索拉非尼联合顺铂治疗三阴性乳腺癌的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三阴性乳腺癌(TNBC)约占新诊断乳腺癌的15%,这类患者发病年龄早,易早期局部复发和远处转移,无病生存时间和总生存时间均短,预后不佳,目前国内外仍缺乏针对这类特殊类型乳腺癌的规范化治疗指南。本课题旨在研究索拉非尼(Sorafenib)联合顺铂(DDP)对TNBC细胞生长的抑制作用,进一步从信号通路、细胞周期和细胞凋亡等方面探讨了Sorafenib联合顺铂(DDP)治疗TNBC的可能机制。
     MTT法检测发现单药DDP和Sorafenib在体外对TNBC细胞株MDA-MB-231、MDA-MB-468、CAL-51和非TNBC细胞株MCF-7的增殖都有一定的抑制作用。与非TNBC细胞MCF-7相比,MDA-MB-468和CAL-51细胞对DDP更为敏感。通过中效原理,证实DDP和Sorafenib联合应用时,在各个细胞株中均为协同效应。DDP联合Sorafenib对各细胞株协同抑制的分子机制主要是通过影响MAPK通路关键蛋白的表达实现的,Western blot检测显示各细胞株均表现为p-ERK和P38蛋白表达水平不同程度的下降以及p-JNK和p-P38蛋白表达水平不同程度的升高。流式细胞术检测发现DDP联合Sorafenib能阻滞各细胞株的细胞周期,使细胞阻滞在G0/G1期,而抑制细胞增殖。Western blot检测在蛋白水平发现CyclinA、CylinB1、CylinD1和CylinE多种细胞周期蛋白明显降低,这可能是细胞周期抑制的原因。DDP联合Sorafenib诱导各细胞株凋亡的机制可能主要是通过抑制Bc1-2蛋白的表达实现的。
     本研究的意义在于首次发现Sorafenib联合DDP在体外能协同抑制多种TNBC细胞株的增殖,并初步阐明分子机制,为该方案的临床应用提供了理论依据。
Triple-negative breast cancer (TNBC) accounts for approximately 15% of breast cancer diagnoses. Although triple-negative breast cancer accounts for a relatively small minority of breast cancer cases, it is responsible for a disproportionate number of breast cancer deaths. Meanwhile, this disease often occurs in young women. Multiple data sets have consistently identified poorer clinical outcomes for women with TNBC. Until recently, the subset of breast cancer lacking the expressions of estrogen receptor, progesterone receptor and human epithelial growth factor receptor 2 had no standard therapeutic approach. This study is to investigate the inhibitory proliferation effect of Sorafenib combined with cisplatin (DDP) on TNBC cells and to identify the possible molecular mechanisms by detecting the molecules associated with MAPK signaling pathway, cell cycle and apoptosis.
     The results of MTT showed that Sorafenib or DDP alone inhibited TNBC cell lines MDA-MB-231, MDA-MB-468, CAL-51 and non-TNBC cell line MCF-7 proliferation dose-dependently in vitro. Compared with non-TNBC cell line MCF-7, TNBC cell lines MDA-MB-468 and CAL-51 were more sensitive to DDP. Based on the median-effect principle, Sorafenib combined with DDP showed a synergistic inhititory effect on the four cell lines proliferation. The potential molecular machenism of Sorafenib with DDP on synergistic inhititory effect was closely related to the blockage or activation of MAPK signling pathways. Western blot analysis indicated p-ERK and P38 protein expression levels decreased, but p-JNK and p-P38 protein expression levels elevated in four cell lines with different degrees. Sorafenib combined with DDP blocked cell cycle progress by Flow Cytometry. Sorafenib with DDP arrested cells in G0/G1 phase and inhibited cell proliferation. Western blot analysis also indicated that decreased expression of CyclinA, CylinB1, CylinD1 and CylinE in the four cell lines would be the reason of cell cycle blockage. Sorafenib with DDP induced cell apoptosis possiblely by inhibiting the expression of Bcl-2 protein.
     This study suggested that Sorafenib combined with DDP had a synergistic inhibitory effect on TNBC cells proliferation. The mechanisms of synergistic effect were closely related to the regulation on MAPK signaling pathway, blockage of cell cycle progress and the enhancement of apoptosis.Therefore, the findings in this report provide insights into coadministration of Sorafenib and DPP as a regimen in clinical practice in treating TNBC patients.
引文
1. Society AC. Global facts and figures [R/OL]. Available at: http://www.cancer.org/downloads/STT/Global_Facts_and_Figures_2007_rev2.pdf.
    2. Kang SP, Martel M, Harris LN. Triple negative breast cancer:current understanding of biology and treatment options[J]. Curr Opin Obstet Gynecol,2008,20(1):40-46.
    3. Reis-Filho JS,Tutt AN. Triple negative tumours:a critical review[J]. Histopathology, 2008,52(1):108-118.
    4. Banerjee S, Reis-Filho JS, Ashley S,et al. Basal-like breast carcinomas:clinical outcome and response to chemotherapy[J]. J Clin Pathol,2006,59(7):729-735.
    5. Bauer KR, Brown M, Cress RD,et al. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the
    so-called triple-negative phenotype:a population-based study from the California cancer Registry[J]. Cancer,2007,109(9):1721-1728.
    6. Bhattacharyya A, Ear US, Koller BH,et al. The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin[J]. J Biol Chem,2000,275(31):23899-23903.
    7. Moynahan ME, Cui TY, Jasin M. Homology-directed dna repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brcal mutation[J]. Cancer Res, 2001,61 (12):4842-4850.
    8. SJ I, C L, N V. P63/p73 expression mediates cisplatin sensitivity in a subset of triple negative primary breast cancer:implications for a new clinical trial[J]. J Clin Oncol, 2007,25(Suppl):a10522.
    9. Leong CO, Vidnovic N, DeYoung MP,et al. The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers[J]. J Clin Invest, 2007,117(5):1370-1380.
    10. Stratford AL, Habibi G, Astanehe A,et al. Epidermal growth factor receptor (EGFR) is transcriptionally induced by the Y-box binding protein-1 (YB-1) and can be inhibited with Iressa in basal-like breast cancer, providing a potential target for therapy[J]. Breast Cancer Res,2007,9(5):R61.
    11. Hoadley KA, Weigman VJ, Fan C,et al. EGFR associated expression profiles vary with breast tumor subtype[J]. BMC Genomics,2007,8:258-276.
    12. Corkery B, Crown J, Clynes M,et al. Epidermal growth factor receptor as a potential therapeutic target in triple-negative breast cancer[J]. Ann Oncol,2009,20(5):862-867.
    13. Nielsen TO, Hsu FD, Jensen K,et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma[J]. Clin Cancer Res, 2004,10(16):5367-5374.
    14. Roussidis AE, Mitropoulou TN, Theocharis AD,et al. STI571 as a potent inhibitor of growth and invasiveness of human epithelial breast cancer cells[J]. Anticancer Res, 2004,24(3a):1445-1447.
    15. Finn RS, Dering J, Ginther C,et al. Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/"triple-negative" breast cancer cell lines growing in vitro[J]. Breast Cancer Res Treat,2007,105(3):319-326.
    16. Chou TC,Talalay P. Quantitative analysis of dose-effect relationships:the combined effects of multiple drugs or enzyme inhibitors[J]. Adv Enzyme Regul,1984,22:27-55.
    17. Dent R, Trudeau M, Pritchard KI,et al. Triple-negative breast cancer:clinical features and patterns of recurrence[J]. Clin Cancer Res,2007,13(15 Pt 1):4429-34.
    18.关印,徐兵河.三阴性乳腺癌的临床病理特征及预后分析[J].中华肿瘤杂志,2008,30(3):196-199.
    19. Rodriguez-Pinilla SM, Sarrio D, Honrado E,et al. Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas[J]. Clin Cancer Res,2006,12(5):1533-1539.
    20. Rakha EA, El-Sayed ME, Green AR,et al. Prognostic markers in triple-negative breast cancer[J]. Cancer,2007,109(1):25-32.
    21. Atchley DP, Albarracin CT, Lopez A,et al. Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer[J]. J Clin Oncol, 2008,26(26):4282-4288.
    22. van der Groep P, Bouter A, van der Zanden R,et al. Distinction between hereditary and sporadic breast cancer on the basis of clinicopathological data[J]. J Clin Pathol, 2006,59(6):611-617.
    23. Baselga J,Arteaga CL. Critical update and emerging trends in epidermal growth factor receptor targeting in cancer[J]. J Clin Oncol,2005,23(11):2445-2459.
    24. Giannelli G, Napoli N, Antonaci S. Tyrosine kinase inhibitors:a potential approach to the treatment of hepatocellular carcinoma[J]. Curr Pharm Des,2007,13(32):3301-3304.
    25. Harding J,Burtness B. Cetuximab:an epidermal growth factor receptor chemeric human-murine monoclonal antibody[J]. Drugs Today (Barc),2005,41(2):107-127.
    26. Prewett M, Rothman M, Waksal H,et al. Mouse-human chimeric anti-epidermal growth factor receptor antibody C225 inhibits the growth of human renal cell carcinoma xenografts in nude mice[J]. Clin Cancer Res,1998,4(12):2957-2966.
    27. Wilhelm SM, Carter C, Tang L,et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis[J]. Cancer Res,2004,64(19):7099-7109.
    28. Liu L, Cao Y, Chen C,et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5[J]. Cancer Res,2006,66(24):11851-11858.
    29. Alfano RW, Leppla SH, Liu S,et al. Inhibition of tumor angiogenesis by the matrix metalloproteinase-activated anthrax lethal toxin in an orthotopic model of anaplastic thyroid carcinoma[J]. Mol Cancer Ther,2010,9(1):190-201.
    30. Yang F, Brown C, Buettner R,et al. Sorafenib induces growth arrest and apoptosis of human glioblastoma cells through the dephosphorylation of signal transducers and activators of
    transcription 3[J]. Mol Cancer Ther,2010,9(4):953-962.
    31. Takezawa K, Okamoto I, Yonesaka K,et al. Sorafenib inhibits non-small cell lung cancer cell growth by targeting B-RAF in KRAS wild-type cells and C-RAF in KRAS mutant cells[J]. Cancer Res,2009,69(16):6515-6521.
    32. Rosato RR, Almenara JA, Coe S,et al. The multikinase inhibitor sorafenib potentiates TRAIL lethality in human leukemia cells in association with Mcl-1 and cFLIPL down-regulation[J]. Cancer Res,2007,67(19):9490-9500.
    33. Huether A, Hopfner M, Baradari V,et al. Sorafenib alone or as combination therapy for growth control of cholangiocarcinoma[J]. Biochem Pharmacol,2007,73(9):1308-1317.
    34. Van Schaeybroeck S, Kyula J, Kelly DM,et al. Chemotherapy-induced epidermal growth factor receptor activation determines response to combined gefitinib/chemotherapy treatment in non-small cell lung cancer cells[J]. Mol Cancer Ther,2006,5(5):1154-1165.
    35. Charafe-Jauffret E, Ginestier C, Monville F,et al. Gene expression profiling of breast cell lines identifies potential new basal markers[J]. Oncogene,2006,25(15):2273-2284.
    36. Neve RM, Chin K, Fridlyand J,et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes[J]. Cancer Cell,2006,10(6):515-527.
    37. Yauch RL, Januario T, Eberhard DA,et al. Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients[J]. Clin Cancer Res,2005,11(24 Pt 1):8686-8698.
    38. Thomson S, Buck E, Petti F,et al. Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition[J]. Cancer Res,2005,65(20):9455-9462.
    1. Cheng YJ, Lee CH, Lin YP,et al. Caspase-3 enhances lung metastasis and cell migration in a protease-independent mechanism through the ERK pathway[J]. Int J Cancer, 2008,123(6):1278-1285.
    2. Fang JY,Richardson BC. The MAPK signalling pathways and colorectal cancer[J]. Lancet Oncol,2005,6(5):322-327.
    3. Fecher LA, Amaravadi RK, Flaherty KT. The MAPK pathway in melanoma[J]. Curr Opin Oncol,2008,20(2):183-189.
    4. Ling MT, Wang X, Ouyang XS,et al. Activation of MAPK signaling pathway is essential for Id-1 induced serum independent prostate cancer cell growth[J]. Oncogene, 2002,21(55):8498-8505.
    5. Seger R,Krebs EG. The MAPK signaling cascade[J]. FASEB J,1995,9(9):726-735.
    6. Medzhitov R,Janeway CA, Jr. Decoding the patterns of self and nonself by the innate immune system[J]. Science,2002,296(5566):298-300.
    7. Wilhelm SM, Carter C, Tang L,et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis[J]. Cancer Res,2004,64(19):7099-7109.
    8. Troyano A, Fernandez C, Sancho P,et al. Effect of glutathione depletion on antitumor drug toxicity (apoptosis and necrosis) in U-937 human promonocytic cells. The role of intracellular oxidation[J]. J Biol Chem,2001,276(50):47107-47115.
    9. Ghazizadeh M. Cisplatin may induce frataxin expression[J]. J Nippon Med Sch, 2003,70(4):367-371.
    10. Schweyer S, Soruri A, Heintze A,et al. The role of reactive oxygen species in cisplatin-induced apoptosis in human malignant testicular germ cell lines[J]. Int J Oncol, 2004,25(6):1671-1676.
    11. Basu A, Woolard MD, Johnson CL. Involvement of protein kinase C-delta in DNA
    damage-induced apoptosis[J]. Cell Death Differ,2001,8(9):899-908.
    12. Belyanskaya LL, Hopkins-Donaldson S, Kurtz S,et al. Cisplatin activates Akt in small cell lung cancer cells and attenuates apoptosis by survivin upregulation[J]. Int J Cancer, 2005,117(5):755-763.
    13. Jin S, Zhuo Y, Guo W,et al. p21-activated Kinase 1 (Pakl)-dependent phosphorylation of Raf-1 regulates its mitochondrial localization, phosphorylation of BAD, and Bcl-2 association[J]. J Biol Chem,2005,280(26):24698-24705.
    14. Chen J, Fujii K, Zhang L,et al. Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism[J]. Proc Natl Acad Sci U S A,2001,98(14):7783-7788.
    15. Baumann B, Weber CK, Troppmair J,et al. Raf induces NF-kappaB by membrane shuttle kinase MEKK1, a signaling pathway critical for transformation[J]. Proc Natl Acad Sci U S A, 2000,97(9):4615-4620.
    16. Le Mellay V, Troppmair J, Benz R,et al. Negative regulation of mitochondrial VDAC channels by C-Raf kinase[J]. BMC Cell Biol,2002,3:14-25.
    17. Neilson LM, Zhu J, Xie J,et al. Coactivation of janus tyrosine kinase (Jak)l positively modulates prolactin-Jak2 signaling in breast cancer:recruitment of ERK and signal transducer and activator of transcription (Stat)3 and enhancement of Akt and Stat5a/b pathways[J]. Mol Endocrinol,2007,21(9):2218-2232.
    18. Wei YY, Chen YJ, Hsiao YC,et al. Osteoblasts-derived TGF-betal enhance motility and integrin upregulation through Akt, ERK, and NF-kappaB-dependent pathway in human breast cancer cells[J]. Mol Carcinog,2008,47(7):526-537.
    19. Ahamed S, Foster JS, Bukovsky A,et al. Signal transduction through the Ras/Erk pathway is essential for the mycoestrogen zearalenone-induced cell-cycle progression in MCF-7 cells[J]. Mol Carcinog,2001,30(2):88-98.
    20. Fiddes RJ, Janes PW, Sivertsen SP,et al. Inhibition of the MAP kinase cascade blocks heregulin-induced cell cycle progression in T-47D human breast cancer cells[J]. Oncogene, 1998,16(21):2803-2813.
    21. Alblas J, Slager-Davidov R, Steenbergh PH,et al. The role of MAP kinase in TPA-mediated cell cycle arrest of human breast cancer cells[J]. Oncogene,1998,16(1):131-139.
    22. Yamamoto T, Ebisuya M, Ashida F,et al. Continuous ERK activation downregulates antiproliferative genes throughout G1 phase to allow cell-cycle progression[J]. Curr Biol, 2006,16(12):1171-1182.
    23. Chiu LC, Kong CK, Ooi VE. The chlorophyllin-induced cell cycle arrest and apoptosis in human breast cancer MCF-7 cells is associated with ERK deactivation and Cyclin D1 depletion[J]. Int J Mol Med,2005,16(4):735-740.
    24. Satyan KS, Swamy N, Dizon DS,et al. Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis:role of caspase and MAPK activation[J]. Gynecol Oncol,2006,103(1):261-270.
    25. Han J, Lee JD, Bibbs L,et al. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells[J]. Science,1994,265(5173):808-811.
    26. Han J, Jiang Y, Li Z,et al. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation[J]. Nature,1997,386(6622):296-299.
    27. Neve RM, Holbro T, Hynes NE. Distinct roles for phosphoinositide 3-kinase, mitogen-activated protein kinase and p38 MAPK in mediating cell cycle progression of breast cancer cells[J]. Oncogene,2002,21(29):4567-4576.
    28. Vasilevskaya IA, Rakitina TV, O'Dwyer PJ. Quantitative effects on c-Jun N-terminal protein kinase signaling determine synergistic interaction of cisplatin and 17-allylamino-17-demethoxygeldanamycin in colon cancer cell lines[J]. Mol Pharmacol, 2004,65(1):235-243.
    29. Fan M,Chambers TC. Role of mitogen-activated protein kinases in the response of tumor cells to chemotherapy [J]. Drug Resist Updat,2001,4(4):253-267.
    30. Hayakawa J, Mittal S, Wang Y,et al. Identification of promoters bound by c-Jun/ATF2 during rapid large-scale gene activation following genotoxic stress[J]. Mol Cell, 2004,16(4):521-535.
    31. Hong HY,Kim BC. Mixed lineage kinase 3 connects reactive oxygen species to c-Jun NH2-terminal kinase-induced mitochondrial apoptosis in genipin-treated PC3 human prostate cancer cells[J]. Biochem Biophys Res Commun,2007,362(2):307-312.
    32. Lei K, Nimnual A, Zong WX,et al. The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-terminal kinase[J]. Mol Cell Biol, 2002,22(13):4929-4942.
    33. Park EJ, Zhao YZ, Kim YC,et al. Bakuchiol-induced caspase-3-dependent apoptosis occurs through c-Jun NH2-terminal kinase-mediated mitochondrial translocation of Bax in rat liver myofibroblasts[J]. Eur J Pharmacol,2007,559(2-3):115-123.
    34. Weston CR,Davis RJ. The JNK signal transduction pathway[J]. Curr Opin Cell Biol, 2007,19(2):142-149.
    35. Panka DJ, Wang W, Atkins MB,et al. The Raf inhibitor BAY 43-9006 (Sorafenib) induces caspase-independent apoptosis in melanoma cells[J]. Cancer Res,2006,66(3):1611-1619.
    36. Jane EP, Premkumar DR, Pollack IF. Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells[J]. J Pharmacol Exp Ther,2006,319(3):1070-1080.
    37. Liu L, Cao Y, Chen C,et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5[J]. Cancer Res,2006,66(24):11851-11858.
    38 Wei G, Wang M, Carr BI. Sorafenib combined vitamin K induces apoptosis in human pancreatic cancer cell lines through RAF/MEK/ERK and c-Jun NH2-terminal kinase pathways[J]. J Cell Physiol,2010,224(1):112-119.
    39. Yu C, Friday BB, Lai JP,et al. Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro:induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways[J]. Mol Cancer Ther,2006,5(9):2378-2387.
    1. Wilhelm SM, Carter C, Tang L,et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis[J]. Cancer Res,2004,64(19):7099-8109.
    2. Jane EP, Premkumar DR, Pollack IF. Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells[J]. J Pharmacol Exp Ther,2006,319(3):1070-1080.
    3. Liu L, Cao Y, Chen C,et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5[J]. Cancer Res,2006,66(24):11851-11858.
    4. Qin LF,Ng 10. Induction of apoptosis by cisplatin and its effect on cell cycle-related proteins and cell cycle changes in hepatoma cells[J]. Cancer Lett,2002,175(1):27-38.
    5. Strasser A, O'Connor L, Dixit VM. Apoptosis signaling[J]. Annu Rev Biochem,
    2000,69:217-245.
    6. Rahmani M, Davis EM, Bauer C,et al. Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation[J]. J Biol Chem,2005,280(42):35217-35227.
    7. Wang L, Chanvorachote P, Toledo D,et al. Peroxide is a key mediator of Bcl-2 down-regulation and apoptosis induction by cisplatin in human lung cancer cells[J]. Mol Pharmacol,2008,73(1):119-127.
    8. Plastaras JP, Kim SH, Liu YY,et al. Cell cycle dependent and schedule-dependent antitumor effects of sorafenib combined.with radiation[J]. Cancer Res,2007,67(19):9443-9454.
    9. Bonelli MA, Fumarola C, Alfieri RR,et al. Synergistic activity of letrozole and sorafenib on breast cancer cells[J]. Breast Cancer Res Treat,2010 Jan 7.
    10. Sciortino S, Gurtner A, Manni I,et al. The cyclin B1 gene is actively transcribed during mitosis in HeLa cells[J]. EMBO Rep,2001,2(11):1018-1023.
    11. Houtgraaf JH, Versmissen J, van der Giessen WJ. A concise review of DNA damage checkpoints and repair in mammalian cells[J]. Cardiovasc Revasc Med,2006,7(3):165-172.
    12. Wasch R,Engelbert D. Anaphase-promoting complex-dependent proteolysis of cell cycle regulators and genomic instability of cancer cells[J]. Oncogene,2005,24(1):1-10.
    13. Tocchi A, Mazzoni G, Fornasari V,et al. Preservation of the inferior mesenteric artery in colorectal resection for complicated diverticular disease[J]. Am J Surg,2001,182(2):162-167.
    14. Moroy T,Geisen C. Cyclin E[J]. Int J Biochem Cell Biol,2004,36(8):1424-1439.
    15. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis[J]. Genes Dev,1999,13(15):1899-1911.
    16. Burlacu A. Regulation of apoptosis by Bcl-2 family proteins[J]. J Cell Mol Med, 2003,7(3):249-257.
    17. Tsujimoto Y. Cell death regulation by the Bcl-2 protein family in the mitochondria[J]. J Cell Physiol,2003,195(2):158-167.
    18. Wolter KG, Hsu YT, Smith CL,et al. Movement of Bax from the cytosol to mitochondria during apoptosis[J]. J Cell Biol,1997,139(5):1281-1292.
    19. Preto A, Goncalves J, Rebocho AP,et al. Proliferation and survival molecules implicated in the inhibition of BRAF pathway in thyroid cancer cells harbouring different genetic mutations[J]. BMC Cancer,2009,9:387-397.
    1. Riggs BL,Hartmann LC. Selective estrogen-receptor modulators--mechanisms of action and application to clinical practice[J]. N Engl J Med,2003,348(7):618-629.
    2. Smith IE,Dowsett M. Aromatase inhibitors in breast cancer[J]. N Engl J Med, 2003,348(24):2431-2442.
    3. Geyer CE, Forster J, Lindquist D,et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer[J]. N Engl J Med,2006,355(26):2733-2743.
    4. Carey LA, Dees EC, Sawyer L,et al. The triple negative paradox:primary tumor chemosensitivity of breast cancer subtypes[J]. Clin Cancer Res,2007,13(8):2329-2334.
    5.袁中玉,王树森,高岩,等.305例三阴乳腺癌患者的临床特征及预后因素分析[J].癌症,2008,27(6):561-565.
    6.关印,徐兵河.三阴性乳腺癌的临床病理特征及预后分析[J].中华肿瘤杂志,2008,30(3):196-9.
    7. Yin WJ, Lu JS, Di GH,et al. Clinicopathological features of the triple-negative tumors in Chinese breast cancer patients[J]. Breast Cancer Res Treat,2009,115(2):325-333.
    8. O'Shaughnessy J, Osborne C, Pippen J,et al. Efficacy of BSI-201, a poly (ADP-ribose) polymerase-1 (PARP1) inhibitor, in combination with gemcitabine/carboplatin (G/C) in patients with metastatic triple-negative breast cancer (TNBC):Results of a randomized phase Ⅱ trial[J]. J Clin Oncol (Meeting Abstracts),2009,27(15S):3.
    9. Dent R, Trudeau M, Pritchard KI,et al. Triple-negative breast cancer:clinical features and patterns of recurrence[J]. Clin Cancer Res,2007,13(15 Pt 1):4429-4434.
    10. Stead LA, Lash TL, Sobieraj JE,et al. Triple-negative breast cancers are increased in black women regardless of age or body mass index[J]. Breast Cancer Res,2009,11(2):R18.
    11. Trivers KF, Lund MJ, Porter PL,et al. The epidemiology of triple-negative breast cancer, including race[J]. Cancer Causes Control,2009,20(7):1071-1082.
    12. Lund MJ, Trivers KF, Porter PL,et al. Race and triple negative threats to breast cancer survival:a population-based study in Atlanta, GA[J]. Breast Cancer Res Treat, 2009,113(2):357-370.
    13. Lund MJ, Butler EN, Bumpers HL,et al. High prevalence of triple-negative tumors in an urban cancer center[J]. Cancer,2008,113(3):608-615.
    14. Morris GJ, Naidu S, Topham AK,et al. Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients:a single-institution compilation compared with the National Cancer Institute's Surveillance, Epidemiology, and End Results database[J]. Cancer,2007,110(4):876-884.
    15. Perou CM, Sorlie T, Eisen MB,et al. Molecular portraits of human breast tumours[J]. Nature, 2000,406(6797):747-752.
    16. Sorlie T, Tibshirani R, Parker J,et al. Repeated observation of breast tumor subtypes in independent gene expression data sets[J]. Proc Natl. Acad Sci U S A, 2003,100(14):8418-8423.
    17. Nielsen TO, Hsu FD, Jensen K,et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma[J]. Clin Cancer Res, 2004,10(16):5367-5374.
    18. Nofech-Mozes S, Trudeau M, Kahn HK,et al. Patterns of recurrence in the basal and non-basal subtypes of triple-negative breast cancers[J]. Breast Cancer Res Treat, 2009,118(1):131-137.
    19. Robson M,Offit K. Clinical practice. Management of an inherited predisposition to breast cancer[J]. N Engl J Med,2007,357(2):154-162.
    20. van der Groep P, Bouter A, van der Zanden R,et al. Distinction between hereditary and sporadic breast cancer on the basis of clinicopathological data[J]. J Clin Pathol, 2006,59(6):611-617.
    21. Atchley DP, Albarracin CT, Lopez A,et al. Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer[J]. J Clin Oncol, 2008,26(26):4282-4288.
    22. Miyoshi Y, Murase K, Oh K. Basal-like subtype and BRCA1 dysfunction in breast cancers[J]. Int J Clin Oncol,2008,13(5):395-400.
    23. Rennert G, Bisland-Naggan S, Barnett-Griness O,et al. Clinical outcomes of breast cancer in carriers of BRCA1 and BRCA2 mutations[J]. N Engl J Med,2007,357(2):115-123.
    24. Liedtke C, Mazouni C, Hess KR,et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer[J]. J Clin Oncol, 2008,26(8):1275-1281.
    25. Rody A, Karn T, Solbach C,et al. The erbB2+ cluster of the intrinsic gene set predicts tumor response of breast cancer patients receiving neoadjuvant chemotherapy with docetaxel, doxorubicin and cyclophosphamide within the GEPARTRIO trial [J]. Breast, 2007,16(3):235-240.
    26. Kassam F, Enright K, Dent R,et al. Survival outcomes for patients with metastatic triple-negative breast cancer:implications for clinical practice and trial design[J]. Clin Breast Cancer,2009,9(1):29-33.
    27. Schreiber V, Dantzer F, Ame JC,et al. Poly(ADP-ribose):novel functions for an old molecule[J]. Nat Rev Mol Cell Biol,2006,7(7):517-528.
    28. Fong PC, Boss DS, Yap TA,et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers[J]. N Engl J Med,2009,361(2):123-134.
    29. Ashworth A. A synthetic lethal therapeutic approach:poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair[J]. J Clin Oncol, 2008,26(22):3785-3790.
    30. McCabe N, Turner NC, Lord CJ,et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition[J]. Cancer Res,2006,66(16):8109-8115.
    31. Farmer H, McCabe N, Lord CJ,et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy[J]. Nature,2005,434(7035):917-921.
    32. Tutt A, Robson M, Garber JE,et al. Phase Ⅱ trial of the oral PARP inhibitor olaparib in BRCA-deficient advanced breast cancer[J]. J Clin Oncol (Meeting Abstracts), 2009,27(18S):CRA501.
    33. Loesch D, Asmar L, McIntyre K,et al. Phase Ⅱ trial of gemcitabine/carboplatin (plus trastuzumab in HER2-positive disease) in patients with metastatic breast cancer[J]. Clin Breast Cancer,2008,8(2):178-186.
    34. Lin NU, Claus E, Sohl J,et al. Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer:high incidence of central nervous system metastases[J]. Cancer,2008,113(10):2638-2645.
    35. Miller K, Wang M, Gralow J,et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer[J]. N Engl J Med,2007,357(26):2666-2676.
    36. Miles D, Chan A, Romieu G,et al. Randomized, double-blind, placebo-controlled, phase Ⅲ study of bevacizumab with docetaxel or docetaxel with placebo as first-line therapy for patients with locally recurrent or metastatic breast cancer (mBC):AVADO[J]. J Clin Oncol (Meeting Abstracts),2008,26(15_suppl):LBA1011.
    37. Robert NJ, Dieras V, Glaspy J,et al. RIBBON-1:Randomized, double-blind, placebo-controlled, phase Ⅲ trial of chemotherapy with or without bevacizumab (B) for first-line treatment of HER2-negative locally recurrent or metastatic breast cancer (MBC)[J]. J Clin Oncol (Meeting Abstracts),2009,27(15S):1005.
    38. Brufsky A, Bondarenko IN, Smirnov V,et al. RIBBON-2:A Randomized, Double-Blind, Placebo-Controlled, Phase Ⅲ Trial Evaluating the Efficacy and Safety of Bevacizumab In Combination with Chemotherapy for Second-Line Treatment of HER2-Negative Metastatic Breast Cancer[J]. Cancer Research,2009,69(24):495S-496S.
    39. Thomssen C, Pierga JY, Pritchard KI,et al. First-Line Bevacizumab (Bev) Combination Therapy in Triple-Negative (TN) Locally Recurrent/Metastatic Breast Cancer (LR/MBC): Subpopulation Analysis of Study MO19391 in> 2000 Patients (Pts)[J]. Cancer Research,
    2009,69(24):854S-854S. 40. O'Shaughnessy J, Dieras V, Glaspy J,et al. Comparison of Subgroup Analyses of PFS from Three Phase III Studies of Bevacizumab in Combination with Chemotherapy in Patients with HER2-Negative Metastatic Breast Cancer (MBC)[J]. Cancer Research, 2009,69(24):512S-512S. 41. Ryan PD, Tung NM, Isakoff SJ,et al. Neoadjuvant cisplatin and bevacizumab in triple negative breast cancer (TNBC):Safety and efficacy[J]. J Clin Oncol (Meeting Abstracts), 2009,27(15S):551. 42. Mendel DB, Laird AD, Xin X,et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors:determination of a pharmacokinetic/pharmacodynamic relationship[J]. Clin Cancer Res,2003,9(1):327-337. 43. Motzer RJ, Hutson TE, Tomczak P,et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma[J]. N Engl J Med,2007,356(2):115-124. 44. Heinrich MC, Maki RG, Corless CL,et al. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor[J]. J Clin Oncol,2008,26(33):5352-5359. 45. Burstein HJ, Elias AD, Rugo HS,et al. Phase Ⅱ study of sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane[J]. J Clin Oncol,2008,26(11):1810-1816. 46. Baselga J, Roche H, Costa F,et al. SOLTI-0701:A Multinational Double-Blind, Randomized Phase 2b Study Evaluating the Efficacy and Safety of Sorafenib Compared to Placebo When Administered in Combination with Capecitabine in Patients with Locally Advanced or
    Metastatic Breast Cancer (BC)[J]. Cancer Research,2009,69(24):497S-497S. 47. Gradishar WJ, Kaklamani V, Sahoo TP,et al. A Double-Blind, Randomized, Placebo-Controlled, Phase 2b Study Evaluating the Efficacy and Safety of Sorafenib in Combination with Paclitaxel as a First-Line Therapy in Patients with Locally Recurrent or Metastatic Breast Cancer[J]. Cancer Research,2009,69(24):496S-496S. 48. Ciardiello F, Troiani T, Caputo F,et al. Phase II study of gefitinib in combination with docetaxel as first-line therapy in metastatic breast cancer[J]. Br J Cancer, 2006,94(11):1604-1609. 49. Burris HA,3rd, Hurwitz HI, Dees EC,et al. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas[J].
    J Clin Oncol,2005,23(23):5305-5313.
    50. Burstein HJ, Storniolo AM, Franco S,et al. A phase Ⅱ study of lapatinib monotherapy in chemotherapy-refractory HER2-positive and HER2-negative advanced or metastatic breast cancer[J]. Ann Oncol,2008,19(6):1068-1074.
    51. Di Leo A, Gomez HL, Aziz Z,et al. Phase III, double-blind, randomized study comparing lapatinib plus paclitaxel with placebo plus paclitaxel as first-line treatment for metastatic breast cancer[J]. J Clin Oncol,2008,26(34):5544-5552.
    52. Finn RS, Press MF, Dering J,et al. Estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 (HER2), and epidermal growth factor receptor expression and benefit from lapatinib in a randomized trial of paclitaxel with lapatinib or placebo as first-line treatment in HER2-negative or unknown metastatic breast cancer[J]. J Clin Oncol, 2009,27(24):3908-3915.
    53. Fountzilas G, Pectasides D, Kalogera-Fountzila A,et al. Paclitaxel and carboplatin as first-line chemotherapy combined with gefitinib (IRESSA) in patients with advanced breast cancer:a phase Ⅰ/Ⅱ study conducted by the Hellenic Cooperative Oncology Group[J]. Breast Cancer Res Treat,2005,92(1):1-9.
    54. Gasparini G, Sarmiento R, Amici S,et al. Gefitinib (ZD1839) combined with weekly epirubicin in patients with metastatic breast cancer:a phase I study with biological correlate[J]. Ann Oncol,2005,16(12):1867-1873.
    55. Green MD, Francis PA, Gebski V,et al. Gefitinib treatment in hormone-resistant and hormone receptor-negative advanced breast cancer[J]. Ann Oncol,2009,20(11):1813-1817.
    56. von Minckwitz G, Jonat W, Fasching P,et al. A multicentre phase Ⅱ study on gefitinib in taxane-and anthracycline-pretreated metastatic breast cancer[J]. Breast Cancer Res Treat, 2005,89(2):165-172.
    57. Dickler MN, Cobleigh MA, Miller KD,et al. Efficacy and safety of erlotinib in patients with locally advanced or metastatic breast cancer[J]. Breast Cancer Res Treat, 2009,115(1):115-121.
    58. Dickler MN, Rugo HS, Eberle CA,et al. A phase II trial of erlotinib in combination with bevacizumab in patients with metastatic breast cancer[J]. Clin Cancer Res, 2008,14(23):7878-7883.
    59. Twelves C, Trigo JM, Jones R,et al. Erlotinib in combination with capecitabine and docetaxel in patients with metastatic breast cancer:a dose-escalation study[J]. Eur J Cancer, 2008,44(3):419-426.
    60. Gholam D, Chebib A, Hauteville D,et al. Combined paclitaxel and cetuximab achieved a
    major response on the skin metastases of a patient with epidermal growth factor receptor-positive,-estrogen receptor-negative, progesterone receptor-negative and human epidermal growth factor receptor-2-negative (triple-negative) breast cancer[J]. Anticancer Drugs,2007,18(7):835-837.
    61. Nechushtan H, Steinberg H, Peretz T. Prelimenary results of a phase Ⅰ/Ⅱ of a combination of cetuximab and taxane for triple negative breast cancer patients[J]. J Clin Oncol (Meeting Abstracts),2009,27(15S):e12018.
    62. Talpaz M, Shah NP, Kantarjian H,et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias[J]. N Engl J Med,2006,354(24):2531-2541.
    63. Finn RS, Dering J, Ginther C,et al. Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/"triple-negative" breast cancer cell lines growing in vitro[J]. Breast Cancer Res Treat,2007,105(3):319-326.
    64. Tryfonopoulos D, O'Donovan N, Corkery B,et al. Activity of dasatinib with chemotherapy in triple-negative breast cancer cells[J]. J Clin Oncol (Meeting Abstracts), 2009,27(15 S):e14605.
    65. Somlo G, Atzori F, Strauss L,et al. Dasatinib plus capecitabine (Cap) for progressive advanced breast cancer (ABC):Phase Ⅰ study CA180004[J]. J Clin Oncol (Meeting Abstracts), 2009,27(15S):1012.
    66. Modi S, Stopeck AT, Gordon MS,et al. Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer:a phase I dose-escalation study[J]. J Clin Oncol,2007,25(34):5410-5417.
    67. Modi S, Sugarman S, Stopeck A,et al. Phase Ⅱ trial of the Hsp90 inhibitor tanespimycin (Tan) +trastuzumab (T) in patients (pts) with HER2-positive metastatic breast cancer (MBC)[J]. J Clin Oncol (Meeting Abstracts),2008,26(15-suppl):1027.
    68. Caldas-Lopes E, Cerchietti L, Ahn JH,et al. Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models[J]. Proc Natl Acad Sci U S A,2009,106(20):8368-8373.
    69. Ihemelandu CU, Naab TJ, Mezghebe HM,et al. Basal cell-like (triple-negative) breast cancer, a predictor of distant metastasis in African American women[J]. Am J Surg, 2008,195(2):153-158.
    70. Dawood S, Broglio K, Kau SW,et al. Triple receptor-negative breast cancer:the effect of race on response to primary systemic treatment and survival outcomes[J]. J Clin Oncol, 2009,27(2):220-226.
    71. Dawood S, Broglio K, Esteva FJ,et al. Survival among women with triple receptor-negative
    breast cancer and brain metastases[J]. Ann Oncol,2009,20(4);621-627.
    72.Hines SL, Vallow LA, Tan WW,et al. Clinical outcomes after a diagnosis of brain metastases in patients with estrogen-and/or human epidermal growth factor receptor 2-positive versus triple-negative breast cancer[J]. Ann Oncol,2008,19(9):1561-1565.
    73. Edwards SL, Brough R, Lord CJ,et al. Resistance to therapy caused by intragenic deletion in BRCA2[J]. Nature,2008,451(7182):1111-1115.
    74. Sakai W, Swisher EM, Karlan BY,et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers[J]. Nature,2008,451 (7182):1116-1120.
    75. Sparano JA, Goldestin LJ, Childs BH,et al. Genotypic characterization of phenotypically defined triple-negative breast cancer[J]. J Clin Oncol (Meeting Abstracts), 2009,27(15S):500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700