ALK1和ALK2在BMP9诱导C3H10细胞成骨分化中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
BMPs属于TGFβ超家族,最初是作为骨生长因子被发现的,目前共分离和鉴定了20余种BMPs。骨形态发生蛋白(BMPs)在器官发育和组织损伤再生等过程中发挥着重要作用。目前,已报道的具有诱导成骨活性的BMPs主要是BMP2、4、7等。近年来的研究发现BMP9具有强大的诱导成骨能力,但是由于其被关注的时间较短,所以对BMP9信号转导过程以及诱导成骨的分子机制还缺乏了解。
     BMPs是通过跨膜丝氨酸/苏氨酸激酶受体传递信号的。TGFβ受体分为Ⅰ型受体与Ⅱ型受体,其中Ⅱ型受体处于持续磷酸化状态,即持续激活的状态,而Ⅰ型受体则需要Ⅱ型受体磷酸化相应位点后才能被激活,Ⅰ型受体激活后,再磷酸化激活下游的转录因子Smads。Ⅰ型受体和Ⅱ型受体复合物是BMPs信号途径的必要分子。其中Ⅰ型受体,在BMPs信号转导过程和功能发挥中起着承上启下的关键作用。
     我们实验室前期工作,利用显性负性突变型TGFβⅠ型受体的腺病毒和BMP9共同作用发现,ALK1、ALK2这两种Ⅰ型受体很可能与BMP9诱导成骨有关。基于此,本研究拟对Ⅰ型受体ALK1和ALK2参与BMP9诱导成骨的作用进行进一步验证。
     本研究利用T-C He等设计的一种siRNA筛选系统(pSOS系统)成功构建和筛选了能有效干扰ALK1和ALK2表达的siRNA的腺病毒,在体内体外水平验证了ALK1和ALK2对于BMP9诱导成骨的影响。在体外实验中,siALK1、siALK2可以有效抑制碱性磷酸酶、钙盐、荧光素酶的活性,而这三项是验证BMP9信号传导和体外成骨的重要指标。实验结果说明,siALK1、siALK2抑制了BMP9的信号转导,并抑制了BMP9诱导骨髓间充质干细胞向成骨细胞分化。在体内实验中,siALK1、siALK2有效抑制了裸鼠皮下包块形成的大小,H&E染色、Alcian blue染色的组织学评价说明包块中骨基质较少,软骨基质较多,表明其成骨过程不活跃且较滞后。体内实验说明siALK1和siALK2在动物水平抑制了BMP9的诱导成骨效应。综上,通过RNAi抑制ALK1、ALK2后的体内体外实验,,鉴定和验证了ALK1、ALK2是参与BMP9信号转导和诱导成骨过程的Ⅰ型受体,发挥着承上启下的重要作用,本研究将有助于进一步阐明BMP9诱导成骨的机制。
BMPs(Bone Morphogenetic Proteins)belong to the transforming growth factorb (TGFβ) superfamily, Originally isolated as proteins that induce bone and cartilage formation in vivo. More than 20 BMPs have been identified. Bone Morphogenetic Proteins (BMPs) play an important role during organ development and during regeneration after tissue damage. Prior works show that BMP2, BMP4, BMP7 has potent osteogenic activity. Presently, it has been found that BMP9 is the strongest factor to induce bone formation. But the mechanism under the bone formation induced by BMP9 reamins unclear.
     BMPs signal via transmembrane serine/threonine kinase receptors, termed TGFβtype I and type II receptor,and then, the activated receptor subsequently phosphorylates transcriptional factors, called Smads, which activate the expression of target genes in concert with coactivators. Therefore, in this signal pathway, TGFβreceptors act as a key point which can bind BMPs and activate Smads.TGFβreceptors are the most important molecular in early signal transduction of BMPs, and involve in osteogenic activity of BMPs. Among, TGFβtype I receptor, which is the connecting link of BMPs pathway, plays an important role.
     In our lab’s previous study, we use TGFβtype I dn-receptor virus and BMP9 to co-stimulate stem cell and nude mouse, preliminary screening TGFβtypeⅠreceptor ALK1 and ALK2 which can inhibit the osteogenesis of BMP9. According to the experimental result, it is very probable for ALK1 and ALK2 to concern with osteogenesis of BMP9. Based on this background, our study further identify and validate the effect of ALK1 and ALK2 on the osteogenesis of BMP9.
     We apply a special siRNA screening system—pSOS designed by T-C He to successfully construct and screen siALK1 and siALK2 adenovirus which have potent effect to interfere the expression of ALK1 and ALK2, validating the impact of ALK1 and ALK2 on osteogenesis of BMP9 in vitro and vivo. In vitro, we have found siALK1 and siALK2 can inhibit the activity of alkaline phosphatase, luciferase and calcium salts which are the most important signaling and osteoblast markers. The experimental result shows that siALK1 and siALK2 inhibit osteogenesis of BMP9 in vitro. In vivo, siALK1 and siALK2 inhibit the subcutaneous bulb’s size in nude. Bone matirx exhibits less while cartilage matrix more, indicating inactive and hysteretic osteogenesis. These show siALK1 and siALK2 inhibit osteogenesis of BMP9 in vivo. From the above, we identify and validate the potent effect of ALK1 and ALK2 on the osteogenesis of BMP9, which can provide virtual evidence to elucidate the mechanism under BMP9 induced osteogenesis.
引文
[1] Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major Smad pathways in TGF-b superfamily signaling. Genes Cells 2002;7:1191–204.
    [2] Derynck R, Akhurst RJ, Balmain A. TGF-b signaling in tumor suppression and cancer progression. Nat Genet 2001;29:117–29.
    [3] Shi Y, Massague J. Mechanisms of TGF-b signaling from cell membrane to the nucleus. Cell 2003;113:685–700.
    [4] Kawabata M, Imamura T, Miyazono K. Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev 1998;9:49–61.
    [5] Miyazono K. Bone morphogenetic protein receptors and actions. In: Bilezikian JP, Raisz LG, Rodan GA., editors. Principles of bone biology. 2nd ed. Academic Press; 2002. p. 929–42.
    [6] Miyazono K, Maeda S, Imamura T. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 2005;16:251–63.
    [7] Shimasaki S, Moore RK, Otsuka F, Erickson GF. The bone morphogenetic protein system in mammalian reproduction. Endocr Rev 2004;25:72–101.
    [8] ZOU, H., R. WIESER, J. MASSAGUE,L. NISWANDER. Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage [J]. Genes Dev. 1997,1:2191-2203.
    [9] Shi Y, Massague J. Mechanisms of TGF-b signaling from cell membrane to the nucleus. Cell 2003;113:685–700.
    [10] Heldin CH, Miyazono K, ten Dijke P. TGF-b signaling from cell membrane to nucleus through SMAD proteins. Nature 1997;390:465–71.
    [11] Quan N. Nguyen, Rajesh V. et al. Light controllable siRNAs regulate gene suppression and phenotypes in cells. Biochimica et Biophysica Acta (BBA) - Biomembranes, Volume 1758, Issue 3, March 2006, Pages 394-403.
    [12] Qing Luo, Quan Kang, Wen-Xin Song, et al. Selection and validation of optimal siRNA target sites for RNAi-mediated gene silencing [J]. Gene. 2007,395(1-2): 160-169
    [13] Alden TD, Pittman DD, Hankins GR, Beres EJ, Engh JA, Das S, Hudson SB, KernsKM, Kallmes DF, Helm GA. In vivo endochondral bone formation using a bone morphogenetic protein 2 adenoviral vector. Hum Gene Ther 1999: 10: 2245–2253.
    [14] Franceschi RT, Wang D, Krebsbach PH, Rutherford RB. Gene therapy for bone formation: in vitro and in vivo osteogenic activity of an adenovirus expressing BMP7. J Cell Biochem 2000: 78: 476–486.
    [15] Helm GA, Alden TD, Sheehan JP, Kallmes D. Bone morphogenetic proteins and bone morphogenetic protein gene therapy in neurological surgery: areview. Neurosurgery 2000: 46: 1213–1222.
    [16] Quan Kang, Michael H. Sun, Hongwei Cheng, et al. Characterization of the distinct orthotopic bone forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery [J]. Gene Therapy 2004,11(17): 1312–1320.
    [17] Hongwei Cheng, Wei Jiang, Frank M. Phillips, et al. Osteogenic Activity of the 14 Types of Human Bone Morphogenetic Proteins (BMPs) [J]. Journal of Bone and Joint Surgery 2003,85(8):1544-1552
    [18] Song JJ, Celeste AJ, Kong FM, Jirtle RL, Rosen V, Thies RS. Bone morphogenetic protein-9 binds to liver cells and stimulates proliferation. Endocrinology. 1995; 136: 4293–7.
    [19] Chen C, Grzegorzewski KJ, Barash S, et al. An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis. Nat Biotechnol. 2003; 21: 294–301.
    [20] Truksa J, Peng H, Lee P, Beutler E. Bone morphogenetic proteins 2, 4, and 9 stimulate murine hepcidin 1 expression independently of Hfe, transferrin receptor 2 (Tfr2), and IL-6. Proc Natl Acad Sci USA. 2006; 103: 10289–93.
    [21] Ducy P, Karsenty G. The family of bone morphogenetic proteins. Kidney Int. 2000; 57: 2207–14.
    [22] Luu HH, Song WX, Luo X, et al. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res. 2007; 25: 665–77.
    [23] Mazerbourg S, Sangkuhl K, Luo CW, Sudo S, Klein C, Hsueh AJ. Identification of receptors and signaling pathways for orphan bone morphogenetic protein/growth differentiation factor ligands based on genomic analyses [J]. J Biol Chem. 2005,16;280(37):32122-32
    [24] Kloen P, Paola M, Borens O, et al. BMP signaling components are expressed in human fracture callus [J]. Bone. 2003,33:362-71
    [25] CHEN, D., X. JI, M.A. HARRIS, et al. Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages [J]. J.Cell Biol. 1998,142:295–305.
    [26] YOON, B.S., D.A. OVCHINNIKOV, I. YOSHII, et al.. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo [J]. Proc. Natl. Acad. Sci. U SA. 2005,102:5062–5067.
    [27] Yamamoto H, Ueno H, Ooshima A, et al. Adenovirus-mediated transfer of a truncated transforming growth factor-beta (TGF-beta) type II receptor completely and specifically abolishes diverse signaling by TGF-beta in vascular wall cells in primary culture [J]. J Biol Chem. 1996,271(27):16253-9.
    [28] Choi ME, Ballermann BJ. Inhibition of capillary morphogenesis and associated apoptosis by dominant negative mutant transforming growth factor-beta receptors [J]. J Biol Chem. 1995,270(36):21144-50
    [29] Marie PJ. Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys 2008;473:98–105.
    [30] Kang Q, Sun MH, Cheng H, et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther. 2004; 11:1312–20.
    [31] Tong-Chuan He, Shibin Zhou, Luis da Costa, et al. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2509-14.
    [32] Hue H. Luu, Wen-Xin Song, Xiaoji Luo, David Manning, Jinyong Luo, Zhongliang Deng, Katie Sharff, Anthony G. Montag, Rex C. Haydon, and Tong-Chuan He. Distinct Roles of Bone Morphogenetic Proteins in Osteogenic Differentiation of Mesenchymal Stem Cells [J]. Journal of Orthopaedic Research. 2007,25(5): 665-677
    [33] Quan Kang, Michael H. Sun, Hongwei Cheng, Ying Peng, Anthony G. Montag, Andrea T. Deyrup, Wei Jiang, Hue H. Luu, Jan Paul Szatkowski, Pantila Vanichakarn, Jae Yoon Park, Jeffrey Luo, Yien Li, Rex C. Haydon, and Tong-Chuan He. Characterization of the distinct orthotopic bone forming activityof 14 BMPs using recombinant adenovirus-mediated gene delivery [J]. Gene Therapy. 2004,11(17):1312–1320.
    [34] Marquis M-E, Lord E, Bergeron E, Drevelle O, Park H, Cabana F, et al. Bone cells-biomaterials interactions. Front Biosci 2009;14:1023–67.
    [35] Suda T, Udagawa N, Nakamura I, Miyaura C, Takahashi N. Modulation of osteoclast differentiation by local factors. Bone 1995;17:87S–91S.
    [36] Va¨a¨na¨nen HK, Zhao H, Mulari M, Halleen JM. The cell biology of osteoclast function. J Cell Sci 2000;113:377–81.
    [37] Abdallah BM, Kassem M. Humanmesenchymal stem cells: from basic biology to clinical applications. Gene Ther 2008;15:109–16.
    [38] Kozhevnikova MN, Mikaelyan AS, Starostin VI. Molecular and genetic regulation of osteogenic differentiation of mesenchymal stromal cells. Biol Bull Russ Acad Sci 2008;35:223–32.
    [39] Marie PJ. Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys 2008;473:98–105.
    [40] Zhang JW, Li LH. BMP signaling and stem cell regulation. Dev Biol 2005;284:1–11.
    [41] Marquis M-E, Lord E, Bergeron E, Drevelle O, Park H, Cabana F, et al. Bone cells-biomaterials interactions. Front Biosci 2009;14:1023–67.
    [42] Herpin A, Cunningham C. Cross-talk between the bone morphogenetic protein pathway and other major signaling pathways res
    [43] Ebendal T, Bengtsson H, So¨derstro¨m S. Bone morphogenetic proteins and their receptors: potential functions in the brain. J Neurosci Res 1998;51: 139–46.
    [44] Miyazono K. Signal transduction by bone morphogenetic protein receptors: functional roles of Smad proteins. Bone 1999;25:91–3.
    [45] Gazzerro E, Canalis E. Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord 2006;7:51–65
    [46] Lavery K, Swain P, Falb D, Alaoui-Ismaili MH. BMP-2/4 and BMP-6/7 differentially utilize cell surface receptors to induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells. J Biol Chem 2008;283:20948–5.
    [47] ScharpfeneckerM, van DintherM, Liu Z, van Bezooijen RL, Zhao QH, Pukac L, et al. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cellproliferation and VEGF-stimulated angiogenesis. J Cell Sci 2007;120: 964–72.
    [48] Brown MA, Zhao Q, Baker KA, Naik C, Chen C, Pukac L, et al. Crystal structure of BMP-9 and functional interactions with pro-region and receptors. J Biol Chem 2005;280:25111–8.
    [1] Spemann H, Mangold H. Induction of embryonic primordia by implantation of organizers from a different species. 1923. Int J Dev Biol 2001;45:13–38.
    [2] Sasai Y, Lu B, Piccolo S, De Robertis EM. Endoderm induction by the organizersecreted factors chordin and noggin in Xenopus animal caps. Embo J 1996;15:4547–55.
    [3] Dale L, Jones CM. BMP signalling in early Xenopus development. Bioessays 1999;21:751–60.
    [4] Mieko Mizutani C, Bier E. EvoD/Vo: the origins of BMP signalling in the neuroectoderm. Nat Rev Genet 2008;9:663–77.
    [5] Smith WC, Harland RM. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 1992;70:829–40.
    [6] Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 1994;79:779–90.
    [7] Piccolo S, Sasai Y, Lu B, De Robertis EM. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 1996;86:589–98.
    [8] Zimmerman LB, De Jesus-Escobar JM, Harland RM. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 1996;86:599–606.
    [9] Sieber C, Schwaerzer GK, Knaus P. Bone Morphogenetic Proteins: From Local to Systemic Therapeutics; article: BMP signaling is fine tuned on multiple levels. Vol XI. hardcover ed: Birkha¨user; 2008.
    [10] Little SC, Mullins MC. Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Nat Cell Biol 2009;11:637–43.
    [11] Canalis E, Economides AN, Gazzerro E. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 2003;24:218–35.
    [12] Hill JJ, Qiu Y, Hewick RM, Wolfman NM. Regulation of myostatin in vivo by growth and differentiation factor-associated serum protein-1: a novel protein with protease inhibitor and follistatin domains. Mol Endocrinol 2003;17:1144–54.
    [13] Zhang H, Bradley A.Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 1996;122: 2977–86.
    [14] Winnier G, Blessing M, Labosky PA, Hogan BL. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 1995;9:2105–16.
    [15] Furuta Y, Hogan BL. BMP4 is essential for lens induction in the mouse embryo. Genes Dev 1998;12:3764–75.
    [16] Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, Wright CV, et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 1999;13:424–36.
    [17] Goldman DC, Donley N, Christian JL. Genetic interaction between Bmp2 and Bmp4 reveals shared functions during multiple aspects of mouse organogenesis. Mech Dev 2009;126:117–27.
    [18] Daluiski A, Engstrand T, Bahamonde ME, Gamer LW, Agius E, Stevenson SL, et al. Bone morphogenetic protein-3 is a negative regulator of bone density. Nat Genet 2001;27:84–8.
    [19] Matzuk MM. Functional analysis of mammalian members of the transforming growth factor-beta superfamily. Trends Endocrinol Metab 1995;6:120–7.
    [20] Bailon-Plaza A, Lee AO, Veson EC, Farnum CE, van der Meulen MC. BMP-5 deficiency alters chondrocytic activity in the mouse proximal tibial growth plate. Bone 1999;24:211–6.
    [21] Jena N, Martin-Seisdedos C, McCue P, Croce CM. BMP7 null mutation in mice: developmental defects in skeleton, kidney, and eye. Exp Cell Res 1997;230:28–37.
    [22] Zhao GQ, Liaw L, Hogan BL. Bone morphogenetic protein 8A plays a role in the maintenance of spermatogenesis and the integrity of the epididymis. Development 1998;125:1103–12.
    [23] Zhao GQ, Deng K, Labosky PA, Liaw L, Hogan BL. The gene encoding bone morphogenetic protein 8B is required for the initiation and maintenance of spermatogenesis in the mouse. Genes Dev 1996;10:1657–69.
    [24] Yan C, Wang P, DeMayo J, DeMayo FJ, Elvin JA, Carino C, et al. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol 2001;15:854–66.
    [25] Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, et al. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 2004;131:2219–31.
    [26] Miyazono K, Maeda S, Imamura T. BMP receptor signaling: transcriptional targets,regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 2005;16:251–63.
    [27] Shimasaki S, Moore RK, Otsuka F, Erickson GF. The bone morphogenetic protein system in mammalian reproduction. Endocr Rev 2004;25:72–101.
    [28] Chen YG, Hata A, Lo RS, Wotton D, Shi Y, Pavletich N, et al. Determinants of specificity in TGF-beta signal transduction. Genes Dev 1998;12:2144–52.
    [29] Knaus P, Sebald W. Cooperativity of binding epitopes and receptor chains in the BMP/TGFbeta superfamily. Biol Chem 2001;382:1189–95.
    [30] Koenig BB, Cook JS, Wolsing DH, Ting J, Tiesman JP, Correa PE, et al. Characterization and cloning of a receptor for BMP-2 and BMP-4 from NIH 3T3 cells. Mol Cell Biol 1994;14:5961–74.
    [31] Greenwald J, Groppe J, Gray P, Wiater E, Kwiatkowski W, Vale W, et al. The BMP7/ActRII extracellular domain complex provides new insights into the cooperative nature of receptor assembly. Mol Cell 2003;11:605–17.
    [32] Gilboa L, Nohe A, Geissendorfer T, Sebald W, Henis YI, Knaus P. Bone morphogenetic protein receptor complexes on the surface of live cells: a new oligomerization mode for serine/threonine kinase receptors. Mol Biol Cell 2000;11:1023–35.
    [33] Nohe A, Hassel S, Ehrlich M, Neubauer F, Sebald W, Henis YI, et al. The mode of bone morphogenetic protein (BMP) receptor oligomerization determines different BMP-2 signaling pathways. J Biol Chem 2002;277:5330–8.
    [34] Hartung A, Bitton-Worms K, Rechtman MM, Wenzel V, Boergermann JH, Hassel S, et al. Different routes of bone morphogenic protein (BMP) receptor endocytosis influence BMP signaling. Mol Cell Biol 2006;26:7791–805.
    [35] Gazzerro E, Canalis E. Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord 2006;7:51–65.
    [36] Lehmann K, Seemann P, Silan F, Goecke TO, Irgang S, Kjaer KW, et al. A New Subtype of Brachydactyly Type B Caused by Point Mutations in the Bone Morphogenetic Protein Antagonist NOGGIN. Am J Hum Genet 2007;81:388–96.
    [37] Halbrooks PJ, Ding R, Wozney JM, Bain G. Role of RGM coreceptors in bone morphogenetic protein signaling. J Mol Signal 2007;2:4.
    [38] Barbara NP, Wrana JL, Letarte M. Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 1999;274:584–94.
    [39] Kirkbride KC, Townsend TA, Bruinsma MW, Barnett JV, Blobe GC. Bone morphogenetic proteins signal through the transforming growth factor-beta type III receptor. J Biol Chem 2008;283:7628–37.
    [40] Onichtchouk D, Chen YG, Dosch R, Gawantka V, Delius H, Massague J, et al. Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature 1999;401:480–5.
    [41] Sammar M, Stricker S, Schwabe GC, Sieber C, Hartung A, Hanke M, et al. Modulation of GDF5/BRI-b signalling through interaction with the tyrosine kinase receptor Ror2. Genes Cells 2004;9:1227–38.
    [42] Jin W, Yun C, Kim HS, Kim SJ. TrkC binds to the bone morphogenetic protein type II receptor to suppress bone morphogenetic protein signaling. Cancer Res 2007;67:9869–77.
    [43] Wu KM, Huang CJ, Hwang SP, Chang YS. Molecular cloning, expression and characterization of the zebrafish bram1 gene, a BMP receptor-associated molecule. J Biomed Sci 2006;13:345–55.
    [44] Yamaguchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tamai K, Irie K, et al. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. Embo J 1999;18:179–87.
    [45] Wertz JW, Bauer PM. Caveolin-1 regulates BMPRII localization and signaling in vascular smooth muscle cells. Biochem Biophys Res Commun 2008;375: 557–61.
    [46] Satow R, Kurisaki A, Chan TC, Hamazaki TS, Asashima M. Dullard promotes degradation and dephosphorylation of BMP receptors and is required for neural induction. Dev Cell 2006;11:763–74.
    [47] Bengtsson L, Schwappacher R, Roth M, Boergermann JH, Hassel S, Knaus PP2Aregulates BMP signalling by interacting with BMP receptor complexes and by dephosphorylating both the C-terminus and the linker region of Smad1. J Cell Sci 2009;122:1248–57.
    [48] Zakrzewicz A, Hecker M, Marsh LM, Kwapiszewska G, Nejman B, Long L, et al. Receptor for activated C-kinase 1, a novel interaction partner of type II bone morphogenetic protein receptor, regulates smooth muscle cell proliferation in pulmonary arterial hypertension. Circulation 2007;115:2957–68.
    [49] Liliental J, Chang DD. Rack1, a receptor for activated protein kinase C, interacts with integrin beta subunit. J Biol Chem 1998;273:2379–83.
    [50] Chan MC, Nguyen PH, Davis BN, Ohoka N, Hayashi H, Du K, et al. A novel regulatory mechanism of the Bone Morphogenetic Protein (BMP) signaling pathway involving the carboxyl-terminal tail domain of BMP type II receptor. Mol Cell Biol 2007;27:5776–89.
    [51] Wong WK, Knowles JA, Morse JH. Bone morphogenetic protein receptor type II C-terminus interacts with c-Src: implication for a role in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 2005;33:438–46.
    [52] Schwappacher R, Weiske J, Heining E, Ezerski V, Marom B, Henis YI, et al. Novel crosstalk to BMP signalling: cGMP-dependent kinase I modulates BMP receptor and Smad activity. Embo J 2009;28:1537–50.
    [53] Foletta VC, Lim MA, Soosairajah J, Kelly AP, Stanley EG, Shannon M, et al. Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1. J Cell Biol 2003;162:1089–98.
    [54] Meng Q, Lux A, Holloschi A, Li J, Hughes JM, Foerg T, et al. Identification of Tctex2beta, a novel dynein light chain family member that interacts with different transforming growth factor-beta receptors. J Biol Chem 2006;281: 37069–80.
    [55] Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev 2005;19:2783–810.
    [56] Wrana JL. Regulation of Smad activity. Cell 2000;100:189–92.
    [57] Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to thenucleus. Cell 2003;113:685–700.
    [58] Guo X, Wang XF. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res 2009;19:71–88.
    [59] ShiW, Chang C, Nie S, Xie S,Wan M, Cao X. Endofin acts as a Smad anchor for receptor activation in BMP signaling. J Cell Sci 2007;120:1216–24.
    [60] Zhang F, Qiu T, Wu X, Wan C, Shi W, Wang Y, et al. Sustained BMP signaling in osteoblasts stimulates bone formation by promoting angiogenesis and osteoblast differentiation. J Bone Miner Res 2009;24:1224–33.
    [61] Murakami G, Watabe T, Takaoka K, Miyazono K, Imamura T. Cooperative inhibition of bonemorphogenetic protein signaling by Smurf1 and inhibitory Smads. Mol Biol Cell 2003;14:2809–17.
    [62] Inoue Y, Imamura T. Regulation of TGF-beta family signaling by E3 ubiquitin ligases. Cancer Sci 2008;99:2107–12.
    [63] Lo¨nn P, Moren A, Raja E, Dahl M, Moustakas A. Regulating the stability of TGFbeta receptors and Smads. Cell Res 2009;19:21–35.
    [64] Itoh S, ten Dijke P. Negative regulation of TGF-beta receptor/Smad signal transduction. Curr Opin Cell Biol 2007;19:176–84.
    [65] Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. Embo J 2002;21:1743–53.
    [66] Goumans MJ, Valdimarsdottir G, Itoh S, Lebrin F, Larsson J, Mummery C, et al. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Mol Cell 2003;12:817–28.
    [67] Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G, Thorikay M, et al. Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. Embo J 2004;23:4018–28.
    [68] Daly AC, Randall RA, Hill CS. Transforming growth factor beta-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Mol Cell Biol 2008;28: 6889–902.
    [69] Wrighton KH, Lin X, Yu PB, Feng XH. Transforming Growth Factor {beta} Can Stimulate Smad1 Phosphorylation Independently of Bone Morphogenic Protein Receptors. J Biol Chem 2009;284:9755–63.
    [70] Liu IM, Schilling SH, Knouse KA, Choy L, Derynck R, Wang XF. TGFbetastimulated Smad1/5 phosphorylation requires the ALK5 L45 loop and mediates the pro-migratory TGFbeta switch. Embo J 2009;28:88–98.
    [71] Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, Attisano L. Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol 2003;23:7230–42.
    [72] Cassar L, Nicholls C, Pinto AR, Li H, Liu JP. Bone morphogenetic protein-7 induces telomerase inhibition, telomere shortening, breast cancer cell senescence, and death via Smad3. Faseb J 2009;23:1880–92.
    [73] Fuentealba LC, Eivers E, Ikeda A, Hurtado C, Kuroda H, Pera EM, et al. Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell 2007;131:980–93.
    [74] Sapkota G, Alarcon C, Spagnoli FM, Brivanlou AH, Massague J. Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol Cell 2007;25: 441–54.
    [75] Feng XH, Derynck R. Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 2005;21:659–93.
    [76] Gould GW, Lippincott-Schwartz J. New roles for endosomes: from vesicular carriers to multi-purpose platforms. Nat Rev Mol Cell Biol 2009;10:287–92.
    [77] Chen YG. Endocytic regulation of TGF-beta signaling. Cell Res 2009;19:58–70.
    [78] Nohe A, Keating E, Underhill TM, Knaus P, Petersen NO. Effect of the distribution and clustering of the type I A BMP receptor (ALK3) with the type II BMP receptor on the activation of signalling pathways. J Cell Sci 2003;116:3277–84.
    [79] Seet LF, Hong W. Endofin, an endosomal FYVE domain protein. J Biol Chem 2001;276:42445–54.
    [80] Seet LF, Hong W. Endofin recruits clathrin to early endosomes via TOM1. J CellSci 2005;118:575–87.
    [81] Nohe A, Keating E, Underhill TM, Knaus P, Petersen NO. Dynamics and interaction of caveolin-1 isoforms with BMP-receptors. J Cell Sci 2005;118: 643–50.
    [82] Gillette JM, Larochelle A, Dunbar CE, Lippincott-Schwartz J. Intercellular transfer to signalling endosomes regulates an ex vivo bone marrow niche. Nat Cell Biol 2009;11:303–11.
    [83] Lau KH, Kapur S, Kesavan C, Baylink DJ. Up-regulation of the Wnt, estrogen receptor, insulin-like growth factor-I, and bone morphogenetic protein pathways in C57BL/6J osteoblasts as opposed to C3H/HeJ osteoblasts in part contributes to the differential anabolic response to fluid shear. J Biol Chem 2006;281:9576–88.
    [84] Mitsui FH, Peris AR, Cavalcanti AN, Marchi GM, Pimenta LA. Influence of thermal and mechanical load cycling on microtensile bond strengths of total and self-etching adhesive systems. Oper Dent 2006;31:240–7.
    [85] Sharp LA, Lee YW, Goldstein AS. Effect of low-frequency pulsatile flow on Expression of osteoblastic genes by bone marrow stromal cells. Ann Biomed Eng 2009;37:445–53.
    [86] Aspenberg P, Basic N, Tagil M, Vukicevic S. Reduced expression of BMP-3 due to mechanical loading: a link between mechanical stimuli and tissue differentiation. Acta Orthop Scand 2000;71:558–62.
    [87] Rath B, Nam J, Knobloch TJ, Lannutti JJ, Agarwal S. Compressive forces induce osteogenic gene expression in calvarial osteoblasts. J Biomech 2008;41: 1095–103.
    [88] Liedert A, Kaspar D, Blakytny R, Claes L, Ignatius A. Signal transduction pathways involved in mechanotransduction in bone cells. Biochem Biophys Res Commun 2006;349:1–5.
    [89] Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/ sclerostin. J Biol Chem 2008;283:5866–75.
    [90] Lin CL, Chen TF, Chiu MJ, Way TD, Lin JK. Epigallocatechin gallate (EGCG)suppresses beta-amyloid-induced neurotoxicity through inhibiting c-Abl/FE65 nuclear translocation and GSK3 beta activation. Neurobiol Aging 2009;30:81–92.
    [91] Rangaswami H, Marathe N, Zhuang S, Chen Y, Yeh JC, Frangos JA, et al. Type II cGMP-dependent protein kinase mediates osteoblast mechanotransduction. J Biol Chem 2009;284:14796–808.
    [92] Jadlowiec JA, Zhang X, Li J, Campbell PG, Sfeir C. Extracellular matrixmediated signaling by dentin phosphophoryn involves activation of the Smad pathway independent of bone morphogenetic protein. J Biol Chem 2006;281:5341–7.
    [93] Schwartz Z, Simon BJ, Duran MA, Barabino G, Chaudhri R, Boyan BD. Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells. J Orthop Res 2008;26:1250–5.
    [94] Lai CF, Cheng SL. Signal transductions induced by bone morphogenetic protein-2 and transforming growth factor-beta in normal human osteoblastic cells. J Biol Chem 2002;277:15514–22.
    [95] Shim JH, Greenblatt MB, Xie M, Schneider MD, Zou W, Zhai B, et al. TAK1 is an essential regulator of BMP signalling in cartilage. Embo J 2009;28:2028–41.
    [96] Ma C, Liu Y, He L. MicroRNAs - powerful repression comes from small RNAs. Sci China C Life Sci 2009;52:323–30.
    [97] QinW, Zhao B, Shi Y, Yao C, Jin L, Jin Y. BMPRII is a direct target of miR-21. Acta Biochim Biophys Sin (Shanghai) 2009;41:618–23.
    [98] Mizuno Y, Tokuzawa Y, Ninomiya Y, Yagi K, Yatsuka-Kanesaki Y, Suda T, et al. miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Lett 2009;583:2263–8.
    [99] Rogler CE, Levoci L, Ader T, Massimi A, Tchaikovskaya T, Norel R, et al. MicroRNA-23b cluster microRNAs regulate transforming growth factorbeta/bone morphogenetic protein signaling and liver stem cell differentiation by targeting Smads. Hepatology 2009;50:575–84.
    [100] Ghosh-Choudhury N, Abboud SL, Nishimura R, Celeste A, Mahimainathan L, Choudhury GG. Requirement of BMP-2-induced phosphatidylinositol 3-kinase andAkt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcription. J Biol Chem 2002;277:33361–8.
    [101] Dupont J, McNeilly J, Vaiman A, Canepa S, Combarnous Y, Taragnat C. Activin signaling pathways in ovine pituitary and LbetaT2 gonadotrope cells. Biol Reprod 2003;68:1877–87.
    [102] Gamell C, Osses N, Bartrons R, Ruckle T, Camps M, Rosa JL, et al. BMP2 induction of actin cytoskeleton reorganization and cell migration requires PI3-kinase and Cdc42 activity. J Cell Sci 2008;121:3960–70.
    [103] Lee-Hoeflich ST, Causing CG, Podkowa M, Zhao X, Wrana JL, Attisano L. Activation of LIMK1 by binding to the BMP receptor, BMPRII, regulates BMP-dependent dendritogenesis. Embo J 2004;23:4792–801.
    [104] Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, et al. Cell migration: integrating signals from front to back. Science 2003;302:1704–9.
    [105] Cunningham NS, Paralkar V, Reddi AH. Osteogenin and recombinant bone morphogenetic protein 2B are chemotactic for human monocytes and stimulate transforming growth factor beta 1 mRNA expression. Proc Natl Acad Sci U S A 1992;89:11740–4.
    [106] Pi X, Ren R, Kelley R, Zhang C, Moser M, Bohil AB, et al. Sequential roles for myosin-X in BMP6-dependent filopodial extension, migration, and activation of BMP receptors. J Cell Biol 2007;179:1569–82.
    [107] Bohil AB, Robertson BW, Cheney RE. Myosin-X is a molecular motor that functions in filopodia formation. Proc Natl Acad Sci U S A 2006;103:12411–6.
    [108] Liu J, Wilson S, Reh T. BMP receptor 1b is required for axon guidance and cell survival in the developing retina. Dev Biol 2003;256:34–48.
    [109] Yamauchi K, Phan KD, Butler SJ. BMP type I receptor complexes have distinct activities mediating cell fate and axon guidance decisions. Development 2008;135:1119–28.
    [110] SammarM, Sieber C, Knaus P. Biochemical and functional characterization of the Ror2/BRIb receptor complex. Biochem Biophys Res Commun 2009;381:1–6.
    [111] Nishita M, Yoo SK, Nomachi A, Kani S, Sougawa N, Ohta Y, et al. Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5ainduced cell migration. J Cell Biol 2006;175:555–62.
    [112] Meyer G, Feldman EL. Signaling mechanisms that regulate actin-based motility processes in the nervous system. J Neurochem 2002;83:490–503.
    [113] Gungabissoon RA, Bamburg JR. Regulation of growth cone actin dynamics by ADF/cofilin. J Histochem Cytochem 2003;51:411–20.
    [114] Graupera M, Guillermet-Guibert J, Foukas LC, Phng LK, Cain RJ, Salpekar A, et al. Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature 2008;453:662–6.
    [115] Cain RJ, Ridley AJ. Phosphoinositide 3-kinases in cell migration. Biol Cell 2009;101:13–29.
    [116] Innocenti M, Frittoli E, Ponzanelli I, Falck JR, Brachmann SM, Di Fiore PP, et al. Phosphoinositide 3-kinase activates Rac by entering in a complex with Eps8, Abi1, and Sos-1. J Cell Biol 2003;160:17–23.
    [117] Edlund S, Landstrom M, Heldin CH, Aspenstrom P. Smad7 is required for TGFbeta-induced activation of the small GTPase Cdc42. J Cell Sci 2004;117:1835–47.
    [118] Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, et al. FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination. Cell 2009;136:123–35.
    [119] Kardassis D, Murphy C, Fotsis T, Moustakas A, Stournaras C. Control of transforming growth factor beta signal transduction by small GTPases. Febs J 2009;276:2947–65.
    [120] Sotobori T, Ueda T, Myoui A, Yoshioka K, Nakasaki M, Yoshikawa H, et al. Bone morphogenetic protein-2 promotes the haptotactic migration of murine osteoblastic and osteosarcoma cells by enhancing incorporation of integrin beta1 into lipid rafts. Exp Cell Res 2006;312:3927–38.
    [121] Lai TH, Fong YC, Fu WM, Yang RS, Tang CH. Osteoblasts-derived BMP-2enhances the motility of prostate cancer cells via activation of integrins. Prostate 2008;68:1341–53.
    [122] Fong YC, Li TM, Wu CM, Hsu SF, Kao ST, Chen RJ, et al. BMP-2 increases migration of human chondrosarcoma cells via PI3K/Akt pathway. J Cell Physiol 2008;217:846–55.
    [123] Smith KA, Chocron S, von der Hardt S, de Pater E, Soufan A, Bussmann J, et al. Rotation and asymmetric development of the zebrafish heart requires directed migration of cardiac progenitor cells. Dev Cell 2008;14:287–97.
    [124] Correia AC, Costa M, Moraes F, Bom J, Novoa A, Mallo M. Bmp2 is required for migration but not for induction of neural crest cells in the mouse. Dev Dyn 2007;236:2493–501.
    [125] Fu M, Vohra BP, Wind D, Heuckeroth RO. BMP signaling regulates murine enteric nervous system precursor migration, neurite fasciculation, and patterning via altered Ncam1 polysialic acid addition. Dev Biol 2006;299:137–50.
    [126] Nie X, Luukko K, Kettunen P. BMP signalling in craniofacial development. Int J Dev Biol 2006;50:511–21.
    [127] Fiedler J, Roderer G, Gunther KP, Brenner RE. BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J Cell Biochem 2002;87:305–12.
    [128] Lee DH, Park BJ, Lee MS, Lee JW, Kim JK, Yang HC, et al. Chemotactic migration of human mesenchymal stem cells and MC3T3-E1 osteoblast-like cells induced by COS-7 cell line expressing rhBMP-7. Tissue Eng 2006;12: 1577–86.
    [129] Mishima Y, Lotz M. Chemotaxis of human articular chondrocytes and mesenchymal stem cells. J Orthop Res 2008;26:1407–12.
    [130] Granero-Molto F, Weis JA, Miga MI, Landis B, Myers TJ, O’Rear L, et al. Regenerative Effects of Transplanted Mesenchymal Stem Cells in Fracture Healing. Stem Cells 2009;27:1887–98.
    [131] David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1)in endothelial cells. Blood 2007;109:1953–61.
    [132] David L, Feige JJ, Bailly S. Emerging role of bone morphogenetic proteins in angiogenesis. Cytokine Growth Factor Rev 2009;20:203–12.
    [133] Moreno-Miralles I, Schisler JC, Patterson C. New insights into bone morphogenetic protein signaling: focus on angiogenesis. Curr Opin Hematol 2009;16:195–201.
    [134] Heinke J, Wehofsits L, Zhou Q, Zoeller C, Baar KM, Helbing T, et al. BMPER is an endothelial cell regulator and controls bone morphogenetic protein-4-dependent angiogenesis. Circ Res 2008;103:804–12.
    [135] Deckers MM, van Bezooijen RL, van der Horst G, Hoogendam J, van Der Bent C, Papapoulos SE, et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology 2002;143:1545–53.
    [136] Suzuki Y, Montagne K, Nishihara A, Watabe T, Miyazono K. BMPs promote proliferation and migration of endothelial cells via stimulation of VEGF-A/VEGFR2 and angiopoietin-1/Tie2 signalling. J Biochem 2008;143:199–206.
    [137] Hartung A, Sieber C, Knaus P. Yin and Yang in BMP signaling: Impact on the pathology of diseases and potential for tissue regeneration. Signal Transduction 2006;6:314–28.
    [138] Ferns SJ, Wehrmacher WH, Serratto M. Pediatric pulmonary arterial hypertension–a review. Compr Ther 2009;35:81–90.
    [139] Shintani M, Yagi H, Nakayama T, Saji T, Matsuoka R. A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension. J Med Genet 2009;46:331–7.
    [140] Hassel S, Eichner A, Yakymovych M, Hellman U, Knaus P, Souchelnytskyi S. Proteins associated with type II bone morphogenetic protein receptor (BMPR-II) and identified by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2004;4:1346–58.
    [141] Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 2006;38:525–7.
    [142] Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML, et al. BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat Med 2008;14:1363–9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700