TBCC推进系统总体性能建模与工作特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涡轮基组合循环(Turbine-Based-Combined-Cycle,TBCC)发动机具有较优越的弹道性能,是一种可应用于高超声速飞行器的吸气式动力方案,在军民用航空航天领域具有广泛的应用前景。建立TBCC发动机总体性能模型在高超声速飞行器方案选型、推进系统总体设计,发动机整机及相关部件工作特性分析等研究中都具有非常重要的作用。
     本文利用拟一维流路分析方法,初步构建了TBCC总体性能的分析框架,并基于发动机部件特性建立了TBCC总体性能计算模型,利用C语言开发了相应的计算软件。完成了组合发动机各典型工作模态下的稳态性能计算,分析了组合发动机沿飞行轨迹线的性能参数变化规律。通过本文工作,给出了涡轮发动机工作特性曲线,所得结论与航空发动机经典理论相符。
     通过对进气道与发动机的匹配工作以及喷管与飞行器后体共同工作的分析,本文建立了并联式组合发动机进排气系统的数学模型。分析了进气道和喷管在不同模态下的工作性能及其变化规律,初步讨论了进排气部件共同工作中的相互影响。以进气道出口气动参数为对比目标,将进气道计算结果与CFD结果进行了对比,本文给出的计算结果基本符合进气道工作的物理规律,除设计工作点总压恢复系数这一指标外,其它参数误差基本不超过10%。
     根据计算结果,分析了冲压发动机燃烧室工作压力变化对发动机总体性能的影响,初步讨论了燃烧室压力脉动对发动机工作的危害,给出了燃烧室压力脉动的设计允许范围。
     最后,本文对组合发动机过渡工作态的总体性能进行了探索研究。以发动机流量分配比例变化为条件,分析了组合发动机过渡工作段性能参数的变化规律,确定了涡轮发动机的关车位置。阐述了接力工作点发动机性能衰减的主要原因,提出了改善发动机工作稳定性的初步方案。
For it’s excellent performance, Turbine-Based-Combined-Cycle(TBCC) should be the most competitive propulsion system for the future Hypersonic Flight Vehicle. TBCC system includes some pivotal ingredient, for example, scheme selection and model design of Vehicle, engine design, all-body and components performance analysis, in all of which, the engine modeling play an important role.
     Based on quasi 1-D flow equation, the relationship between airdynamical parameters and engine performance index was found. With this precondition, the performance analysis model was estabilished based on the components maps, which reflect the property of components.
     In this paper, a calculated tool has been created, which was written in C++. The program can analyze many configurations including a turbojet, afterburning turbojet, ramjet and TBCC engine. During the simulation, the effect of the radius of the leading edge on the flow fields and the performance of the inlet were investigated, meanwhile, the effects of the inlet design by the bluntness were pointed, and some ways were provided to solve the problem. Using this program, the main modes of the TBCC has been calculated. The results told that the program was feasible.
     Based on the inlet/engine matching, inlet performance analysis model was established, from which, the characteristic of inlet was analyzed. Similarly, the nozzle analysis model was also realized, with the capability of simulating integration of nozzle/vehicle-afterbody.
     In view of surge in combustor would bring ruinous effect to the ramjet, influence which was led from the burner’s pressure has been discussed. From the result, a limitative range of the pressure’s change is less than±10%.
     At the end of this paper, property of the transition state has been analyzed. In this state, the performance of engine would slack up at the point of turbojet shutdown quickly. Both improving the temperature after the ramjet combustor and extending the operation range of turbojet, could meliorate the performance of propulsion system at the transition state.
引文
[1] Timothy Kokan, John R. Olds, Virgil Hutchinson, John Daniel Reeves. Aztec:A TSTO Hypersonic Vehicle Concept Utilizing TBCC and HEDM Propulsion Technologies[R]. AIAA 2004-3728.
    [2] Joseph M. Hank,Comparative Analysis of Two-Stage-To-Orbit Rocket and Airbreathing Reusable Launch Vehicles for Military Applications[D]. Master's Thesis, Air Force Institute of Technology, March 2006.
    [3] Andre W. Marshall, Ashwani K. Gupta, Mark J. Lewis. Critical Issues in TBCC Modeling [R]. AIAA 2004-3827.
    [4] H. Itahara, S. Kchara, F. Tanaka, M. Suzuki, J. L. Cabe, R. Yanagi and M. Morita. Research and Development of a Turbo-accelerator for Super/Hypersonic Transport[R]. ISABE-93 -7066.
    [5]火箭引射/亚燃/冲压模态工程过程研究——推进系统方案跟踪和分析报告[R].西北工业大学,2004-10.
    [6] Hideyuki TAGUCHI, Hisao FUTAMURA, Kazuo SHIMODAIRA, DESIGN STUDY ON HYPERSONIC ENGINE COMPONENTS FOR TBCC SPACE PLANES[R]. AIAA 2003 -7006
    [7] C.J. Trefny, T.J. Benson. An Integration of Turbojet and Single-Throat Ramjet[R]. NASA Technical Memorandum 107085.
    [8] T.J. Benson, C.J. Trefny, F. Walker, Interactive Design Tool for Turbine Based Combine Cycle Engines[R]. AIAA 97-3160.
    [9] Ryan S.Bechtel, T-BEAT: A Conceptual Design Tool for Turbine-Based Propulsion System Analysis[R]. Georgia Institute of Technology, AE8900, Spring 2001.
    [10] H. Kobayashi and N. Tanatsugu, Optimization Method on TSTO Spaceplane System Powered by Airbreather[R]. 2001-3965
    [11] H. Miyagi, H. Miyagawa, K. Kishi, Combined Cycle Engine Research in Japanese HYPR Project[R]. AIAA 95-2751.
    [12] Prabhakar Subrahmanyam. Numerical Investigation of Parametric and Off-Design Performance Analysis and Simulation for Airbreathing Engines at Hypersonic Velocities[R]. AIAA 2006-220.
    [13] CHEN Min , ZHU Zhi-li , ZHU Da-ming , ZHANGJin, Performance Analysis Tool for Turbine Based Combined Cycle Engine Concept[J]. Journal of Astronautics, Vol. 27 No. 5September 2006.
    [14]朱大明,陈敏,唐海龙,张津.高超声速涡轮/冲压组合发动机方案[J].北京航空航天大学学报,第32卷第3期,2006-3.
    [15] Lynn E. Snyder, Daric W. Escher and Rich L. DeFrancesco. Turbine Based Combination Cycle (TBCC) Propulsion Subsystem Integration[R], AIAA 2004-3649
    [16] Cindy W. Albertson, Saied Emami, Carl A. Trexler, Mach 4 Test Results of a Dual-Flowpath, Turbine Based Combined Cycle Inlet[R]. AIAA 97-3160.
    [17] Robert J. Pegg, James L. Hunt, and Dennis H. Petley, Design of a Hypersonic Waverider- Derived Airplane[R]. AIAA 93-0401.
    [18] Kevin A. Spoth and Paul L. Moses, Structural Design and Analysis of a Mach Zero-to-Five Turbo-Ramjet System[R]. AIAA 93-1983.
    [19]陈大光,高超声速飞行与TBCC方案简介[J],航空发动机,第32卷第3期,2006年。
    [20]李刚团,李继保,周人治.涡轮-冲压组合发动机技术发展浅析[J].燃气涡轮试验与研究,第19卷第2期,2006-5.
    [21] Paul A. Bartolotta, Nancy B. McNelis and Douglas G. Shafer. Hign Speed Turbines: Development of a Turbine Accelerator (RTA) for Space Access[R]. AIAA 2003-6943
    [22] Joachim Kurzke, GasTurb Technical Reference[Z]. 2004
    [23] F. Venditti, L. Visintini, and V. Velardi. Turboramjet Air Intake Preliminary Design Study[R]. AIAA 93-5041.
    [24]陈大光,张津.飞机-发动机匹配与优化[M].北京:北京航空航天大学出版社,1990.
    [25]卓刚.航空发动机智能建模与故障诊断研究[D].硕士学位,南京航空航天大学,2004-2.
    [26] C.Rieger, M.Bauer, J. Kuzke. Some Aspects of Modelling Compressor Behaviour in Gas Turbine Performanc Calculation[R]. ASME 2000-GT-0574, 2000.
    [27] Joachim Kurzke, GasTurb A Program for Gas Turbine Performance Calculations[Z]. 2004
    [28] J. Kurzke. How to Get Component Maps for Aircraft Gas Turbine Performance Calculations [R]. ASME 96-GT-164, 1996.
    [29]廉筱纯,吴虎.航空发动机原理[M].西安:西北工业大学出版社, 2005.
    [30] Dimitrios Krikellas. Improvement of the Performance of a Turboramjet Engine for UAV and Missile applications[D]. Master's Thesis, Naval postgraduate school, December 2006.
    [31]赵丽凤,王逊,刘小兵.张世铮.涡轮-冲压组合发动机模态过渡段性能模拟和概念讨论[J].工程热物理学报,第20卷第1期, 1999-1.
    [32]李龙.并联式TBCC组合发动机进气道设计研究[D].学士学位,南京航空航天大学, 2006-6.
    [33]张晓嘉.二元高超声速进气道设计方法和优化[D].博士学位,南京航空航天大学, 2008.
    [34] T.J. Benson. An Interactive, Design and Educational Tool for Supersonic External- -Compression Inlets[R]. AIAA 94-2707.
    [35]李龙,李博,梁德旺.高超声速涡轮基组合循环发动机并联式进气道的气动特性[J]。推进技术,(已录用).
    [36] David W.Lam. Use of the PARC Code to Estimate the Off-Design Transonic Performance of an Over/Under Turboramjet Nozzle[R]. AIAA 95-2616.
    [37] Angel M. Espinosa, INTEGRATION OF TURBINE ENGINES IN HYPERSONIC AIRBREATHING VEHICLES[R]. AIAA 2003-4408.
    [38] Eric Gamble and Dan Haid. Improving Off-Design Nozzle Performance Using Fluidic Injection[R]. AIAA 2004-1206.
    [39]周红梅,于胜春,李昊,赵汝岩.冲压发动机燃烧室内的压强振荡研究[J].飞航导弹,2006年第4期.
    [40] Mark H. Waters. Turbojet-Ramjet Propulsion System for All-body Hypersonic Aircraft[R]. NASA TN D-5993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700