寒冷地区道路混凝土抗盐冻剥蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在寒冷地区,使用除冰盐对路面进行除雪,往往会导致路面的剥蚀和开裂,使水泥混凝土路面达不到设计的使用年限。目前,道路混凝土所采取的措施提高了混凝土的抗水冻性能,但没有解决道路混凝土的盐冻剥蚀问题。为此,本文选择适合评价寒冷地区道路混凝土抗盐冻性能的试验方法,研究降低混凝土盐冻剥蚀量和相对动弹性模量损失率的措施,提高道路混凝土的抗盐冻剥蚀性能,使混凝土能够满足寒冷地区的使用要求。
     本文比较了国内外的混凝土抗冻性能试验方法。从传热介质的种类、试件与传热介质的接触方式、评价参数及试验方法的可操作性方面考虑,选择CDF方法研究道路混凝土抗盐冻剥蚀性能。并根据CDF方法的规定,研发了混凝土盐冻试验机组。该设备具有自动控制温度、自动断电保护及自动记录存储数据等功能。
     研究了抗折强度、水灰比、掺合料及引气剂对道路混凝土抗盐冻剥蚀性能的影响,结果表明:混凝土的盐冻剥蚀量和相对动弹性模量损失率随抗折强度的增加而减小;混凝土的抗盐冻剥蚀性能随水灰比的减小而提高;在混凝土中添加掺合料及引气剂能够减小混凝土的盐冻剥蚀量和相对动弹性模量的损失率,其中复掺掺合料混凝土的抗盐冻剥蚀性能优于单掺掺合料的混凝土。因此,在实际工程中应提倡掺合料的复掺技术。
     采用WHY-100型全自动应力试验机进行重复加载试验,研究重复荷载对道路混凝土抗盐冻剥蚀性能的影响。结果表明:重复荷载作用后,混凝土的盐冻剥蚀量和相对动弹性模量损失率随荷载水平的增加而增大,道路混凝土抗盐冻性能明显下降。
     研究内掺有机硅对混凝土抗压强度、盐冻剥蚀量及相对动弹性模量损失率的影响,同时观察混凝土试验面的剥蚀状况。结果表明:内掺有机硅后,普通混凝土28d抗压强度提高了4.9%,高性能混凝土28d抗压强度基本保持不变;普通混凝土及高性能道路混凝土的盐冻剥蚀量和相对动弹性模量损失率明显降低。有机硅外加剂改善了混凝土表面的剥蚀状况和内部微观结构,提高了道路混凝土的抗盐冻性能。
     此外,本文配制的有机硅涂料能够显著地降低混凝土的盐冻剥蚀量和相对动弹性模量损失率,较明显地改善了道路混凝土盐冻后的表面剥蚀状况。经SEM观察表明:盐冻后微观结构较致密,没有出现裂缝,干燥后没有NaCl晶体析出。与减小水灰比、添加掺合料和引气剂相比,表面涂刷有机硅是提高寒冷地区道路混凝土抗盐冻剥蚀性能的更有效措施。
     本文评价了各种措施对道路混凝土抗盐冻性能的改善作用,阐述了提高寒冷地区道路混凝土的抗盐冻剥蚀机理及技术途径,为抗盐冻剥蚀道路混凝土的应用及推广提供了依据。
Deicing salt was used to thaw snow on the concrete pavement in cold regions. It can lead to scaling and cracking of pavement so that cement concrete pavement did not reach service life to design. At present some measures adopted improved pavement concrete in freeze-water resistance but freeze-deicer salt resistance of pavement was not improved obviously. So the test method for freeze-deicing salt resistance of pavement concrete in cold regions was selected in this paper. Then the measures decreasing the scaled mass and relative dynamic modulus of elasticity loss factor were researched. Freeze-deicing salt resistance of pavement concrete was improved and the pavement concrete can be applied for cold regions.
     In this paper the domestic and foreign test methods for freeze-deicer resistance of concrete were compared. According to the kinds of heat transfer medium, contact style between concrete specimens and heat transfer medium, evaluation parameters and operation of test method, CDF method was selected to research freeze-deicing salt resistance of pavement concrete. And in accordance with the CDF method the test equips for freeze-deicer resistance were researched and developed. It had automatic control of temperature, automatic power-off protection and automatic data storage functions.
     Effect of the flexural strength, water cement ratio, admixture and air-entrained agent on freeze-deicer scaling resistance of pavement concrete was researched. The results showed the scaled mass and the loss rate of dynamic elasticity modulus decreased with increase of flexural strength. The freeze-deicer scaling resistance tended to improve with the reduction of water cement ratio. The scaled mass and the loss rate of dynamic elasticity modulus were decreased in the extent as result of admixture and air-entrained agent added into concrete. And freeze-deicer resistance of concrete with multiple kinds of admixture was superior to concrete with a kind of admixture so multiple admixtures should be advocated to use in practical engineering.
     WHY-100 automatic stress-testing machine was used for repeated loads and effect of repeated loads on freeze-deicer scaling resistance of pavement concrete was researched. The results showed that the scaled mass and relative dynamic modulus of elasticity loss factor increased with increase of load level after repeated loads, the freeze-deicing salt resistance of pavement decreased obviously.
     The effect of organosilicone on the compress strength, the scaled mass and loss rate of dynamic elasticity modulus of concrete were studied, the test surface of concrete specimens was observed. The results showed that the compress strength of ordinary concrete increased by 4.9% and the compress strength of high performance concrete was not changed at 28 day as result of organosilicone added into concrete. The scaled mass and loss rate of dynamic elasticity modulus of ordinary concrete and high performance concrete were greatly decreased. Organosilicone can decrease scaling on the surface, improve microstructure and freeze-deicer salt resistance of pavement concrete.
     In addition, the organosilicone coat prepared by our lab can obviously decrease the scaled mass and loss rate of dynamic elasticity modulus. Scaling on the surface of pavement concrete after deicer-frost was decreased. SEM observation showed that the microstructure of concrete was dense and there are few micro-cracks inside the concrete painted with the organosilicone. After drying no cubic NaCl crystals formed inside concrete. Compared with reducing the water and cement ratio and adding admixture and air-entrained agent the organosilicone painted on the surface of concrete was the more effective way to improve the freeze-deicing salt resistance of pavement concrete in cold regions.
     In this paper improvement of several measures in the freeze-deicing salt resistance of pavement concrete was appraised. The mechanics and technology way to improve the freeze-deicer scaling resistance of pavement concrete was summarized so it provided evidence for application and popularization of pavement concrete with freeze-deicer resistance.
引文
1于利刚,侯兰辉,王浩伙,刘岚.道路硅酸盐水泥的性能与推广应用.广东建材. 2006(3):34~35
    2方福森.国外水泥混凝土路面工程技术发展概况与趋向(上) .中国期刊网
    3谷寅,秦玥,张晓光.水泥混凝土路面的现状和发展措施.黑龙江交通科技. 2002(8):17~18
    4李华,程英华.我国水泥混凝土路面的现状与问题.中国公路学报. 1994(1):51~53
    5薛忠军.旧水泥路面加铺超薄沥青层综合技术的研究.哈尔滨工业大学博士学位论文. 2007:2~16
    6 Zongjin Li, C.K. Chau, Xiangming Zhou. Accelerated Assessment and Fuzzy Evaluation of Concrete Durability. Journal of Materials in Civil Engineering. 2005,(5):257~263
    7 Xiaohui Wang, Xila Liu. Modeling Bond Strength of Corroded Reinforcement with Stirrups. Cement and Concrete Research. 2004,(34):1331~1339
    8 Congqi Fang, Karin Lundgren, Liuguo Chen, et al. Corrosion Influence on Bond in Reinforced Concrete. Cement and Concrete Research. 2004,(34):2159~2167
    9 Yasuhiko Sato, Hassan Muttaqin, Jianguo Dai, et al. Mechanical Behavior of Concrete and RC Members Damaged By Freezing-Thawing Action. Proceedings of an International Workshop on Durability of Reinforced Concrete under Combined Mechanical and Climatic Loads. Qingdao: 2005:275~280
    10卢木.混凝土耐久性研究现状和研究方向.工业建筑. 1997, 27(5):1~4
    11张誉.现代土木工程的新进展.东南大学出版社, 1998:66~89
    12日本土木学会.混凝土构筑物的维护、修补与拆除.张富春.中国建筑工业出版社, 1990:66~87
    13洪乃丰.防冰盐腐蚀与钢筋混凝土的耐久性.建筑技术. 2000, 31(2) :102~104
    14朱蓓蓉,杨全兵,黄士元.除冰盐对混凝土化学侵蚀机理研究.低温建筑技术. 2000(1):3-6
    15李连志,柳俊哲,刘彦书等.除冰盐对混凝土的早期破坏机理及防治.低温建筑技术. 2005(4):13-15
    16 P. K .Mehta. Concrete Durablility: Fifty Year’s Progress. Proceeding of 2nd International Conference on Concrete Durability. ACISP126-1, 1991:1~33
    17 G. Batis, E. Rakanta. Corrosion of Steel Reinforcement due to Atmospheric Pollution. Cement & Concrete Composites. 2005, (27):269~275
    18 Chunqing Li. Reliability Based Service Life Prediction of Corrosion Affected Concrete Structures. Journal of Structural Engineering. 2004,(10):1570~1577
    19 Power T.C, A working hypothesis for further studies of frost resistance. Journal of The American Concrete Institute. 1945, 16(4)245~272
    20 Power T.C,. The air requirement of frost-resistance. Proceedings of the Highway Research Board. 1949, (29):184~211
    21 Power T.C. Void Spacing as a basis for producing air-entrained concrete . ACI Journal, Proceedings. 1954, 50(9)741~760
    22马国庆,钱玉林.混凝土的冻害及其机理.常州工学院学报. 2005(12):109~112
    23李金玉,曹建国,徐文雨.混凝土冻融破坏机理的研究.水利学报.1999(1):41~49
    24 Power T.C, and Helmuth, R.A.. Theory of volume change in hardened Portland cement pastes during freezing . Proceedings of the Highway Research Board. 1949, (32):285~2297
    25 Litvan, G. Frost action in cement paste. Materials and Structure. 1973, 6(34):293~298
    26 Mihta P K, Schiessl P, Raupach M. Performance and Durability of Concrete systems. Proceedings of 9th International Congress on the Chemistry of Cement.Vol.I. New Delhi, Elsevier Applied Science. 1992:571~659
    27 Max J.Setzer. Mechanical Stability Criterion, Triple-Phase Condition, and Pressure Differences of Matter Condensed in a Porous Matrix. Journal of Colloid and Interface Science. 2001, (235):170~182
    28 Max J.Setzer. Micro-Ice-Lens Formation in Porous Solid. Journal of Colloid and Interface Science. 2001, (243):193~201
    29 Max J.Setzer. Mechanisms of Frost Action. Proceedings of an International Workshop on Durability of Reinforced Concrete under Combined Mechanicaland Climatic Loads. QingDao, 2005:263~274
    30杨英姿,赵亚丁,巴恒静关于混凝土抗冻性试验方法的讨论.低温建筑技术. 2006(5):1~3
    31李金玉,曹建国,徐文雨等.混凝土冻融破坏机理的研究.水利学报. 1999, (1):41~49
    32 G?ran Fagerlund. Mechanical Damage and Fatigue Effects Associated with Freeze-Thaw of Materials. Proceedings of the International RELEM Workshop. Essen, Germany. The Publishing Company of RELEM, 2002:117~132
    33 Josef P. Kaufmann. Experimental Identification of Ice Formation in Small Concrete Pores. Cement and Concrete Research. 2004, (34):1421~1427
    34 Stefan Jacobsen. Calculating Liquid Transport into High-Performance Concrete during Wet Freeze-Thaw. Cement and Concrete Research. 2005, 35:213~219
    35 D.Bager, S. Jacobsen. A Model for the Destructive Mechanism in Concrete Caused by Freeze-Thaw. Proceedings of the International RELEM Workshop (PRO25). Cachan, France, 2002:17~40
    36李守巨,刘迎曦,陈昌林等.混凝土大坝冻融破坏问题的数值计算分析.岩土力学. 2004, 25(2):189~190
    37 S.Kasparek, M.J.Setzer. Analysis of Heat Flux and Moisture Transport in Concrete during Freezing and Thawing. Proceedings of the International RELEM Workshop. Essen, Germany. The Publishing Company of RELEM, 2002:187~196
    38 R.E.Beddoe. Low-Temperature Phase Transitions of Pore Water in Hardened Cement Paste. Proceedings of the International RELEM Workshop. Essen, Germany. The Publishing Company of RELEM, 2002:161~168
    39赵霄龙.寒冷地区高性能混凝土耐久性及其评价方法研究.哈尔滨工业大学博士学位论文. 2001:32~37
    40马昆林,谢友均,李立斌,龙广成,石明霞.混凝土在NaCI溶液中抗冻及抗渗性能的研究.混凝土. 2006, 200(6):15~17
    41 Rosli, A.and Harnick, A. B. Improving the durability of concrete to freezing and deicing salts. Durability of Building Materials and Components, 1980
    42 J. Stark, N. Chelouah. FREEZE-DEICING SALT RESISTANCE OF HIGH-STRENGTH CONCRETE. High Performance Concrete. MaterialProperties and Design. 1995:205~217
    43 P.E.Grattan-Bellew. Microstructural Investigation of Deteriorated Porland Cement Concretes. Construction and Building Materials. 1996, 10(1): 3~16.
    44 P. K. Mehta, P. J. M. Monterio. Concrete Structure, Propertied and Materials. New Jersey: Prentice Hall. 1993, 2:548~560
    45 G. Nerbeck.‘Pore Structure’-Significance of Tests and Properties of Concrete and Concrete and Concrete Making Materials. ASTM Special Technical Publication. 1982:211~219
    46 Neville A.M. Properties of Concrete. Pitman Publishing Ltd. 1995
    47赵霄龙,卫军,黄玉盈.混凝土冻融耐久性劣化与孔结构变化的关系.武汉理工大学学报. 2002,(12):14~17
    48罗晓辉,卫军,罗昕.混凝土劣化与有害孔洞的物理关系.华中科技大学学报(自然科学版). 2006, 34(3): 94~96
    49 Osama A. Mohamed, Kevin L. Rens, Judith J. stalnaker. Factors Affecting Resistance of Concrete to Freezing and Thawing Damage. Journal of materials in civil engineering. 2000,(2):26~32
    50冯乃谦.高性能混凝土.中国建筑工业出版社, 1996:123-140, 298-302
    51 M. J. Setzer, R. Auberg. Frost Resistance of Concrete: Proceedings of the International RELEM Workshop on Resistance of Concrete to Freezing and Thawing with or without De-icing Chemicals. Journal of Cold Regions Engineering. 1999,(3):56~58
    52谭克锋.水灰比和掺合料对混凝土抗冻性的影响.武汉理工大学学报. 2006, 28(3):58~60
    53 Richard Cantin and Michel Pigeon. DEICER SALT SCALING RESISTANCE OF STEEL-FIBER-REINFORCED CONCRETE. Cement and Concrete Research. 1996,26(11):1639~1648
    54 Christiane F., Pigeon M., Nemkumar B. Freeze-thaw durability and deicer salt scaling resistance of a 0.25 water-cement ratio concrete. Cement and Concrete Research. 1998, (18)4: 604~614
    55 T.C.Powers. Freezing Effects in Concete. Durability of Concrete. 1975(2):232~241
    56 G. Pardini, G. Vigna Guidi, R. Pini, et al. Structure and Porosity of Smectitic Mudrocks as Affected by Experimental Wetting-Drying Cycles and Freezing-Thawing Cycles. Catena. 1996, 27:149~165
    57 S.Perron, J.J. Beaudoin. Freezing of Water in Portland Cement Paste- An Ac impedance Spectroscopy Study. Cement & Concrete Composites. 2002, 24:467~475
    58赵娟.冻融环境下钢筋与混凝土间粘结性能及其损伤模型研究.哈尔滨工业大学博士学位论文. 2006:4~21
    59 Stark, J., Ludwig, H. M.(1995) The Inflence of The Type of Cementon the Freeze-Thaw and Freeze-deicing Salt Resistance of Cement Concrete Inter. Conference on Concrete under severe Concitions“consec”Sapporo/Japan
    60 L. Basheer, P.A.M. Basheer, A.E. Long. Influence of Coarse Aggregate on the Permeation Durability and the Microstructure Characteristics of Ordinary Proland Cement Concrete.Construction and Building Materials. 2005(19): 682~690
    61 Gao Peiwei, Deng Min, Feng Naiqian. The Influence of Superplasticizer and Superfine Mineral Powder on the Flexibility, Strength and Durability of HPC. Cement and Concrete Research. 2001, 31:703~706
    62 S. Chatterji. Freezing of Air-Entrained Cement-Based Materials and Specific Actions of Air-Entraning Agents. Cement & Concrete Composites. 2003, 25:759~765
    63 Lianxiang Du, Kevin J. Folliard. Mechanisms of Air Entraiment in Concrete. Cement and Concrete Research. 2005, 35:1463~1471
    64 57李金平,盛煌,丑亚玲.混凝土冻融破坏研究现状.路基工程. 2007(3):1~3
    65 G. fagerlund. Scaling, absorption and dilation of cement mortars exposed to freezing and thawing in NaCl solution. Freeze-Thaw Durability of Concrete. E &FN Spon, 1997
    66 M, Pigeon and N, Banthia. Freeze-thaw durability and deicer salt scaling resistance of a 0.25 water-cement ratio concrete. Canada, GIK 7P4 Received 22 December, 1987
    67 S. Jacobscn and E.J. Scllcvold. Frost/salt scaling and ice formation of concrete: Effect of curing temperature and silica fume on normal and high strength concrete Freeze-Thaw Durability of Concrete. E &FN Spon, 1997
    68 Jochen Stark and Horst-Michael Ludwig. Freeze-Thaw and Freeze-Deicing Salt Resistance of Concretes Containing Cement Rich in Granulated Blast Furnace Slag. ACI materials journal /January-February.1997:47~55
    69 Tarun R. Naik, Bruce W. Ramme. Pavement Construction with High-Volume Class C and Class F Fly Ash Concrete. ACI materials journal /March-April 1999:200~210
    70 M.D.A.THOMAS. Laboratory and field studies of salt scaling in fly ash concrete. Frost Resistance of Concrete. Proceedings of the International RILEM workshop. F&SPON 1997
    71 Mladcnka Saric-Coricl and Picrrc-Claudc Aitcin2. Is ASTM C 672 Curing Procedure Still Appropriate to Test the Scaling Resistance of Blended Cements. Cement, Concrete, and Aggregates. 2002,24, (2):198~242
    72 Brad Shotwell. How poor curing leads to scaling. Concrete Construction. 2003, 48(1):88
    73巴恒静,高小建.高性能混凝土早期开裂防治措施研究.哈尔滨建筑大学学报. 2002, 35(5):77~80
    74 Richard Cantin and Michel Pigeon. DEICER SALT SCALING RESISTANCE OF STEEL-FIBER-REINFORCED CONCRETE. Cement and Concrete Research. 1996, 26(11):1639~1648
    75 S. Jacobsen. Calculating liquid transport into high-performance concrete during wet freeze/thaw. C.C.R.. 2005, 35:213~21
    76 Cordon, W. A. and Derwin, M. Requirements for freezing and thawing durability for concrete. Proc. of ASTM. 1998,63:1026~1036
    77 Snyder, K. A., Clicton, J. R., and Knab, L. J. (1994) Freeze-Thaw Susceptibility of High Performance Concrete. 12. Ibausil Weimar, Wiss. Zeitschrift HAB, 5, 6, 7, 139~142
    78 H. Mihashi, X. Yan and S. Arikawa. STRENGTH PROPERTIES AND FROST DAMAGE RESISTANCE OF HIGH PERFORMANCE CONCRETE USING BLAST FURNACE SLAG AND SILICA FUME. High Performance Concrete: Mzterial Properties and Design: 195-204
    79刘志勇,马立国.高强混凝土的抗冻性与寿命预测模型.工业建筑. 2005,35(1):11-14.
    80宋玉普,冀晓东.混凝土冻融损伤可靠度分析及剩余寿命预测.水利学报. 2006, 37(3):259~263
    81余红发,孙伟,鄢良慧等.混凝土使用寿命预测方法的研究Ⅰ——理论模型.硅酸盐学报. 2002, 30(6):686~690
    82余红发,孙伟,金祖权,刘建忠.土木工程结构混凝土寿命预测的损伤演化方程.东南大学学报(自然科学版). 2006(36)增刊(Ⅱ):216-220
    83 M.Pigeon,M.Azzabi and R.Pleau. CAN MICROFIBERS PREVENT FROST DAMAGE? Cement and Concrete Research. 1996,26(8):1163~1170
    84 Huai-Shuai Shang, Yu-Pu Song, Li-Kun Qin. Experimental study on strength and deformation of plain concrete under triaxial compression after freeze-thaw cycles. Building and Environment, 2008,43(7):1197~1204
    85 M . Pigeon , R.Pleau , M.Azzabi , and N.Banthia. DURABILITY OF MICROFIBER-REINFORCED MORTARS. Cement and concrete research. 1996,26(4):601~609
    86 M. Pigeon, C.Talbot, J.Marchand and H.Hornain. SURFACE MICROSTRUCTURE AND SCALING RESISTANCE OF CONCRETE. Cement and Concrete Research. 1996,26(10):1555~1566
    87金伟良,赵羽习.混凝土结构寿命.科学出版社, 2002:1~9
    88金伟良,赵羽习.混凝土结构寿命研究的回顾与展望.浙江大学学报. 2002, 36 (4):371~380
    89中国工程院土木水利与建筑学部结构安全性与寿命研究咨询项目组.混凝土结构寿命设计与施工指南.中国建筑工业出版社, 2004: 36~41
    90王铁成,郭小强,阎西康.海水侵蚀环境下混凝土结构寿命的研究.东南大学学报(自然科学版). 2002(32):251~253
    91 Taejun Cho. Prediction of cyclic freeze–thaw damage in concrete structures based on response surface method. Construction and Building Materials, 2007,21(12):2031~2040
    92张东方,林家农,尹超.灰色系统理论在混凝土抗冻性能研究中的应用.山西建筑. 2007(50):163~164
    93林跃忠,鲍鹏.海水侵蚀混凝土抗冻强度的预测.研究河南大学学报. 2007(3):210~213
    94周圣斌,侯建国,杨小兵,周刚.钢筋混凝土结构冻融破坏的随时模糊可靠度分析.武汉大学学报(工学版). 2006, 37(6):70~78
    95关宇刚,孙伟,缪昌文.基于可靠度与损伤理论的混凝土寿命预测模型II:模型验证与应.硅酸盐学报. 2001(12):535~537
    96孟春红,张日向,商怀帅,宋元成. RBF神经网络在混凝土抗冻性能研究中的应用.东北水利水电. 2006(8):4~597中华人民共和国国家标准:普通混凝土长期性能和耐久性能试验方法GBJ82-85 98 ASTM C666-97. Standard Test Method for Resistance of Concrete to Rapid Freeze and Thawing 99张国强,覃维祖.掺粉煤灰混凝土抗盐冻剥蚀性能研究.低温建筑技术. 2000(4):3-4 100 ASTM C672-2003. Standard Test Method for Scaling Resistance of Concrete Surfaces Exposed to Deicing Chemicals 101张国强.混凝土抗盐冻研究.清华大学工程硕士学位论文. 102 prENV 12390-9 : Testing hardened concrete一Part 9: Freeze-thaw resistance-Scaling. 103贾耀东,谢永江,朱长华.国外混凝土抗冻性控制要求和实验方法综述.混凝土. 2005(6):24~28 104 DIN EN 13687-1:2002.Products and systems for the protection and repair of concrete structure-test methods-determination of thermal compatibility–Part1: Freeze-thaw cycling with de-icing salt immersion 105赵霄龙.寒冷地区高性能混凝土耐久性及其评价方法研究.哈尔滨工业大学博士学位论文. 2002:5~27 106张国强,覃维祖.混凝土抗盐冻剥蚀试验方法的研究.公路交通科技. 2000(4):5~7 107邢占东,氯离子环境下的双掺混凝土耐久性研究.大连理工硕士学位论文. 108刘兴德,牛福生,倪文.粉煤灰的资源化利用现状与研究进展.建材技术与应用. 2005(1) :12-15 109王学武,赵风清.粉煤灰综合利用研究述.粉煤灰综合利用. 2001( 6 ) :39~40 110王立刚.粉煤灰的环境危害与利用.中国矿业. 2001,10 (4) :27~28 111沈瑞德,贺鸿珠.考察美国利用粉煤灰的现状.上海建材. 2000, (6) :31~32 112赵丽华,赵中一.粉煤灰资源化的现状.环境污染治理技术与设备. 2003(4) :34~38 113蒋伟锋.水淬矿渣综合利用及发展前景.中国资源综合利用. 2002(9)16~19 114张雄,吴科如,韩继红.高性能混凝土矿渣复合掺合料特性与作用机理.混凝土与水泥制品. 1997, ( 3):42~44
    115 Khatri.R.P, Sirivivatnanon.V, Gross.W. Effect of different supplementary cementitious materials on mechanical properties of high performance concrete. Cement and Concrete Research. 1995, 25(1):209~220
    116 Bijen, Jan. Benefits of slag and fly ash. Construction and Building Materials,.1996,10(5):309~314
    117吴中伟,廉慧玲.高性能混凝土.中国铁道出版社, 1999:62~66
    118孙望超,颜承越.粉煤灰形态效应及应用技术.房材与应用. 1997(2):35
    119牛季收,王保君.粉煤灰在混凝土中的效应及应用.铁道建筑. 2004(2):74
    120刘爱新.粉煤灰混凝土的性能及其应用.混凝土. 2001(12):6~7
    121原通鹏,邓德华,曾志,潘武略.矿物掺合料抗氯离子扩散性能的试验研究.混凝土. 2005(11):62~70
    122 Faguang Leng, Naiqian Feng, Xinying Lu. An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete. Cement and Concrete Research, 2000, 30:989~992
    123钱觉时.粉煤灰特性与粉煤灰混凝土.科学出版社, 2002:173~177
    124谢友均,刘宝举,刘伟.矿物掺合料对高性能混凝土抗氯离子渗透性能的影响.铁道科学与工程学报. 2004(2):49
    125过镇海.混凝土的强度和变形—试验基础和本够关系.清华大学出版社, 1997:7~12
    126张武满,巴恒静,高小建.重复压应力作用下矿渣混凝土变形性能.混凝土. 2006(9):5~6
    127蒋亚清.混凝土外加剂基础.化学工业出版社, 2004:56~70
    128张武满.混凝土结构氯离子加速寿命试验方法与寿命预测.哈尔滨工业大学博士学位论文. 2006:30~55
    129 M. Brun, A. Lallemand, J.-F. Quinson, Ch. Eyraud. A new method for the simultaneous determination of the size and the shape of the pores. the thermoporometry, Thermochim. Acta 21 (1977) 59~88
    130 M.Setzer, Einfluss des Wassergehalts auf die Eigenschaften des erh?rteten Betons, Deutscher Ausschuss für Stahlbeton , Heft 280 (1977) 1~96
    131 J. Kaufmann, Experimental Identification of Damage Mechanisms in Cementitious Porous Materials on Phase Transition of Pore Solution under Frost Deicing Salt Attack, thesis EPF Lausanne No 2037(1999)
    132巴恒静,张武满,高小建.水灰比与应力水平对混凝土氯离子渗透性影响.武汉理工大学学报. 2006(5):45~47
    133 Max J. Setzer. Modeling of Frost-Attack on HPC with CIF Test. Proceedings of International Conference on Durability of High-Performance Concrete and final workshop of CONlife. AEDIFICATIO Publishers, Freiburg, 2004:179~196
    134 Zou Chaoying, Zhao Juan,Liang Feng. Experimental Study on Stress-Strain Relationship of Frost-Resistant Concrete. Proceeding of The Eighth International Symposium on Structural Engineering for Young Exports. Xi’an, Science Press, 2004:1038~1042
    135 Chao-Ying Zou, Juan Zhao, Jian-Lin Luo, et al. Experimental Studies on Mechanical Properties of Concrete under Freeze-ThawAction. Proceeding of The Ninth International Symposium on Structural Engineering for Young Exports. Fuzhou, Science Press. 2006: 1759~1764
    136 Chao-Ying Zou, Jian-Lin Luo, Juan Zhao, et al. Experimental Study on the Mechanical Behavior of Frost-Resistant Concrete under the Repetitive Load Action. Proceeding of The Ninth International Symposium on Structural Engineering for Young Exports. Fuzhou, Science Press. 2006:1955-1961
    137蒋亚清,许仲梓,黎非,李刚.聚羧酸类混凝土引气剂的工程性能.东南大学学报(自然科学版). 2006, 36(4):568~571
    138余红发,孙伟,鄢良慧,王晴.引气混凝土在中国盐湖环境中抗冻性的研究.武汉理工大学学报. 2004,26(3):15~18
    139 W. Micah Hale, Seamus F. Freyne, Bruce W. Russell. Examining the frost resistance of high performance concrete. Construction and Building Materials. 2009,23(2): 878~888
    140 Huai-shuai Shang, Yu-pu Song. Behavior of air-entrained concrete under the compression with constant confined stress after freeze–thaw cycles. Cement and Concrete Composites, 2008,30(9): 854~860
    141杨荣俊,隗功辉,张春林,朱海英.掺矿粉混凝土耐久性研究.混凝土. 2004(11):38~53
    142袁春毅,申爱琴,韩继国,赵乐易.磨细矿渣高性能路面混凝土的耐久性.中国公路学报. 2007, 20(2):24~28
    143 Pigeon M., Azzabi M. and Pleau R. CAN MICROFIBERS PREVENT FROST
    DAMAGE? Cement and Concrete Research. 1996, 26(8):1163~1170
    144杨全兵,朱蓓蓉.钢纤维对混凝土抗盐冻剥蚀性能的影响.建筑材料学报. 2004,7(4):376~378
    145余红发,孙伟,王晴,鄢良慧.纤维增强高性能混凝土在西部盐湖中的抗冻性.沈阳建筑工程学院学报. 2004,20(2):130~135
    146 Cengiz Duran Ati?, Okan Karahan. Properties of steel fiber reinforced fly ash concrete. Construction and Building Materials. 2009,23(1): 392~399
    147郭明洋,杨荣俊,张金喜.水灰比对混凝土气泡特征参数影响的试验研究.混凝土. 2007(12):13~16
    148 Pigeon M., Marchand J. and Pleau R. Frost resistant concrete. Construction and Building Materials. 1996, 10 (5):339~348
    149班文彬,刘伟区,申德妍,侯孟华.新型水性有机硅水泥混凝土防水剂的研制.化学建材. 2005,21(3):37~ 40
    150杨全兵.氯化钠对混凝土内部饱水度的影响.硅酸盐学报. 2005, 33(11):1422~1425
    151 Kolluru V. Subramaniam, Mohamad Ali-Ahmad, Michel Ghosn. Freeze–thaw degradation of FRP–concrete interface: Impact on cohesive fracture response Engineering Fracture Mechanics. 2008,75(13): 3924~3940
    152 Olivier Coussy, Paulo J.M. Monteiro. Evolution of mechanical properties of concrete containing ground granulated blast furnace slag and effects on the scaling resistance test at 28 days Poroelastic model for concrete exposed to freezing temperatures. Cement and Concrete Research. 2008,38(1):40~48
    153 J.M.L. Reis, A.J.M. Ferreira. Freeze–thaw and thermal degradation influence on the fracture properties of carbon and glass fiber reinforced polymer concrete. Construction and Building Materials. 2006,20(10): 888~892
    154吴平.硅烷膏体浸渍剂在保护混凝土中的实际应用.混凝土. 2003,168 (10):62~65
    155朱桂红,郭平功,赵铁军.有机硅防水剂对氯盐侵蚀混凝土的防护效果研究.混凝土. 2007, 217(11):58~60
    156 T.C. Powers, T.L. Brownyard. Studies of the physical properties of hardened Portland cement paste, Bulletin 22, Research Laboratories of the Portland Cement Association, Chicago, 1948
    157刘伟,邢锋,谢友均.水灰比、矿物掺合料对混凝土孔隙率的影响.低温建筑技术. 2006, 109(1):9~11
    158尚建丽.高性能混凝土微观结构特征及开发应用.西安建筑科技大学学报. 1999, 31(1):84~86
    159 Max J.Setzer. Mechanisms of Frost Action. Proceedings of an International Workshop on Durability of Reinforced Concrete under Combined Mechanical and Climatic Loads. QingDao, 2005:263~274
    160 Stefan Jacobsen. Calculating Liquid Transport into High-Performance Concrete during Wet Freeze-Thaw. Cement and Concrete Research. 2005, 35:213~219
    161 Lianxiang Du, Kevin J. Folliard. Mechanisms of Air Entraiment in Concrete. Cement and Concrete Research. 2005,35:1463~1471
    162 Tetsuya Suzuki, Masayasu Ohtsu. Quantitative Damage Evaluation of Structural Concrete by a Compression Test Based on AE Rate Process Analysis. Construction and Building Materials. 2004, 18:197~202
    163郭文峰,沈荣熹,杨瑞珊.硅灰与超塑化剂对钢纤维与水泥集体界面的影响.中国建筑材料科学研究院学报. 1999, 2(1):46~54
    164张承志,王爱勤,绍惠.建筑混凝土.化学工业出版社, 2007:24
    165王毅,刘小艳,梁正平.有机硅涂料在混凝土表面涂覆中的研究与应用.建筑技术开发. 2001, 28(6):30~33
    166赵尚传,俞海.混凝土表面硅烷浸渍吸水率与抗冻性能试验研究.混凝土. 2008(11):80~82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700