人参果胶对细胞迁移的影响及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人参(Panax ginseng C. A. Meyer)是著名的中药,吉林省是中国人参的主要产区。人参的有效成分包括多糖、皂苷、蛋白及其他一些小分子类物质。研究表明人参多糖具有多种药理活性,但由于分离纯化较困难,人参多糖结构与活性的关系以及多糖作用的机制研究较少。本论文以人参多糖中不同结构的果胶为研究对象,研究它们对细胞迁移的影响,以揭示多糖构效关系及作用机理。
     人参多糖主要包括中性的淀粉样葡聚糖和酸性的果胶类多糖(GP)。实验结果表明,人参果胶能特异性抑制L-929细胞的迁移,与对照组细胞相比,人参果胶对细胞迁移速度的最大抑制可达到60%。它的抑制作用不受血清的影响,说明人参果胶是血清依赖和血清非依赖两种迁移途径的抑制剂。
     为了研究人参多糖的构效关系,我们按照本实验室建立的方法将人参果胶进行了系统分级,得到9种多糖级分,其中包括4种富含聚半乳糖醛酸(HG)结构域的级分(WGPA-1-HG,WGPA-2-HG,WGPA-3-HG,WGPA-4-HG);2种既含有HG结构域又含有I型聚鼠李半乳糖醛酸(RG-I)结构域的级分(WGPA-3-RG,WGPA-4-RG);1种富含葡聚糖的级分(WGPA-N);2种富含阿拉伯半乳聚糖(AG)的级分(WGPA-1-RG,WGPA-2-RG)。我们研究了每一种级分对细胞迁移速度的影响。结果显示,富含HG结构域的果胶级分对细胞迁移速度具有明显的抑制作用,其作用强度的顺序为WGPA-1-HG < -2-HG < -3-HG < -4-HG。当浓度为0.015 mg/mL时,WGPA-3-HG对L-929细胞迁移速度的抑制作用就具有显著性。WGPA-3-RG和WGPA-4-RG对L-929细胞迁移速度的抑制作用要强于富含HG结构域的果胶级分,而含有微量HG和RG-I结构域的WGPA-N、WGPA-1-RG和-2-RG三种级分,对L-929细胞迁移速度的抑制作用极其微弱。因此,这些不同结构类型的人参果胶对细胞迁移速度的抑制活性与HG结构域的含量和RG-I结构域的含量是密切相关的。
     为了证实RG-I型果胶对细胞迁移的作用,我们按照本实验室建立的方法制备了2种RG-I型果胶:g-RGI-low(RG-I含量较低)和g-RGI-high(RG-I含量较高)。细胞迁移实验结果显示,RG-I型果胶对细胞迁移具有较强的抑制作用,且呈浓度依赖关系,即使浓度低于0.015 mg/mL时,也具有明显的抑制活性。进一步研究发现,RG-I型果胶和HG型果胶的混合物对细胞迁移的抑制作用要比每一种果胶单独作用更明显,说明二者具有协同效应。
     在此基础上,我们对RG-I型果胶和HG型果胶的作用机理进行了研究。结果表明,二者的作用都需要果胶对细胞进行预处理,预处理后细胞的形态、大小、粘着斑、细胞骨架以及信号分子的酪氨酸磷酸化都发生了改变。因此推测,人参RG-I型和HG型果胶在细胞迁移过程中不单纯作为封闭剂。进一步研究表明,RG-I型和HG型果胶能够减弱细胞的粘附能力和降低细胞的伸展速度,说明果胶对细胞迁移的抑制作用可能是通过减弱细胞粘附能力以及降低细胞伸展速度实现的。此外,我们还探讨了果胶在细胞膜上的受体分子。由于果胶能够与半乳凝集素-3(galectin-3)特异结合并影响多种细胞行为,我们研究了galectin-3是否参与了果胶对细胞迁移的抑制作用。结果表明人参RG-I型和HG型果胶对细胞迁移的影响并不是galectin-3介导的。
     细胞迁移在肿瘤细胞转移和发生过程中发挥着重要的作用,目前抑制细胞迁移已成为抗肿瘤研究新的着手点。因此,本论文的研究结果将为人参多糖抗肿瘤活性机理研究提供新的数据支持,为人参的药理应用及产品开发提供理论依据。
Panax ginseng C. A. Meyer has a long history of use as an herbal medicine in Asian countries. There are numerous different compounds in ginseng, including ginseng polysaccharides, ginsenosides, ginseng peptides and other small molecules. It has been reported that ginseng polysaccharides have many bioactivities. It is so hard to separate and purify the ginseng polysaccharides that the structural features related to the effects and the underlying mechanisms are less known. Therefore, we tested the effect of different fractions from ginseng polysaccharides on cell migration in this paper, and demonstrated on structure-activities and mechanisms in detail.
     Ginseng polysaccharides are mainly composed of neutral polysaccharides (starch-like glucans) and acidic substances (ginseng pectin, GP). In our study, ginseng pectin was examined for its effect on cell migration. Ginseng pectin impaired the migration of L-929 cells and reduced their migration speed by up to 60% of control. Cell migration was reduced to the same extent in the presence or absence of serum, which suggested that ginseng pectin acted as a common inhibitor to both serum-dependent and serum-independent migration pathways.
     To demonstrate the structure-activities, ginseng pectin was fractionated according to the previous methods in our lab, and nine fractions were characterized, including four homogalacturonan (HG)-domain rich fractions (WGPA-1-HG, WGPA-2-HG, WGPA-3-HG, WGPA-4-HG); two containing both HG- and Rhamnogalacturonan I (RG-I)-domains fractions (WGPA-3-RG, WGPA-4-RG); one glucan rich fraction (WGPA-N); two arabinogalactan rich fractions (WGPA-1-RG, WGPA-2-RG). We tested the effect of each fraction on cell migration. The HG-domain rich pectins caused significant inhibition on cell migration. The order of the inhibitory effects is WGPA-1-HG < -2-HG < -3-HG < -4-HG. At 0.015 mg/mL, WGPA-3-HG significantly inhibited L-929 cell migration. WGPA-3-RG and -4-RG showed a slightly stronger inhibition than the HG-domain rich fractions. WGPA-N, WGPA-1-RG and -2-RG, containing no, trace or minor HG and RG-I domains, showed less effects on cell migration. The inhibitory effect of ginseng pectic polysaccharides was related to HG domain content and RG-I domain content.
     To confirm the inhibitory effect of RG-I domain on cell migration, we prepared two kinds of RG-I-rich pectins: g-RGI-low (low RG-I domain content) and g-RGI-high (high RG-I domain content). The datas on cell migration showed RG-I-rich pectins inhibited cell migration in dose-dependent manner. Their inhibitory effects became significant even at less than 0.015 mg/mL. Further studies revealed that combination of HG- and RG-I-rich pectins exerted stronger effects than either HG- or RG-I-rich pectin alone.
     On the basis of results above, we studied the mechanisms of RG-I and HG pectins on cell migration. Experiment datas showed that the effects of RG-I- and HG-rich pectins were dependent on pretreatment and the pretreatment caused alterations in cell morphologies such as cell size and shape, focal adhesion, the organization of actin filaments, and the tyrosine phosphorylation of signaling molecules, suggesting that HG and RG-I pectins did not act simply as blocking agents during cell migration. Further studies showed that RG-I- and HG-rich pectin treatment decreased cell adhesion and cell spreading on the substratum, indicating that RG-I- and HG-rich pectins might exert their effects on cell migration via decreasing cell adhesion and cell spreading. Besides, we explored the target molecules on cell membrane of RG-I- and HG-rich pectins. Due to the ability of galectin-3 to bind some pectins, and has been postulated to mediate the actions of pectins in various cellular processes, we investigated if galectin-3 participated in RG-I- and HG-rich pectin mediated migration inhibition. The results suggested that RG-I- and HG-rich pectins did not target galectin-3 for their effects on cell migration.
     Cell migration plays an important role in cancerometastasis and tumorigenesis, impairment of cell migration has been the new tool for inhibiting tumor. Therefore, these findings represent a significant contribution towards understanding the anti-tumor activities of ginseng polysaccharides and applying them to health food and medicine.
引文
[1] Chen H, Tsai Y, Lin S. Studies on the immunomodulating and anti-tumor activities of Garondema Iucidum (Reishi) polysaccharide [J]. Bioorgan. Med. Chem, 2004, 12: 5592-5601.
    [2]房红梅,田丽,徐月清.多糖药理作用的研究进展[J].河北职工医学院学报, 2001,18: 63-65.
    [3]傅博强,谢明勇,周鹏.多糖功能的研究进展[J].贵州农业科学, 1998,18: 63-65.
    [4] Hurtley S, Service R, Szuromi P. Cinderella's coach is ready [J]. Science, 2001, 291: 2337-2341.
    [5] Gao Q, Kiyohara H, Cyong J, et al. Chemical properties and anti-complementary activities of polysaccharide fractions from roots and leaves of Panax ginseng [J].Planta Med, 1989, 55: 9-12.
    [6] Ovodov Y S, Solov’eva T F. Polysaccharides of Panax ginseng [J]. Khimiya Prirodnykh Soedinenii, 1966, 2: 299-303.
    [7] Solov'Eva T F, Arsnyuk L V, Ovodov Y S. Some structural features of panax ginseng c. a. meyer pectin [J]. Carbohyd. Res, 1969, 10: 13-18.
    [8] Konno C, Sugiyama K, Kano M, et al. Isolation and hypoglycaemic activity of panaxans A, B, C, D and E, glycans of panax ginseng roots [J]. Planta Med, 1984, 50: 434-436.
    [9] Konno C, Murakami M, Oshima Y, et al. Isolation and hypoglycemic actiwty of panaxans Q, R, S, T and U, glycans of panax gznseng roots [J]. J. Ethnopharmaco, 1985, 14: 69-74.
    [10] Oshima Y, Konno C, Hikino H. Isolation and hypoglycemic activity of panaxans I, J, K and L, glycans of panax ginseng roots [J]. J. Ethnopharmaco, 1985, 14: 255-259.
    [11] Konno C, Hikino H. Isolation and Hypoglycemic Activity of Panaxans M, N, O and P, Glycans of Panax ginseng Roots [J]. Pharm. Biol, 1987, 25: 53-56.
    [12] Kim Y S, Kang K S, Kim S I. Study on antitumor and immunomodulating activities of polysaccharide fractions from Panax ginseng:Comparison of effects of neutral and acidic polysaccharide fraction [J]. Arch. Pharm. Res, 1990, 13: 330-337.
    [13]李润秋,张翼伸.人参多糖的成分分析[J].中草药, 1985, 16: 5-7.
    [14]李润秋,张翼伸.人参果胶的纯化与鉴定[J].药学学报, 1984, 19: 764-766.
    [15]李润秋,张翼伸.人参果胶的结构研究[J].药学学报, 1986, 21: 912-916.
    [16]傅平平,王维忠,高其品,等.人参根多糖化学性质及抗肿瘤活性的研究[J].白求恩医科大学学报, 1994, 20: 439-441.
    [17] Zhang X, Yu L, Bi H T, et al. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C.A. Meyer [J]. Carbohyd. Polym, 2009, 77: 544-552.
    [18] Yu L, Zhang X, Li S S, et al. Rhamnogalacturonan I domains from ginseng pectin [J]. Carbohyd.Polym, 2010, 79: 811-817.
    [19] Ridley B L,O’Neill M A,Mohnen D. Pectins: Structure,biosynthesis, and oligogalacturonide-related signaling [J]. Phytochemistry, 2001, 57: 929- 967.
    [20] Thakur B R, Singh R K, Handa A K. Chemistry and uses of pectin-a review [J]. Crit. Rev. Food Sci, 1997, 37: 47-73.
    [21] Song J, Akhalaia M, Platonov A, et al. Effects of Polysaccharide Ginsan from Panax ginseng on Liver Function [J]. Arch. Pharm. Res, 2004, 27: 531-538.
    [22] Lee Y, Chung I, Lee I, et al. Activation of multiple effector pathways of immune system by the antineoplastic immunostimulator acidic polysaccharide ginsan isolated from panax ginseng [J]. Anticancer Res, 1997, 17: 323-332.
    [23] Park K M, Kim Y S, Jeong T C, et al. Nitric Oxide is Involved in the Immunomodulating Activities of Acidic Polysaccharide from Panax ginseng [J]. Planta Med, 2001, 67: 122-126.
    [24] Tomoda M, Takeda K, Shimizu N, et al. Characterization of two acidic polysaccharides having immunological activities from the root of Panax ginseng [J]. Biol. Pharm. Bull, 1993, 16: 22-26.
    [25] Shin H, Kim Y, Kwak Y, et al. Enhancement of antitumor effects of paclitaxel (taxol) in combination with red ginseng acidic polysaccharide (RGAP) [J]. Planta med, 2004, 70: 1033-1038.
    [26] Shin H, Kim Y S, Kwak Y, et al. A further study on the inhibition of tumor growth and metastasis by red ginseng acidic polysaccharide (RGAP) [J]. Nat. Product Sci, 2004, 10: 284-288.
    [27] Lee Y, Chung I, Lee I, et al. Activation of multiple effector pathways of immune system by the antineoplastic immunostimulator acidic polysaccharide ginsan isolated from panax ginseng [J]. Anticancer Res, 1997, 17: 323-332.
    [28] Choi H, Kim K, Sohn E, et al. Red Ginseng Acidic Polysaccharide (RGAP) in Combination with IFN-r Results in Enhanced Macrophage Function through Activation of the NF-kB Pathway [J]. Biosci. Biotech. Bioch, 2008, 72: 1817-1825.
    [29] Suzuki Y, Hikino H. Mechanisms of Hypoglycemic activity of Panax A and B, glycans of Panax ginseng roots: effects on plasma level, secretion, ensitivity and binding of insulin in mice [J]. Phytother. Res, 1989, 3: 20-26.
    [30] Luo D, Fang B. Structural identification of ginseng polysaccharides and testing of their antioxidant activities [J]. Carbohyd. Polym, 2008, 72: 376-381.
    [31] Kim H, Kim M, Byon Y, et al. Radioprotective effects of an acidic polysaccharide of Panax ginseng on bone marrow cells [J]. J. Vet. Sci, 2007, 8: 39-44.
    [32] Song J, Han S, Bae K, et al. Radioprotective Effects of Ginsan, an Immunomodulator [J]. Radiat. Res, 2003, 159: 768-774.
    [33] Lee J, Lee J S, Chung M, et al. In vitro anti-adhesive activity of an acidic polysaccharide from panax ginseng on porphyromonas gingivalis binding to erythrocytes [J]. Planta Med, 2004, 70: 566-569.
    [34] Lee J, Park E K, Uhm C, et al. Inhibition of helicobacter pylori adhesion to human gastricadenocarcinoma epithelial cells by acidic polysaccharides from artemisia capillaris and panax ginseng [J]. Planta Med, 2004, 70: 615-619.
    [35] Lee J, Shim J S, Lee J S, et al. Pectin-like acidic polysaccharide from Panax ginseng with selective antiadhesive activity against pathogenic bacteria [J]. Carbohyd. Res, 2006, 341: 1154-1163.
    [36] Ananthakrishnan R, Ehrlicher A. The forces behind cell movement [J]. Int. J. Biol. Sci, 2007, 3: 303-317.
    [37] Szabo A K, Ablin R J, Singh G. Matrix metalloproteinases and the immune response [J]. Clinical and Applied Immunology Reviews, 2004, 4: 295-319.
    [38] Cattaruzza S, Perris R. Proteoglycan control of cell movement during wound healing and cancer spreading [J]. Matrix Biol, 2005, 24: 400-417.
    [39] Min I M, Pietramaggiori G, Kim F S. et al. The Transcription Factor EGR1 Controls Both the Proliferation and Localization of Hematopoietic Stem Cells [J]. Stem Cells, 2008, 2: 380-391.
    [40]高卫栋,王红兵,吴泽志,等.肿瘤细胞迁移特性及细胞迁移能力表征[J].细胞生物学杂志, 2008, 30: 451-456.
    [41] Nobes C D, Hall A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia [J]. Cell, 1995, 81: 53-62.
    [42] Lauffenburger D A, Horwitz A F. Cell migration: a physically integrated molecular process [J]. Cell, 1996, 84: 359-369.
    [43]芦曙辉,王玉琦.细胞迁移机制的研究进展[J].中国临床医学, 2003, 10: 801-802.
    [44]苗龙.细胞运动、细胞迁移与细胞骨架研究进展[J].生物物理学报, 2007, 23: 281-288.
    [45]王玉珍,姜慧卿,扈彩霞. Rho信号转导通路与细胞迁移[J].医学综述, 2006, 12: 651-653.
    [46] Bray D. Cell movements [M]. 2nd ed. New York: Garland publishing. 2001, 47-79.
    [47] Luna E J, Hitt A L. Cytoskeleton plasma membrane interactions [J]. Science, 1992, 258: 955-964.
    [48] Schmitz A A P, Govek E E, Bottner B, et al. Rho GTPases: Signaling, Migration, and Invasion [J]. Exp. Cell Res, 2000, 261: 1–12.
    [49] Pollard T D, Borisy G G. Cellular motility driven by assembly and disassembly of actin filaments [J]. Cell, 2003, 112: 453-465.
    [50] Ridley A J, Schwartz M A, Burridge K, et al. Cell migration: integrating signals from front to back [J].Science, 2003, 302: 1704-1709.
    [51] Vicente-Manzanares M,Webb D J, Horwitz A R. Cell migration at a glance [J]. J. Cell Sci, 2005, 118: 4917-4919.
    [52] Pollard T D, Borisy G G. Cellular motility driven by assembly and disassembly of actin filaments [J]. Cell, 2003, 112: 453-465.
    [53] Machesky L M, Gould K L. The Arp2/3 complex: a multi-functional actin organizer [J]. Curr. Opin. Cell. Biol, 1999, 11: 117-12l.
    [54] Zigmond S H. Beginning and ending an actin filament: control at the barbed end [J]. Curr. Top. Dev.Biol, 2004, 63: 145-188.
    [55] Krause M, Dent E W, Bear J E, et al. Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration [J]. Annu. Rev. Cell. Dev. Biol, 2003, 19: 541-564.
    [56] Dogterom M, Kerssemakers J W, Romet-Lemonne G, et al. Force generation by dynamic microtubules [J]. Curr. Opin. Cell. Biol, 2005, 17: 67-74.
    [57] Parent C, Devreotes P. A cell's Sense of Direction [J]. Science, 1999, 284: 765-770.
    [58] Welch M D, Rosenblatt J, Skoble J, et al. Interaction of human Arp2/3 complex an d the Listeria monocytogenes ActA protein in actin filament nucleation [J]. Science, 1998, 281: 105-108.
    [59] Machesky L M, lnsall R H. Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex [J]. Curr. Biol, l998, 8: 1347-1356.
    [60] Higgs H N, Pollard T D. Activation by Cdc42 and P1P (2) of Wiskott-Aldrich syndrome protein (WASP) stimulates actin nucleation by Arp2/3 complex [J]. J. Cell Biol, 2000, 150: 1311-1320.
    [61] Hynes R. Integrins: bidirectional, allosteric signaling machines [J]. Cell, 2002, 110: 673-687.
    [62] Miranti C K, Brugge J S. Sensing the environmental: a historical perspective on integrin signal transduction [J]. Nat. Cell. Biol, 2002, 4: 83-90.
    [63] Vuori K. Integrin signaling: tyrosin phophorylation events in focal adhesions [J]. J. Membr. Biol, 1998, 165: 191-199.
    [64] Petlt V, Thiery J P. Focal adhesion: structure and dynamics [J]. Biol. Cell, 2000, 92: 497-494.
    [65] Boudreau N J, Jones P L. Extracellular matrix and integrin signaling: the shape of things to come [J]. Biochem. J, 1999, 339: 481-488.
    [66] Miao L, Vanderlinde 0, Stewart M, et al. Retraction in amoeboid cell motility powered by cytoskeletal dynamics [J]. Science, 2003, 302: 1405-1407.
    [67] Xia D, Stull J T, Kamm K E. Myosin phosphatase targeting subunit I affects cell migration by regulating myosin phophorylation and actin assembly [J]. Exp. Cell. Res, 2005, 304: 506-517.
    [68] Cai Y, Biais N, Giannone G, et al. Non-muscle myosin IIA-dependent force inhibits cell spreading and drives F-actin flow [J]. Biophys. J, 2006, 91: 3907-20.
    [69] Medeiros N A, Burnette D T, Forscher P. Myosin II functions in actin-bundle turnover in neuronal growth cones [J]. Nat. Cell. Biol, 2006, 8: 215-226.
    [70] Briggs S. Modified citrus pectin may halt metastasis [J]. Nutr. Sci. News, 1997, 2: 216-218.
    [71] Toole B P. Hyaluronan: from extracellular glue to pericellular cue [J]. Cancer, 2004, 4: 528-539.
    [72] Heldin P. Importance of hyaluronan biosynthesis and degradation in cell diferentiation and tumor formation [J]. Braz. J. Med. Biol. Res, 2003, 36: 967-973.
    [73] Wang S J, Bourguignon L Y. Hyaluronan-CD44 promotes phospholipase C-mediated Ca signaling and cisplatin resistance in head and neck cancer [J]. Arch. Otolaryngol. Head. Neck. Surg, 2006, 132: 19-24.
    [74] Wein R O, McGary C T, Doerr T D, et al. Hyaluronan and its receptors in mucoepidermoid carcinoma[J]. Head Neck, 2006, 28: 176-181.
    [75] Delpech B, Girard N, Bertrand P, et al. Hyaluronan: fundamental principles and applications in cancer [J]. J. Intern. Med, 1997, 242: 41-48.
    [76] Gadhounm Z, Delaunay J, Maquarre E, et al. The effect of anti-CD44 monoclonal antibodies on differentiation and proliferation of human acute myeloid leukemia cells [J]. Leukemia Lymphoma, 2004, 45: 150l-1510.
    [77] Günthert U. CD44 in malignant disorders [J]. Curr Top Microbiol Immunol, 1996, 213: 271-285.
    [78] Kaya G, Rodriguez I, Jorcano J L, et al. Selective suppression of CD44 in keratinocytes of mice bearing an antisense CD44 transgene driven by a tissue-specific promoter disrupts hyaluronate metabolism in the skin and impairs keratinocyte proliferation [J]. Genes Dev, 1997, 11: 996–1007.
    [79] Günthert U. Importance of CD44 variant isoforms in mouse models for inflammatory bowel disease [J]. Curr Top Microbiol Immunol, 1999, 246: 307-312.
    [80] Siegelman M H, DeGrendele H C, Estess P. Activation and interaction of CD44 and hyaluronan in immunological systems [J]. J Leukoc Biol, 1999, 66: 315-321.
    [81] Oliferenko S, Kaverina I, Victor-Small J. Hyaluronic Acid (HA) Binding to CD44 Activates Rac1 and Induces Lamellipodia Outgrowth [J]. J. Cell Biol, 2000, 148: 1159-1164.
    [82] Guimond S, Maccarana M, Olwin B B, Lindahl U, Rapraeger A C. Activating and inhibitory sequences for FGF-2 (basic FGF): distinct requirements for FGF-1, FGF-2 and FGF-4 [J]. J. Biol. Chem, 1993, 268: 23906-23914.
    [83] Parthasarathy N, Goldberg I J, Sivaram P, Mulloy B, Flory D M, Wagner W D. Oligosaccharide sequences of endothelial cell surface heparan sulfate proteoglycan with affinity for lipoprotein lipase [J]. J. Biol. Chem, 1994, 269: 22391-22396.
    [84] Walker A, Gallagher J T. Structural domains of heparan sulphate for specific recognition of the C-terminal heparin-binding domain of human plasma fibronectin (HEPII) [J]. Biochem. J, 1996, 317: 871-877.
    [85] Morgan M R, Humphries M J, Bass M D. Synergistic control of cell adhesion by integrins and syndecans [J]. Nat. Rev. Mol. Cell Biol, 2007, 8: 957-969.
    [86] Bloom L, Ingham K C, Hynes R O. Fibronectin regulates assembly of actin filaments and focal contacts in cultured cells via the heparin-binding site in repeat III13 [J]. Mol. Biol. Cell, 1999, 10: 1521-1536.
    [87] Beauvais D M, Burbach B J, Rapraeger A C. The syndecan-1 ectodomain regulates alphavbeta3 integrin activity in human mammary carcinoma cells [J]. J. Cell Biol, 2004, 167: 171-181.
    [88] Koyama N, Kinsella M G, Wight T N. Heparan sulfate proteoglycans mediate a potent inhibitory signal for migration of vascular smooth muscle cells [J]. Circ. Res, 1998, 83: 305-313.
    [89] Sharma B, Handler M, Eichstetter I. Antisense targeting of perlecan blocks tumor growth and angiogenesis in vivo [J]. J. Clin. Invest, 1998, 102: 1599-1608.
    [90] Segev A, Nili N, Strauss B H. The role of perlecan in arterial injury and angiogenesis [J]. Cardiovasc. Res, 2004, 63: 603-610.
    [91] William B S, Kimberlee D H. Chondroitin sulfate and cytoplasmic domain-dependent membrane targeting of the NG2 proteoglycan promotes retraction fiber formation and cell polarization [J]. J. Cell Sci, 2001, 114: 2315-2325.
    [92] Sakko A J, Ricciardelli C, Mayne K, Suwiwat S, LeBaron R G, Marshall V R, Tilley W D, Horsfall D J. Modulation of Prostate Cancer Cell Attachment to Matrix by Versican [J]. Cancer Res, 2003, 63: 4786–4791.
    [93] Evanko S P, Angello J C, Wight T N. Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells [J]. Arterioscler. Thromb. Vasc. Biol, 1999, 19: 1004–1013.
    [94] Cole G J, McCabe C F. Identification of a developmentally regulated keratan sulfate proteoglycan that inhibits cell adhension and neurite out-growth [J]. Neuron, 1991, 7: 1007-1018.
    [95] Nangia-Makker P, Hogan V, Honjo Y, et al. Inhibition of Human Cancer Cell Growth and Metastasis in Nude Mice by Oral Intake of Modified Citrus Pectin [J]. J. Natl. Cancer. I, 2002, 94: 1854-1862.
    [96] Sathisha U V, Jayaram S, Harish-Nayaka M A, et al. Inhibition of galectin-3 mediated cellular interactions by pectic polysaccharides from dietary sources [J]. Glycoconjugate J, 2007, 24: 497–507.
    [97] Glinsky V V, Raz A. Modified citrus pectin anti-metastatic properties: one bullet, multiple targets [J]. Carbohyd. Res, 2009, 344: 1788-1791.
    [98] Takenaka Y, Fukumori T,Raz A. Galectin-3 and metastasis [J]. Glycoconjugate J., 2004, 19: 543–549.
    [99] Gunning A P, Bongaerts R J M, Morris V J. Recognition of galactan components of pectin by galectin-3 [J]. FASEB J, 2009, 23: 415-424.
    [1] Lee J Y, Shim J S, Lee J S, et al. Pectin-like acidic polysaccharide from Panax ginseng with selective antiadhesive activity against pathogenic bacteria [J]. Carbohyd. Res, 2006, 341: 1154-1163.
    [2] Kim H J, Kim M H, Byon Y Y, et al. Radioprotective effects of an acidic polysaccharide of Panax ginseng on bone marrow cells [J]. J. Vet. Sci, 2007, 8: 39-44.
    [3] Suzuki Y, Hiking H. Mechanisms of hypoglycemic activity of Panaxans A and B, glycans of Panax ginseng roots: Effects on the key enzymes of glucose metabolism in the liver of mice [J]. Photother Res, 1989, 3: 15-19.
    [4] Shin H J, Kim Y S, Kwak Y S, et al. Enhancement of antitumor effects of paclitaxel (taxol) in combination with red ginseng acidic polysaccharide (RGAP) [J]. Planta Med, 2004, 70: 1033-1038.
    [5] Du X F, Jiang C Z, Wu C F, et al. Synergistic Immunostimulating Activity of Pidotimod and Red Ginseng Acidic Polysaccharide against Cyclophosphamide-induced Immunosuppression [J]. Arch. Pharm. Res, 2008, 31: 1153-1159.
    [6] Nobes C D, Hall A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia [J]. Cell, 1995, 81: 53-62.
    [7] Lauffenburger D A, Horwitz A F. Cell migration: a physically integrated molecular process [J]. Cell, 1996, 84: 359-369.
    [8] Chauhan D, Li G, Podar K, et al. (2005). A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells [J]. Cancer Res, 2005, 65: 8350-8358.
    [9] Lin F, Ren X D, Greiling D, et al. Three-dimensional migration of human adult dermal fibroblasts from collagen lattices into fibrin/fibronectin gels requires syndecan-4 proteoglycan [J]. J. Invest. Dermatol, 2005, 124: 906-913.
    [10] Cohen M, Kam Z, Addadi L, et al. (2006). Dynamic study of the transition from hyaluronan to integrin-mediated adhesion in chondrocytes [J]. EMBO J, 2006, 25: 302-311.
    [11] Evanko S P, Tammi M I, Tammi R H, et al. Hyaluronan-dependent pericellular matrix [J]. Adv. Drug. Deliver. Rev, 2007, 59: 1351-1365.
    [12] Nangia-Makker P, Hogan V, Honjo Y, et al. Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin [J]. J. Natl. Cancer I, 2002, 94: 1854-1862.
    [13] Sathisha U V, Jayaram S, Nayaka M A H, et al. Inhibition of galectin-3 mediated cellular interactions by polysaccharides from dietary sources [J]. Glycoconjugate J, 2007, 24, 497-507.
    [14] Zhang X, Yu L, Bi H T, et al. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C.A. Meyer [J]. Carbohyd. Polym, 2009, 77: 544-552.
    [15] Sevag M G, Lackman D B, Smolens J. The isolation of the components of streptococcal nucleoproteins in serologically active form [J]. J. Biol. Chem, 1938, 124: 425-436.
    [16] Bruneel D, Schacht E. Chemical modification of pullulan: 1. periodate oxidation [J]. Polymer, 1993, 34: 2628-2632.
    [17] Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances [J]. Anal. Chem, 1956, 28: 350-356.
    [18] Yu L, Zhang X, Li S S, et al. Rhamnogalacturonan I domains from ginseng pectin [J]. Carbohyd. Polym, 2010, 79: 811-817.
    [19] Wang H Q, Huang L X, Qu M J, et a1. Shear stress protects against endothelial regulation of vascular smooth muscle cell migration in a coculture system [J], Endothelium, 2006, l3: 171-180.
    [20] Gupton S, Waterman-storer C M. Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration [J]. Cell, 2006, 125: 1361-1374.
    [1] Nangia-Makker P, Hogan V, Honjo Y, et al. Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin [J]. J. Natl. Cancer. I, 2002, 94: 1854-1862.
    [2] Sathisha U V, Jayaram S, Nayaka M A H, et al. Inhibition of galectin-3 mediated cellular interactions by polysaccharides from dietary sources [J]. Glycoconjugate J, 2007, 24, 497-507.
    [3] Zhang X, Yu L, Bi H T, et al. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C.A. Meyer [J]. Carbohyd. Polym, 2009, 77: 544-552.
    [4] Yu L, Zhang X, Li S S, et al. Rhamnogalacturonan I domains from ginseng pectin [J]. Carbohyd. Polym, 2010, 79: 811-817.
    [5] Glinsky V V, Raz A. Modified citrus pectin anti-metastatic properties: one bullet, multiple targets [J]. Carbohyd. Res, 2009, 344: 1788-1791.
    [6] Gunning A P, Bongaerts R J M, Morris V J. Recognition of galactan components of pectin by galectin-3 [J]. FAFEB J, 2009, 23: 415-424.
    [7] Omelchenko T, Fetisova E, Ivanova O, Bonder E M, Feder H, Vasiliev V M, et al. Contact interactions between epitheliocytes and fibroblasts: Formation of heterotypic cadherincontaining adhesion sites is accompanied by local cytoskeletal reorganization [J]. P. Natl. Acad. Sci, 2001, 98: 8632–8637.
    [8] Guimond S, Maccarana M, Olwin B B, et al. Activating and inhibitory heparin sequences for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2, and FGF-4 [J]. J. Biol. Chem, 1993, 268: 23906-23914.
    [9] Faham S, Hileman R E, Fromm J R, et al. Heparin structure and interactions with basic fibroblast growth factor [J]. Science, 1996, 271: 1116-1120.
    [10] Liu Y, Ahmad H, Luo Y, et al. Citrus Pectin: Characterization and Inhibitory Effect on Fibroblast Growth Factor-Receptor Interaction [J]. J Agric. Food. Chem, 2001, 49: 3051-3057.
    [1] Ridley B L,O’Neill M A,Mohnen D. Pectins: Structure, biosynthesis, and oligogalacturonide- related signaling [J]. Phytochemistry, 2001, 57: 929-967.
    [2] Schols H A, Voragen A G J. Complex pectins: Structure elucidation using enzymes [J]. Amsterdam, 1996, 37: 3-19.
    [3] McNeil M, Darvill A G, Albersheim P. Structure of plant cell walls. X. Rhamnogalacturonan I, a structurally complex pectic polysaccharide in the walls of suspension-cultured sycamore cells [J]. Plant. Physiol, 1980, 66: 1128-1134.
    [4] Albersheim P, Darvill A G, O’Neill M A, et al. An hypothesis: The same six polysaccharides are components of the primary cell walls of all higher plants [J]. Amsterdam, 1996, 26: 47-55.
    [5] Zhang X, Yu L, Bi H T, et al. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C.A. Meyer [J]. Carbohyd. Polym, 2009, 77: 544-552.
    [6] Yu L, Zhang X, Li S S, et al. Rhamnogalacturonan I domains from ginseng pectin [J]. Carbohyd. Polym, 2010, 79: 811-817.
    [7] Suzu S, Hayashi Y, Harumi T, et al. Molecular cloning of a novel inmmnoglobulin supefamily gene preferentially expressed by brain and testis [J]. Bioehem. Biophys. Res. Commun, 2002, 296: 1215-1221.
    [8] Allory Y, Matsuoka Y, Bazille C, et a1. The L1 cel1 adhesion molecule is induced in renal cancer cells and correlates with metastasis in clear cell carcinomas [J]. Clin. Cancer. Res, 2005, 11: 1190-1197.
    [9] Witz I P. The involvement of selectins and their ligands in tumor progression [J]. Immunol. Lett, 2006, 104: 89-93.
    [10] Thiery J P. Cell adhesion in development: a complex signaling network [J]. Cur. Opin. Genet. Dev, 2003, 13: 365-371.
    [11] Toole B P. Hyaluronan: from extracellular glue to pericellular cue [J]. Cancer, 2004, 4(7): 528-539.
    [12] Heldin P. Importance of hyaluronan biosynthesis and degradation in cell diferentiation and tumor formation [J]. Braz. J. Med. Biol. Res, 2003, 36(8): 967-973.
    [13] Ananthakrishan R, Ehrlicher A. The forces behind cell movement [J]. Int. J. Biol. Sci., 2007, 3: 303-317.
    [1] Günthert U. CD44 in malignant disorders [J]. Curr. Top. Microbiol. Immunol, 1996, 213: 271-285.
    [2] Kaya G, Rodriguez I, Jorcano J L, et al. Selective suppression of CD44 in keratinocytes of mice bearing an antisense CD44 transgene driven by a tissue-specific promoter disrupts hyaluronate metabolism in the skin and impairs keratinocyte proliferation [J]. Genes. Dev, 1997, 11: 996–1007.
    [3] Günthert U. Importance of CD44 variant isoforms in mouse models for inflammatory bowel disease [J]. Curr. Top. Microbiol. Immunol, 1999, 246: 307-312.
    [4] Nangia-Makker P, Hogan V, Honjo Y, et al. Inhibition of Human Cancer Cell Growth and Metastasis in Nude Mice by Oral Intake of Modified Citrus Pectin [J]. J. Natl. Cancer. I, 2002, 94: 1854-1862.
    [5] Sathisha U V, Jayaram S, Harish-Nayaka M A, et al. Inhibition of galectin-3 mediated cellular interactions by pectic polysaccharides from dietary sources [J]. Glycoconj. J, 2007, 24: 497–507.
    [6] Oliferenko S, Kaverina I, Victor-Small J. Hyaluronic Acid (HA) Binding to CD44 Activates Rac1 and Induces Lamellipodia Outgrowth [J]. J. Cell. Biol, 2000, 148, 1159-1164.
    [7] Glinsky V V, Raz A. Modified citrus pectin anti-metastatic properties: one bullet, multiple targets [J]. Carbohyd. Res, 2009, 344: 1788-1791.
    [8] Gunning A P, Bongaerts R J M, Morris V J. Recognition of galactan components of pectin by galectin-3 [J]. FAFEB J, 2009, 23: 415-424.
    [9] Takenaka Y, Fukumori T,Raz A. Galectin-3 and metastasis [J]. Glycoconj. J, 2004, 19: 543–549.
    [10] Chauhan D, Li G, Podar K, et al. (2005). A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells [J]. Cancer Res, 2005, 65: 8350-8358.
    [11] Ridley A J, Hall A. The small Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors [J]. Cell, 1992, 70: 389-399.
    [12] Oliferenko S, Kaverina I, Small J V, et al. Hyaluronic acid (HA) binding to CD44 activates Rac1 and induces lamellipodia outgrowth [J]. J. Cell. Biol, 2000, 148: 1159-1164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700