己酮可可碱对慢性吸烟小鼠肺免疫病理学的作用及其可能机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【研究背景】肺内炎症细胞的活化和免疫效应细胞的趋化是导致吸烟肺气肿形成和发展的中心环节,同时一些信号通路也在其中起着重要的作用。我们的前期研究发现,已酮可可碱(PTX)干预可抑制豚鼠慢性吸烟肺气肿的发生,并可能导致动物发生肺纤维化。Wnt/β-catenin信号通路是调控细胞生长、增殖和凋亡的关键途径,该途径的激活与人特发性肺间质纤维化-寻常型间质性肺炎(IPF/UIP)病变,以及肺纤维化的中心环节上皮-间充质转化(EMT)过程密切相关。PTX对小鼠是否也有类似的抑制吸烟肺气肿形成和导致肺纤维化的作用,PTX抑制吸烟肺气肿形成的免疫机制,以及PTX对Wnt/β-catenin信号通路的调控与其导致吸烟肺纤维化的关系尚未得到揭示。
     【目的】探讨PTX对慢性吸烟BALB/c小鼠肺组织病理学改变的影响及与IFN-γ/IL-4因子表达的关系;探讨PTX对干扰素诱导蛋白(IP-10)介导的CXCR3~+Th1和Tc1细胞向吸烟动物肺内趋化的影响;探讨PTX对慢性吸烟小鼠肺内Wnt/β-catenin信号通路表达的影响及与肺纤维化的关系。
     【方法】慢性吸烟和PTX干预BALB/c小鼠,观察肺组织病理学改变。ELISA法检测慢性吸烟和PTX干预动物肺泡灌沈液IFN-γ、IL-4、IP-10表达和肺组织TGF-β1表达。ELISA法检测PTX对香烟烟雾提取物刺激体外培养RAW264.7细胞表达IP-10的影响。免疫组织化学法检测肺组织CXCR3阳性细胞。免疫组织化学染色和Western blot法检测β-catenin蛋白在动物肺组织内的表达。RT-PCR法检测TCF-1和LEF-1表达。Western blot法检测a-平滑肌肌动蛋白(a-SMA)表达变化。
     【结果】PTX干预可导致慢性(4月)吸烟BALB/c小鼠发生肺纤维化,伴有IFN-β/IL-4因子比例逆转。PTX干预可抑制吸烟(1周)BALB/c小鼠肺内IFN-γ和IP-10表达,减少CXCR3~+Th1和Tc1细胞数量,抑制吸烟对RAW264.7细胞表达IFN-γ和IP-10的活化作用。PTX可活化β-catenin蛋白在肺组织的表达和向胞浆内转运,促进LEF-1基因和TGF-β1表达,但对cyclinD1蛋白表达和TCF-1基因表达水平无显著影响。
     【结论】PTX可阻抑慢性吸烟BALB/c小鼠形成肺气肿,并在部分动物导致肺纤维化形成。该作用可能与调控Th1/Th2细胞因子平衡、抑制IP-10介导的CXCR3~+Th1和Tc1细胞向肺内趋化,以及激活Wnt/β-catenin信号通路有关。
Background Two of the cardinal points in smoke-induced emphysema (SIE), isexcessive activation of inflammatory cells and chemotaxis of immunoreactant Cellsinto the lung, while chemoreactants and certain signaling pathways are playing anessential role in the process of SIE.In previous research, we have discovered thatadministration of pentoxifylline (PTX) may prevent Guinea pigs from SIE, and that insome animals PTX even leads to a fibrotic phenotype.Wnt/β-catenin signalingpathway is a key regulatory pathway which determines growth, differentiation,proliferation and apoptosis in cells, activation of which has been identified to beassociated with human idiopathic pulmonary fibrosis-usual interstitial pneumonia(IPF/UIP) and epithelial-mesenchymal transition, the key events of pulmonaryfibrosis.However, it's not clear whether PTX could prevent SIE or lead to pulmonaryfibrosis in BALB/c mice, yet it's not clear whether and how PTX regulates theimmune mechanisms and Wnt/β-catenin signaling.
     Objective To investigate the effect of PTX on pulmonary pathology inBALB/c mice and its correlations with expression of interferon-g (IFN-γ) and interleukin-4 (IL-4), on interferon-γ-inducible protein-10 (IP-10)-mediatedchemotaxis of CXCR3+Th1 and Tc1 cells, and on Wnt/β-catenin signaling。
     Methods Using Hematoxylin and eosin staining to observe the pathologicalchanges in BALB/c mice chronically exposed to cigarette smoke and oral PTX.Usingenzyme-linked immunnoabsorbant assay (ELISA) to determine the level of IFN-γ,IL-4 and IP-10 in BALF and lung TGF-β1 in vivo, and the level of IP-10 in culturemedium of cigarette smoke extract-stimulated RAW264.7 macrophage cell line invitro.Using immunohistochemical methods to detect the number of CXCR3 orβ-catenin positive cells.Using Western blot assay to detect the expression ofβ-cateninand cyclinD1 in in vivo animal models.Using reverse-transcriptase polymereasechain reaction (RT-PCR) to detect the expression of TCF-1 and LEF-1 mRNA in micelungs.
     Results Administration of PTX prevented BALB/c mice chronically exposedto cigarette smoke (exposure duration: 4 months) from SIE and lead to pulmonaryfibrosis, accompanied by reversal of the proportion of IFN-γto IL-4 in BALF.PTXinhibited IP-10 release both in BALF in smoking mice (exposure duration: 1 week)and in cigarette smoke extract-stimulated RAW264.7 cells in vitro, and decreasedCXCR3~+ Th1 and Tc1 cell number in smoking mice lungs.Administration of PTXincreasedβ-catenin level in lung tissue and facilitated its transportation to the nucleus,boosted the expression of TCF-1 and TGF-β1, but has shown no significant impacton expression level of cyclinD1 and LEF-1.
     Conclusions Administration of PTX prevent BALB/c mice chronically exposedto cigarette smoke (exposure duration: 4 months) from SIE and lead to puhnonaryfibrosis, which may be associated with its regulatory effect on Th1/Th2 cytokineprofile balance, inhibitory effect on IP-10-mediated chemotaxis of CXCR3+Th1 andTc1 cells to the lung, as well as activation of certain genes downstreamingWnt/β-catenin signaling pathway.
引文
1 Wright JL, ChurgA. A model of tobacco smoke:induced airflow obstruction in the guinea pig. Chest 2002; 121: 188S-191S
    2 许建英,安晓洁,庞敏,等.转化生长因子β1对香烟诱导的大鼠肺泡巨噬细胞γ-谷氨酰半胱氨酸合酶表达的影响.中国病理生理杂志2008;24:602-604
    3 Elias JA, KangMJ, Crouthers K, et al. Mechanistic heterogeneity in chronic obstructive pulmonary disease: insights from transgenic mice. Proc Am Thorac Soc 2006; 3:494-498
    4 Ma B, KangMJ, Lee CG, et al. Role of CCR5 in IFN-gamma-induced and cigarette smoke-induced emphysema. J Clin Invest 2005; 115:3460-3472
    5 施 维,张劲农.Th1/Th2炎症极化与肺气肿和肺纤维化.国际呼吸杂志2007;27:551-553
    6 Baumgartner KB, Samet JM, Stidley CA, et al. Cigarette smoking: a risk factor for idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 1997; 155:242-248
    7 Lukacs NW, Hogaboam C, Chensue SW, et al. Type 1 /type 2 cytokine paradigm and the progression of pulmonaryfibrosis. Chest 2001; 120: 5S-8S
    8 Shimizu Y, Kuwabara H, Ono A, et al. Intracellular Th1/Th2 balance of pulmonary CD4 ( + ) T cells in patientswith active interstitial pneumonia evaluated by serum KL - 6. Immunopharmacol Immunotoxicol 2006; 28:295-304
    9 Kunkel SL, Chensue SW, LukacsN, et al. Cytokine phenotypes serve as a paradigms for experimental immune -mediated lung diseases and remodelling. Am J Respir Cell Mol Biol 2003; 29:S63-S66
    10 Kudaeva OT, Goiman EV, Lykov AP, et al. Effects of preparations modifying Th1 848-853
    21 Spina D. Phosphodiesterase 4 inhibitors ~ current status. Br J Pharmacol 2008; 155:308-315
    22 Rabe KF, Bateman ED, O'Donnell D, Witte S, Bredenbr6ker D, Bethke TD. et al. Roflumilast: an oral anti-inflammatory treatment for chronic obstructive pulmonary disease: a randomized controlled trial. Lancet 2005; 366:563-571
    23 Rennard SI, Schachter N, Strek M, Rickard K, Amit O. Cilomilast for COPD. Results of a 6-month, placebo-controlled study of a potent, selective inhibitor of phosphodiesterase 4. Chest 2006; 129:56-66
    24 Giembycz MA. Phosphodiesterase 4: selective and dual-specificity inhibitors for the therapy of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2005; 2: 326-333
    25 Fan Chung K. Phosphodiesterase inhibitors in airway disease. Eur J Pharmacol 2006; 533:110-117
    26 朱立平主译。感染性疾病免疫学。S.H.E.考夫曼,A.谢尔,R.艾哈迈德(原著)。Immunology of Infectious Diseases.北京,化学工业出版社,2004:175
    27 Wang Z, Zheng T, Zhu Z, et al. Interferon-gamma induction of pulmonary emphysema in the adult murine lung. J Exp Med 2000; 192:1587-1600
    28 Ma B, Kang MJ, Lee CG, et al. Role of CCR5 in IFN-gamma-induced and cigarette smoke-induced emphysema. J Clin Invest 2005; 115:3460-3472
    29 Bracke KR, D'hulst AI, Maes T, et al. Cigarette smoke-induced pulmonary inflammation, but not airway remodelling, is attenuated in chemokine receptor 5-deficient mice. Clin Exp Allergy 2007; 37:1467-1479
    30 Bix M, Wang ZE, Thiel B, Schork NJ, Locksley RM. Genetic regulation of commitment to interleukin 4 production by a CD4(+) T cell-intrinsic mechanism. J Exp Med 1998; 188:2289-2299
    31 Guler ML, Gorham JD, Hsieh CS, Mackey AJ, Steen RG, Dietrich WF, Murphy KM. Genetic susceptibility to Leishmania: IL-12 responsiveness in TH1 cell development. Science 1996; 271: 984-987
    32 Guerassimov A, Hoshino Y, Takubo Y, et al. The development of emphysema in cigarette smoke-exposed mice is strain dependent. Am J Respir Crit Care Med 2004;170: 974-980
    1 Buist AS, Mc Burnie MA, Vollmer WM, Gillespie S, Burney P, Mannino DM, et al. International variation in the prevalence of COPD (The BOLD Study): a populational-based prevalence study. Lancet 2007; 370:741-750
    2 Rabe KF, Hurd S, Anzueto A, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. GOLD Executive Summary. Am J Respir Crit Care Med 2007; 176:532-555
    3 Barnes PJ. Emerging pharmacotherapies for COPD. Chest 2008; 134:1278-1286
    4 Zhang JN, Xie JM, Xiang M, et al. Prophylatic anti-inflammation inhibits cigarette smoke-induced emphysema in Guinea pigs. J Huazhong Univ of Science and Technology (Med Sci) 2003; 4:365-368
    5 Cosio MG, Majo J, Cosio MG. Inflammation of the airways and lung parenchyma in COPD : role of T cells. Chest 2002; 121:160S-165S
    6 Grumelli S, Corry DB, Song LZ, Song L, Green L, Huh J, et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med 2004; 1 : e8
    7 Maeno T, Houghton AM, Quintero PA, et al. CD8+ T cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J Immunol 2007; 178 :8090-8096
    8 O'Shaughnessy TC, Ansari TW, Barnes NC, Jeffery PK. Inflammation in bronchial biopsies of subjects with chronic bronchitis: inverse relationship of CD8+ T lymphocytes with FEV1. Am J Respir Crit Care Med 1997;155:852-857
    9 D'Ambrosio D, Mariani M, Panina-Bordignon P, et al. Chemokines and their receptors guiding T lymphocyte recruitment in lung inflammation. Am J Respir Crit Care Med 2001; 164:1266-1275
    10 Saetta M, Mariani M, Panina-Bordignon P, et al. Increased expression of the chemokine receptor CXCR3 and its ligand CXCL10 in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002;165 :1404-1409
    11 Saetta M, Turato G, Maestrelli P, et al. Cellular and structural bases of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001; 163: 1304-1309
    12 Finkelstein R, Fraser RS, Ghezzo H, et al. Alveolar inflammation and its relation to emphysema in smokers. Am J Respir Crit Care Med 1995; 152: 1666-1672
    13 Majo J, Ghezzo H, Cosio MG. Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Respir J 2001;17:946-953
    14 Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004; 350: 2645-2653
    15 Van der Strate B, Postma DS, Brandsma CA, et al. Cigarette smoke-induced emphysema : a role for the B cell ? Am J Respir Crit Care Med 2006; 173 :751-758
    16 Motz GT, Eppert BL, Sun G, et al. Persistence of lung CD8 T cell oligoclonal expansions upon smoking cessation in a mouse model of cigarette smoke-induced emphysema. J Immunol 2008; 181 :8036-8043
    17 Hunninghake GW, Davidson JM, Rennard S, et al. Elastin fragments attract macrophage precusors to diseased sites in pulmonary emphysema. Science 1981; 212:925-927
    18 Houghton AM, Quintero PA, Perkins DL, et al. Elastin fragments drive disease progression in a murine model of emphysema. J Clin Invest 2006; 116: 753-759
    19 Chrysofakis G, Tzanakis N, Kyriakoy D, et al. Perforin expression and cyotoxic activity of sputum CD8+ lymphocytes in patients with COPD. Chest 2004; 125: 71-76
    20 Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol 2009; 27 :591-619
    21 Tsoumakidou M, Demedts IK, Brusselle GG, et al. Dendritic cells in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008; 177 :1180-1186
    22 Medoff BD, Thomas SY, Luster AD. T cell trafficking in allergic asthma : the ins and outs. Annu Rev Immunol 2008; 26 : 205-232
    23 Wang Z, Zheng T, Zhu Z, et al. Interferon-gamma induction of pulmonary emphysema in the adult murine lung. J Exp Med 2000; 192:1587-1600
    24 Ma B, Kang MJ, Lee CG, et al. Role of CCR5 in IFN-gamma-induced and cigarette smoke-induced emphysema. J Clin Invest 2005; 115: 3460-3472
    25 Bracke KR, D'hulst AI, Maes T, et al. Cigarette smoke-induced pulmonary inflammation, but not airway remodelling, is attenuated in chemokine receptor 5-deficient mice. Clin Exp Allergy 2007; 37: 1467-1479
    26 Hasday JD, Bascom R, Costa JJ, et al. Bacterial endotoxin is an active component of cigarette smoke. Chest 1999; 115 : 829-835
    27 Barnes PJ. Frontrunners in novel pharmacotherapy of COPD. Curr Opin Pharmacol 2008; 8:300-307
    28 Sharafkhaneh A, Velamuri S, Badmaev V, et al. The potential role of natural agents in treatment of airway inflammation. Ther Adv Respir Dis 2007; 1; 105
    29 Fitzgerald MF, Fox JC. Emerging trends in the therapy of COPD: novel anti-inflammatory agents in clinical development. Drug Disc Today 2007; 12: 479-486 doi: 10.1016/j.drudis.2007.04.005
    30 Sharafkhaneh A, Velamuri S, Badmaev V, et al. The potential role of natural agents in treatment of airway inflammation. Ther Adv Respir Dis 2007; 1; 105
    31 Churg A, Wang RD, Tai H, et al. Tumor necrosis factor-alpha drives 70% of cigarette smoke-induced emphysema in the mouse. Am J Respir Crit Care Med 2004;170: 492-498
    32 Judson MA, Baughman RP, Costabel U, et al. Infliximab therapy in patients with chronic sarcoidosis and pulmonary involvement. Am J Respir Crit Care Med 2006;174: 795-802
    33 Rennard SI, Fogarty C, Kelsen S, et al. The safety and efficacy of infliximab in moderate-to-severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007; 175: 926-934
    34 Barnes PJ. Unexpected failure of anti-tumor necrosis factor therapy in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007; 175: 866-867
    35 Hattotuwa KL, Gizycki MJ, Ansari TW, et al. The effects of inhaled fluticasone on airway inflammation in chronic obstructive pulmonary disease : a double-blind,placebo-controlled biopsy study. Am J Respir Crit Care Med 2002; 165 : 1592-1596
    36 Verhoeven GT, Hegman JP, Mulder PG, et al. Effects of fluticasone propionate in COPD patients with bronchial hyperresponsiveness. Thorax 2002; 57 : 694-700
    37 Gamble E, Grootendorst DC, Brightling CE, et al. Antiinflammatory effects of the phosphodiesterase 4 inhibitor cilomilast (Airflo) in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2003; 168 : 976-982
    38 Rabe KF, Bateman ED, O'Donnell D, Witte S, Bredenbr(?)ker D, Bethke TD. et al.Roflumilast: an oral anti-inflammatory treatment for chronic obstructive pulmonary disease: a randomized controlled trial. Lancet 2005; 366: 563-571
    39 Ward A, Clissold SP. Pentoxifylline. A review of its pharmacodynamic and pharmacokinetic properties, and its therapeutic efficacy. Drugs 1987; 34 :50-97
    40 Tong Z, Dai H, Chen B, Abdoh Z, Guzman J, Costabel U. Inhibition of cytokine release from alveolar macrophages in pulmonary sarcoidosis by pentoxifylline :comparison with dexamethasone. Chest 2003; 124 : 1526-1532
    41 Sasse SA, Causing LA, Stansbury DW, Light RW. The effects of pentoxifylline on oxygenation, diffusion of carbon monoxide, and exercise tolerance in patients with COPD. Chest 1995; 108:1562-1567
    42 Giembycz MA. Can the anti-inflammatory potential of PDE4 inhibitors be realized : guarded optimism or wishful thinking ? Br J Pharmacol 2008; 155 :288-290
    43 Fan Chung K. Phosphodiesterase inhibitors in airway disease. Eur J Pharmacol 2006;533:110-117
    1 Buist AS, Mc Burnie MA, Vollmer WM, Gillespie S, Burney P, Mannino DM, et al. International variation in the prevalence of COPD (The BOLD Study): a populational-based prevalence study. Lancet 2007; 370:741-750
    2 Rabe KF, Hurd S, Anzueto A, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. GOLD Executive Summary. Am J Respir Crit Care Med 2007; 176: 532-555
    3 Reilly JJ Jr, Silvermann EK, Shapiro SD. Chronic obstructive pulmonary disease. In:Kasper DL, Braunwald E, Fauci AS, Hauser SL, Longo DL, Jameson JL, eds.Harrison's Principles of Internal Medicine. New York: McGraw-Hill Medical Publishing Division, Inc; 2004: 1547-1554
    4 Barnes PJ. Emerging pharmacotherapies for COPD. Chest 2008; 134: 1278-1286
    5 Barnes PJ. Frontrunners in novel pharmacotherapy of COPD. Curr Opin Pharmacol 2008; 8:300-307
    6 Ward A, Clissold SP. Pentoxifylline. A review of its pharmacodynamic and pharmacokinetic properties, and its therapeutic efficacy. Drugs 1987; 34 :50-97
    7 Tong Z, Dai H, Chen B, Abdoh Z, Guzman J, Costabel U. Inhibition of cytokine release from alveolar macrophages in pulmonary sarcoidosis by pentoxifylline :comparison with dexamethasone. Chest 2003 ; 124 : 1526-1532
    8 Sasse SA, Causing LA, Stansbury DW, Light RW. The effects of pentoxifylline on oxygenation, diffusion of carbon monoxide, and exercise tolerance in patients with COPD. Chest 1995; 108:1562-1567
    9 Giembycz MA. Can the anti-inflammatory potential of PDE4 inhibitors be realized :guarded optimism or wishful thinking ? Br J Pharmacol 2008; 155 :288-290
    10 Fan Chung K. Phosphodiesterase inhibitors in airway disease. Eur J Pharmacol 2006; 533:110-117
    11 Fitzgerald MF, Fox JC. Emerging trends in the therapy of COPD: novel anti-inflammatory agents in clinical development. Drug Disc Today 2007; 12:479-486 doi: 10.1016/j.drudis.2007.04.005
    12 Zhang JN, Xie JM, Xiang M, et al. Prophylatic anti-inflammation inhibits cigarette smoke-induced emphysema in Guinea pigs. J Huazhong Univ of Science and Technology (Med Sci) 2003; 4: 365-368
    13 Martorana PA, Beume R, LucattelliM, et al. Roflumilast fully prevents emphysema in mice chronically exposed to cigarette smoke. Am J Resp ir Crit Care Med, 2005, 172:848-853
    14 张劲农,汪铮等。己酮可可碱诱导吸烟肺纤维化及其机制。中国病理生理杂志,2009:4
    15 Windmeier C, Gressner AM. Pharmacological aspects of pentoxifylline with emphasis on its inhibitory actions on hepatic fibrogenesis. Gen Pharmacol Vasc Syst 1997; 29:181-196
    16 Ng YY, Chen YM, Tsai TJ, Lan XR, Yang WC, Lan HY. Pentoxifylline Inhibits Transforming Growth Factor-Beta Signaling and Renal Fibrosis in Experimental Crescentic Glomerulonephritis in Rats. Am J Nephrol 2009; 29:43-53
    17 MA Wanli, LI Yuangui, XIN Jianbao, YE Hong, TAO Xiaonan, LIU Hongju. Effects of pentoxifylline on pulmonary fibrosis in rats. Chin J New Drug(Chin) 2002; 3: 212-213
    18 K.im K, Lu Z, Hay ED. Direct evidence for a role of β-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int 2002; 26:463-476
    19 Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003; 112:1776-1784
    20 Chilosi M, Poletti V, Zam(?) A, Lestani M, Montagna L, Piccoli P, et al. Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol 2003; 162:1495-1502
    21 Lee LM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 2006; 172: 973-981.
    22 Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004, 350:2645-2653
    23 Akizawa H, Tanaka M, Takami K, et al. Increased expression of transforming growth factor-betal in small airway epithelium from tobacco smokers and patients with chronic obstructive pulmonary disease (COPD). Am J Respir Crit Care Med 2001; 163: 1476-1483
    24 Churg A, Tai H, Coulthard T, et al. Cigarette smoke drives small airway remodelling by induction of growth factors in the airway wall. Am J Respir Crit Care Med 2006; 174: 1327-1334
    25 Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 2004; 364: 709-721
    26 Grumelli S, Corry DB, Song L, Song L, Green L, Huh J, et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med 2004; 1: e8
    27 Willinger T, Freeman T, Herbert M, Hasegawa H, McMichael AJ, Callan MR Human naive CD8 T cells down-regulate expression of the WNT pathway transcription factors lymphoid enhancer binding factor 1 (LEF-1) and transcription factor 7 (T cell factor-1) following antigen encounter in vitro and in vivo. J Immunol 2006; 176:1439-1446
    28 Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways.Science 2004; 303:1483-1487
    29 Mucenski ML, Wert SE, Nation JM, et al. Beta-catenin is required for specification of proximal/distal cell fate during lung morphogenesis. J Biol Chem 2003;278:40231-40238
    30 Barnes PJ, Shapiro SD, Pauwels RA. Chronic obstructive pulmonary disease:molecular and cellular mechanisms. Eur Respir J 2003; 22: 672-688
    31 Karrasch S, Holz O, Jorres RA. Aging and induced senescence as factors in the pathogenesis of lung emphysema. Respir Med 2008; 102: 1215-1230
    1 Buist AS, Mc Burnie MA, Vollmer WM, Gillespie S, Burney P, Mannino DM, et al.International variztion in the prevalence of COPD (The BOLD Study): a populational-based prevalence study. Lancet 2007; 370: 741-750
    2 Rabe KF, Hurd S, Anzueto A, et al. Global Strategy for the Diagnosis, Management,and Prevention of Chronic Obstructive Pulmonary Disease. GOLD Executive Summary. Am J Respir Crit Care Med 2007; 176: 532-555
    3 Yin P, Jiang CQ, Cheng KK, Lam TH, Lam KH, Miller MR, et al. Passive smoking exposure and risk of COPD among adults in China: the Guangzhou Biobank Cohort Study. Lancet 2007; 370: 751-757
    4 Reilly JJ Jr, Silvermann EK, Shapiro SD. Chronic obstructive pulmonary disease. In:
    Kasper DL, Braunwald E, Fauci AS, Hauser SL, Longo DL, Jameson JL, eds.Harrison's Principles of Internal Medicine. New York: McGraw-Hill Medical Publishing Division, Inc; 2004: 1547-1554
    5 Barnes PJ. Emerging pharmacotherapies for COPD. Chest 2008; 134: 1278-1286
    6 ATS/ERS. American Thoracic Society/European Respiratory Society international multidisciplinary consensus classification of the idiopathic interstitial pneumonitis.Am J Respir Crit Care Med 2002; 165: 277-304
    7 Lukacs NW, Hogaboam C, Chensue SW, Blease K, Kunkel SL. Type 1/type 2 cytokine paradigm and the progression of pulmonary fibrosis. Chest 2001; 120: S5-S8
    8 Barnes PJ, Shapiro SD, Pauwels RA. Chronic obstructive pulmonary disease:molecular and cellular mechanisms. Eur Respir J 2003; 22: 672-688
    9 Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 2008; 8:183-192
    10 Selman M, King TE Jr, Prado A. Idiopathic pulmonary fibrosis: prevailing and evolving hypothesis about its pathogenesis and implications for therapy. Ann Intern Med 2001; 134: 136-151
    11 Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004, 350: 2645-2653
    12 Greenlee KJ, Werb Z, Kheradmand F. Matrix metalloproteinases in lung: multiple,multifarious, and multifaceted. Physiol Rev 2007; 87: 69-98
    13 Pardo A, Selman M. Matrix metalloprotease in aberrant fibrotic tissue remodeling.Proc Am Thorac Soc 2006; 3: 383-388
    14 Zuo F, Kaminski N, Eugui E, Allard J, Yakhini Z, Ben-Dor A, et al. Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc Natl Acad Sci USA 2002; 99: 6292-6297
    15 Baraldo S, Bazzan E, Zanin ME, Turato G, Garbisa S, Maestrelli P, et al. Matrix metalloproteinase-2 protein in lung periphery is related to COPD progression. Chest 2007; 132:1733-1740
    16 Fan Chung K. Phosphodiesterase inhibitors in airway disease. Eur J Pharmacol 2006; 533:110-117
    17 Zhang JN, Xie JM, Xiang M, et al. Prophylatic anti-inflammation inhibits cigarette smoke-induced emphysema in Guinea pigs. J Huazhong Univ of Science and Technology (Med Sci) 2003; 4: 365-368
    18 Zhang JN, Wang Z, Shi W, et al. Induction of pulmonary fibrosis by administration of pentoxifylline in mice exposed to cigarette smoke. Chin J Pathophysiol (Chin)2008. accepted.
    19 Sasse SA, Causing LA, Stansbury DW, Light RW. The effects of pentoxifylline on oxygenation, diffusion of carbon monoxide, and exercise tolerance in patients with COPD. Chest 1995; 108:1562-1567
    20 Windmeier C, Gressner AM. Pharmacological aspects of pentoxifylline with emphasis on its inhibitory actions on hepatic fibrogenesis. Gen Pharmacol Vasc Syst 1997; 29: 181-196
    21 Ng YY, Chen YM, Tsai TJ, Lan XR, Yang WC, Lan HY. Pentoxifylline Inhibits Transforming Growth Factor-Beta Signaling and Renal Fibrosis in Experimental Crescentic Glomerulonephritis in Rats. Am J Nephrol 2009; 29: 43-53
    22 MA Wanli, LI Yuangui, XIN Jianbao, YE Hong, TAO Xiaonan, LIU Hongju.Effects of pentoxifylline on pulmonary fibrosis in rats. Chin J New Drug(Chin) 2002;3: 212-213.
    23 Pongracz JE, Stockley RA. Wnt signalling in lung development and disease.Respir Res 2006; 7: 15. doi:10.1186/1465-9921-7-15
    24 Lee LM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 2006; 172:973-981.
    25 Kim K, Lu Z, Hay ED. Direct evidence for a role of P-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int 2002; 26: 463-476
    26 Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003; 112: 1776-1784
    27 Chilosi M, Poletti V, Zam(?) A, Lestani M, Montagna L, Piccoli P, et al. Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol 2003; 162: 1495-1502
    28 Douglas IS, del Valle FD, Winn RA, Voelkel N.β-catenin in the fibroproliferative response to acute lung injury. Am J Respir Cell Mol Biol 2006; 34: 274-285
    29 Grumelli S, Corry DB, Song L, Song L, Green L, Huh J, et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med 2004; 1: e8
    30 Willinger T, Freeman T, Herbert M, Hasegawa H, McMichael AJ, Callan MR Human naive CD8 T cells down-regulate expression of the WNT pathway transcription factors lymphoid enhancer binding factor 1 (LEF-1) and transcription factor 7 (T cell factor-1) following antigen encounter in vitro and in vivo. J Immunol 2006; 176: 1439-1446
    31 Staal FJ, Sen JM. The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur J Immunol 2008; 38:1788-1794
    32 Staal FJ, Clevers H. Tcf/Lef transcription factors during T-cell development:unique and overlapping functions. Hematol J 2000; 1: 3-6
    33 Ashcroft T, Simpson JM, Timbrell V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J Clin Pathol 1988, 41:467-470
    34 Cottin V, Nunes H, Brillet P-Y, Delaval P, Devouassoux G, Tillie-Leblond I, et al.Combined pulmonary fibrosis and emphysema: a distinct underrecognised entity. Eur Respir J 2005; 26: 586-593
    35 Grubstein A, Bendayan D, Schactman I, Cohen M, Shitrit D, Karmer MR.Concomitant upper-lobe bullous emphysema, lower-lobe interstitial fibrosis and pulmonary hypertension in heavy smokers: report of eight cases and review of the literature. Respir Med 2005; 99: 948-954
    36 Yoshida T, Tuder RM. Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiol Rev 2007; 87: 1047-1082
    37 Cadigan KM, Liu YI. Wnt signaling: complexity at the surface. J Cell Sci 2006;119: 395-402
    38 Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways.Science 2004; 303:1483-1487
    39 Clayton J. Wnt signaling and the development fate of lung cells. J Biol 2004, 3: 9
    40 CAO Bin, GUO Zijian, ZHU Yuanjue, XU Wenbing. The potential role of PDGF,IGF-1, TGF-β expression in idiopathic pulmonary fibrosis. Chin Med J 2000, 113:776-782
    41 Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED, et al.Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-β_1. Am J Pathol 2005,166: 1321-1332
    42 Wills BC, Borok Z. TGF-β-Mnduced EMT: mechanisms and implications for fibrotic lung dieseas. Am J Physiol Lung Cell Mol Phsiol 2007; 293: L525-L534
    43 Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions.Oncogene 2005; 24: 5764-5774
    44 Brembeck FH, Rosario M, Birchmeier W. Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Curr Opin Genet Dev 2006; 16: 51-59
    45 Logan CY, Nusse R. The Wnt signaling pathway in development and disease.Annu Rev Cell Dev Biol 2004, 20: 781-810
    46 Bix M, Wang ZE, Thiel B, Schork NJ, Locksley RM. Genetic regulation of commitment to interleukin 4 production by a CD4(+) T cell-intrinsic mechanism. J Exp Med 1998; 188: 2289-2299
    47 Guler ML, Gorham JD, Hsieh CS, Mackey AJ, Steen RG, Dietrich WF, Murphy KM. Genetic susceptibility to Leishmania: IL-12 responsiveness in TH1 cell development. Science 1996; 271: 984-987
    48 Wright JL, Cosio M, Churg A. Animal models of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2008; 295: L1-L15
    49 Moore BB, Hogaboam CM. Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2008; 294: L151-L160
    50 Hebenstreit D, Giaisi M, Treiber MK, Zhang XB, Mi HF, Horejs-Hoeck J, et al.LEF-1 negatively controls interleukin-4 expression through a proximal promoter regulatory element. J Biol Chem 2008; 283: 22490-22497
    51 Karrasch S, Holz O, Jorres RA. Aging and induced senescence as factors in the pathogenesis of lung emphysema. Respir Med 2008; 102: 1215-1230
    52 Rabe KF, Bateman ED, O'Donnell D, Witte S, Bredenbroker D, Bethke TD. et al.Roflumilast: an oral anti-inflammatory treatment for chronic obstructive pulmonary disease: a randomized controlled trial. Lancet 2005; 366: 563-571
    53 Rennard SI, Schachter N, Strek M, Rickard K, Amit O. Cilomilast for COPD.Results of a 6-month, placebo-controlled study of a potent, selective inhibitor of phosphodiesterase 4. Chest 2006; 129: 56-66
    54 Barnes PJ. Theophylline: new perspectives for an old drug. Am J Respir Crit Care Med 2003; 167: 813-818
    1 Bremberk FH, Rosario M, Birchmeier W. Balancing cell adhersion and Wnt signaling, the key role of beta-catenin. Curr Opin Genet Dev 2006; 16:51-59
    2 Reya T, Clevers H. Wnt signaling in stem cells and cancer. Nature 2005; 434:843-850
    3 Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004; 781-810
    4 Mericskay M, Kitajewski J, Sassoon D. Wnt5a is required for proper epithelial-mesenchymal interactions in the uterus. Development 2004; 131:2061-2072.
    5 Carroll TJ, Park JS, Hayashi S, et al. Wnt9b plays a central role in the regulation of mesechymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 2005; 9:283-292
    6 Itoh K, Brott BK, Bae GU, et al. Nuclear localization is required for Dishevelled function in Wnt/ beta-catenin signaling. J Biol 2005;4:3
    7 Zorn AM, Barish GD, Williams BO, et al. Regulation of Wnt signaling by Sox protein: XSoxl7 alpha/beta and XSox3 physically interact with beta-catenin. Mol Cell 1999; 4:487-498
    8 Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways.Science 2004; 303:1483-1487
    9 Pongracz JE, Stockley RA. Wnt signaling in lung development and diseases. Respir Res 2006; 7(15)
    10 Mucenski ML, Wert SE, Nation JM, et al. Beta-catenin is required for specification of proximal/distal cell fate during lung morphogenesis. J Biol Chem 2003; 278:40231-40238
    11 Duan D, Sehgal A, Yao J, et al. Lefl transcription factor expression defines airway progenitor cell targets for in utero gene therapy of submucosal gland in cystic fibrosis.Am J Respir Cell Mol Biol 1998; 18: 750-578
    12 Winn RA, Marek L, Han SY, et al. Restoration of Wnt-7a expression reverse non-small cell lung cancer cellular transformation through frizzled-9-mediated growth inhibition and promotion of cell differentiation. J Biol Chem 2005; 280: 19625-19634
    13 Huang CL, Liu D, Nakano J, et al. Wnt5a expression is associated with the tumor proliferation and the stromal vascular endothelial growth factor-an expression in non-small-cell lung cancer. J Clin Oncol 2005; 23: 8765-8773
    14 He B, You L, Uematsu K, et al. A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells. Neoplasia 2004; 6:7-14
    15 You L, He B, Xu Z, et al. Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene 2004;23:6170-6174
    16 Sunaga N, Kohno T, Kolligs FT, et al. Constitutive activation of the Wnt signaling pathway by CTNNB1 (beta-catenin) mutations in a subset of human lung adenocarcinoma. Genes Chromosomes Cancer 2001; 30:316-321
    17 Fukui T, Kondo M, Ito G, et al. Transcriptional silencing of secreted frizzled related proteinl (SFRP1) by promoter hypermethylation in non-small-cell lung cancer.Oncogene 2005; 24:6323-6327
    18 Mazieres J, He B, You L, et al. Wnt inhibitory factor-1 is silenced by promoter hypermethylation in human lung cancer. Cancer Res 2004; 64: 4717-4720
    19 Nozaki I, Tsuji T, Iijima O, et al. Reduced expression of REIC/Dkk-3 gene in non-small cell lung cancer. Int J Oncol 2001; 19:117-121
    20 Uematsu K, He B, You L, et al. Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene 2003; 22: 7218-7221
    21 Li CY, WangY, Cui ZS, et al. Expression of T cell factor-4 in non-small-cell lung cancer. Chin Med J 2005; 118: 136-140
    22 Pelosi G, Scarpa A, Puppa G, et al. Alteration of the E-cadherin/beta-catenin cell adhersion system is common in pulmonary neuronendocrine tumors and is an independent predictor of lymph node metastasis in atypical carcinoids. Cancer 2005;103: 1154-1164
    23 Kato Y, Hirano T, Yoshida K, et al. Frequent loss of E-cadherin and/or catenins in intrabronchial lesions during carcinogenesis of the bronchial epithelium. Lung Cancer 2005;48:323-330
    24 Usami N, Sekido Y, Maeda O, et al. Beta-catenin inhibits cell growth of a malignant mesothelioma cell line, NCI-H28, with a 3p21.3 homozygous deletion.Oncogene 2003; 22:7923-7930
    25 Shigemitsu K, Sekido Y, Usami N, et al. Genetic alteration of the beta-catenin gene(CTNNBl) in human lung cancer and malignant mesothelioma and identification of a new 3p21.3 homozygous deletion. Oncogene 2001; 20:4249-4257
    26 Lee AY, He B, You L, et al. Expression of the secreted frizzled-related protein gene family is downregulated in human mesothelioma. Oncogene 2004; 23:6672-6676
    27 He B, Lee AY, Dadfarmay S, et al. Secreted frizzled-related protein 4 is silenced by hypermethylation and induces apoptosis in beta-catenin-deficient human mesothelioma cells. Cancer Res 2005; 65:743-748
    28 You L, He B, Uematsu K, et al. Inhibition of Wnt-1 signaling induces apoptosis in beta-catenin-deficient mesothelioma cells. Cancer Res 2004; 64:3474-3478
    29 Sekine S, Shibata T, Matsuno Y, et al. Beta-catenin mutations in pulmonary blastomas: association with morule formation. J Pathol 2003; 200:214-221
    30 Okamato S, Hisaoka M, Daa T, et al, Primary synovial sarcoma: a clinicalpathologic, immunohistochemical, and molecular study of 11 cases. Hum Pathol 2004; 35:850-856
    31 Chilosi M, Poletti V, Zamo A, et al. Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol 2003; 162:1495-1502
    32 Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003; 112:1776-1804
    33 Kim K, Lu Z, Hay ED. Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int 2002; 26:463-476
    34 Masszi A, Fan L, Rosivall L, et al. Integrity of cell-cell contacts is a critical regulator of TGF-beta-1-induced epithelial-to-myofibroblast transition: role for beta-catenin. Am J Pathol 2004; 165:1955-1967
    35 李娜萍,吴人亮,郝春荣,等。博莱霉素致小鼠肺组织损伤时广谱钙粘附素与β连环素的表达。中华结核和呼吸杂志2001;24:599-601
    36 Douglas IS, del Valle FD, Winn RA, Voelkel N. β-catenin in the fibroproliferative response to acute lung injury. Am J Respir Cell Mol Biol 2006; 34:274-285

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700