbine Cascade by 3D Airfoil Design and Endwall Contouring at Off-Design Incidence. ASME paper 99-GT-211. 1999
    124李兆瑞,叶剑,陆利蓬.变逆压梯度湍流边界层条纹结构的流动显示.中国工程热物理学会热机气动热力学学术会议. 2000, No.20002004
    125安柏涛,韩万金,王松涛,王仲奇.大扩张角子午流道型线对损失的影响.推进技术. 2001, 22(3):211~214
    126赵大勇,胡松岩,朱铭福.大扩张角涡轮导叶气动设计研究.中国航空学会动力分会.第十一届叶轮机学术会议论文集. 2001
    127 M. J. Atkins. Secondary losses and end-wall profiling in a turbine cascade. IMechE. 1987, C255/87
    128 M. J. Atkins. Endwall Profiling in Axial Turbines. PhD Thesis Cambridge University. 1984
    129 R. E. Warner, M. H. Tran. Recent Developments to Improve High Pressure and Intermediate-Pressure Turbine Efficiency. IMech.E. Turbo-Conference. 1987, C278/87
    130 M. G. Rose. Non-axisymmetric Endwall Profiling in the HP NGVs of an Axial Flow Gas Turbine. ASME Paper 94-GT-249, 1994
    131 J. C. Hartland, D. G. Gregory-Smith, M. G. Rose. Non-Axisymmetric Endwall Profiling in a Turbine Rotor Blade. ASME paper 98-GT-525, 1998
    132 N. W. Harvey, M. G. Rose, M. D. Taylor. Non-Axisymmetric Turbine End Wall Design: Part I Three-Dimensional Linear Design System. ASME Paper 99-GT-337. 1999
    133 J. C. Hartland, D. G. Gregory-Smith, N. W. Harvey, et al. Non-Axisymmetric Turbine End Wall Design: Part II Experimental Validation. ASME Paper 99-GT-338. 1999
    134 J. Yan, D. G. Gregory-Smith, N. Ince. Profiled End-Wall Design for a Turbine Nozzle Row. 3rd European Turbomachinery Conference. 1999, London
    135 J. Yan, D. G. Gregory-Smith, P. J. Walker. Secondary Flow Reduction in a Nozzle Guide Vane Cascade by Non-Axisymmetric End-wall Profiling. ASME Paper 99-GT-339. 1999
    136 H. Sauer, R. Mller, K. Vogeler. Reduction of Secondary Flow Losses in Turbine Cascades by Leading Edge Modifications at the Endwall. ASME Paper 2000-GT-0473. 2000
    137 A. R. Moore, M. V. Lowson. Drag Reduction in a rectangular Duct Using Riblets. Aeronaut. J. 1995, 99(995)
    138赵桂林等.非光滑叶片对叶栅气动特性影响的实验研究.中国工程热物理学会.热机气动热力学学术会议. 2000, No.2002077
    139丰镇平,沈祖达.一种适用于车用增压器涡轮的前弯后掠式叶轮.内燃机学报. 1997, 15(4):471~478
    140杨爱玲,陈康民.轴向掠叶片对涡轮静叶栅流场气动及声学特性的影响.流体机械. 2000, 28(3):25~29
    141 Corsini, F. Rispoli. The Role of Forward Sweep in Subsonic Axial Fan Rotor Aerodynamics at Design and Off-Design Operating Conditions. ASME Paper GT-2003-38671. 2003
    142岳国强,韩万金.掠对涡轮叶栅气动性能的影响.推进技术. 2004, 25(6):512~516
    143 Stüer, Heinrich, Borthwick, et al. Aerodynamic concept for very large steam turbine last stages. Proceedings of the ASME Turbo Expo, 6:673~687, 2005
    144祁静,张宏涛.掠高变化对涡轮叶栅型面压力场的影响.节能技术. 2006, 24(1):94~97
    145祁静.掠高变化对涡轮叶栅总体性能的影响.汽轮机技术. 2006, 48(5): 367~368
    146 P. Graham, Harvey, W. Neil. The influence of sweep on axial flow turbine aerodynamics at mid-span. ASME Turbo Expo, PART A, 2006, 6: 925~935
    147 Pullan, Graham, Harvey. Influence of sweep on axial flow turbine aerodynamics at midspan. Journal of Turbomachinery, 2007, 129(3):591~598
    148 Pullan, Graham. Harvey. The influence of sweep on axial flow turbine aerodynamics in the endwall region. Proceedings of the ASME Turbo Expo, PART A, 2007, 6: 735~747
    149 Pullan, Graham, Harvey, et al. The influence of sweep on axial flow turbine aerodynamics in the endwall region. Journal of Turbomachinery, 2008, 130(4):1~10
    150赵一兵,徐惠坚.掠高变化对涡轮叶栅气动性能的影响.汽轮机技术. 2008, 50(4):128~130
    151МинюшкинЮИ.КВопросу.ПространственногоТеченияНевязкойСжимаемойЖидкостивСопловойВенцеОсевойтурбомашины.ТрудыЛКИ,вып. 1959, 23
    152М.Е.Дейя,А.В.Тубарев,Г.А.Филиппов,иванчжун-ци.НовыйМетодПрофилированияНаправляющихРешетокСтупенейсМалыйd/L.Теплоэнергетика1962, (8)
    153Г.А.Филиппов,ИВанЧжун-ци.ВлияниеЗакруткиПотоканаХаракт-еристикиСоппловыхРешеток.Телоэнергетика. 1964, (7)
    154 E. G. Gogolv et al. Results of Testing Axial Turbine Stage Models with Radial Loading of the Guide Blades. GEL Power Eng. Ltd., Manchester, TranslationNo. 4354. 1969
    155 U.Окарии. Some Results from Tests on a High Work Axial Gas Generator Turbine. ASME Paper 74-GT-81. 1974
    156 K. V. Patel. Investigation of a High Work Axial Gas Generator Turbine. SAE Paper. 1980, No. 800618
    157 Wang Zhongqi, Lai Shenkai, Xu Wenyuan. Aerodynamic Calculation of Turbine Stator Cascades with Curvilinear Leaned Blades and Some Experimental Resultes. Symposium Paper of 5-th ISABE. 1981, 30(1)-30(9)
    158 Wang zhongqi, Han Wanjin, Xu Wenyuan. The Blade Curving Effects in a Turbine Stator Cascades with Low Aspect Ratio. Chinese Journal of Engineering Thermophysics. 1990, 11(3):254~262
    159 Shi Jing et al. An Investigation of a Highly Loaded Transonic Turbine Stage with Compound Leaned Vanes. Trans of ASME. Journal of Engineering for Gas Turbines and Power. 1986, 108(4): 265~269
    160 J. Hourmouziadis et al. 3-D Design of Turbine Airfoils. ASME Paper 85-GT- 188. 1985
    161 F. A. E. Breugemans. Influence of Incidence Angle on the Secondary Flow in a Compressor Cascade with Different Dihedral Distribution. ISABE 85-7078. 1985, 663~668
    162 C. H. Sieverding. Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passage. ASME Journal of Engineering for Gas Turbine and Power. 1985, 107(2): 248~257
    163 S. Harrison. The Influence of Blade Lean on Turbine Losses. ASME Paper 90-GT-55. 1990
    164 H. Kawagishi, S. Kawasaki. The Effect of Nozzle Lean on Turbine Efficiency. Design, Repair, and Refurbishment of Steam Turbines. ASME. 1991, 13
    165 J. Gred, D. Heinrich, T. Heinz. Advanced LP Turbine Installation at 1300MW Power Station. Unterweser for Presentation at the American Power Conference. 1991, Chicago, Illinois. April 29- May 1
    166 D.Harris, Weingold, J. Robert et al. Bowed Stators: An Example of CFD Applied to Improve Multistage Compressor Efficiency. ASME Journal of Turbomachinery. 1997, 119(4): 161~168
    167 Han Wanjin, Wang Zhongqi, Tan Chunqing, et al. Effects of Leaning and Curving of Blades with High Turing Angles on the AerodynamicCharacteristics of Turbine Rectangular Cascades. Trans. of ASME, Journal of Turbomachinery. 1994, 116(3): 417~424
    168 Han Wanjin, Huang Hongyan, Wang Zhongqi. Influence of Blade Chordwise Lean on Development of Cascade Losses. Journal of Thermal Scince. 1996, 5(4):223~230
    169 H. D. Weingold, R. J. Neubert, R. F. Behlke et al. Bowed Stator: An Example of CFD Applied to Improve Multistage Compressor Efficiency. Journal of Turbomachinery. 1997, 119(2): 161~168
    170 H .V. Mohsen, S.T. Wang. Numerical Study of yhe Effects of Bowed Blades on Aerodynamic Characteristics on a High Pressure Turbine. ASME Paper GT2005-68214. 2005
    171鞠凤鸣.固粒对高压第一级喷嘴腐蚀机理的数值研究.哈尔滨工业大学硕士学位论文. 2006, 6
    172蔡颐年.蒸汽轮机装置.机械工业出版社. 1980
    173徐大懋.先进控制流透平设计的展望.中国工程热物理学会热机气动热力学学术会议. 1999, No.992035
    174 P. B. Scarlin, C. Henry. High Efficiency Steam Power Plant. CSPE-JSME- ASME -International Conference Paper. Sanghai, China, 1995:700~711

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700