钾通道介导Aβ的神经毒及HN的拮抗作用:电生理和凋亡的实验观察
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(Alzheimer’s disease,AD),又称老年痴呆,是以记忆、认知功能受损为主要特征的神经退行性疾病,其典型的病理学特征为老年斑(senile plaque, SP)、神经纤维缠结(neurofibrillary tangle, NFT)和大量的神经元丧失。β-淀粉样蛋白(β-amyloid protein,Aβ)是老年斑的主要成分,由39~43个氨基酸组成。有关Aβ1-40和Aβ1-42完整肽链的神经毒作用已有广泛的报道。研究发现Aβ25-35,一个短的分子片断,具有与Aβ完整肽链相同的神经毒作用,因此被广泛应用于AD的实验研究。由于Aβ被普遍认为是AD的关键性致病因素,在AD发病过程中发挥重要作用,因而深入研究其毒性作用机制,从而抑制其毒性将是防治AD的重要环节。
     有关Aβ的毒性机制众说纷纭,近来研究表明,Aβ通过扰乱细胞内离子稳态,影响膜电生理特性而发挥重要作用。大量研究证实,钾离子通道的功能紊乱在AD的发病过程中发挥重要作用。钾离子通道能够影响胞内离子稳态、细胞容积,并通过调节膜电位调控递质释放、激素分泌等生理功能。在几乎所有兴奋性细胞和绝大多数非兴奋性细胞静息膜电位的维持过程中钾通道发挥主要作用,同时还可影响动作电位的频率和时程,由此调控细胞的兴奋性以及参与Ca2+稳态的调节。此外,研究表明,钾通道在学习记忆中发挥重要作用,钾通道与Cp20 (一种分子量为20 kDa的GTP结合蛋白)、胞内钙离子、蛋白激酶C (PKC)共同参与学习和记忆的过程。病理条件下,如发生AD时中枢神经系统和外周组织中均存在钾通道功能异常。近来研究还发现,钾通道除影响膜电生理特性、兴奋性和钙稳态及一些生理及病理过程,还参与神经元凋亡的诱导,促进凋亡发生。
     然而钾通道功能异常产生的神经损伤作用与AD的病理变化关系十分混乱。虽有相关文献报道,但存在很大争议,特别是在不同的实验条件(如电生理记录和细胞培养)观察时,甚至有结果相反的报道。一方面,钾通道功能异常造成的毒性作用报道不一。既有钾通道开放抑制、钾电流减少引起毒性作用(兴奋性提高、钙超载)的报道,也有钾通道开放增加、钾电流增大引起的毒性作用(诱导凋亡)的报道。另一方面,Aβ对钾通道功能的毒性作用结果也报道不一,既有抑制通道开放使钾电流减少的结果,也有促使通道开放使钾外流增加的报道。因此有必要做进一步研究并分析其机制及原因,明确Aβ在产生毒性作用时对钾通道功能的影响,明确钾通道功能异常产生的毒性作用,从而为解释钾通道的病理生理作用及Aβ的毒性作用机制提供依据。
     蛋白激酶C (PKC)作为细胞内重要的信号物质,参与许多生理功能的调节。在对钾通道的调节过程中,PKC尤为重要。研究显示,PKC激活可使钾电流抑制。而且有证据显示,Aβ的毒性作用与PKC密切相关。本研究室以往的研究也证实PKC介导了Aβ31-35引起的海马长持续-长时程(L-LTP)压抑。那么,PKC是否也参与了Aβ所致的钾通道功能的异常改变呢?此外,本室及其他的研究者以往的工作表明,Aβ能引起神经元细胞活力降低、促进凋亡发生,那么钾通道是否也参与Aβ引起的细胞凋亡过程?
     Humanin (HN)是2001年首次由日本学者在AD患者脑内发现的由24个氨基酸组成的线性多肽,能够有效抑制多种FAD (Family Alzheimer’s disease)基因突变和Aβ衍生物诱发的神经毒作用,初始被认为是AD特异或AD相关毒性的神经保护肽。然而有关HN拮抗Aβ的神经毒作用机制还不清楚,尤其是对神经元电生理特性的影响未见报道。而且,我们前期的实验观察到HN能够拮抗Aβ引起的凋亡而发挥保护作用,那么钾通道是否在HN拮抗Aβ引起的毒性作用中发挥重要作用?
     基于上述的研究背景,为进一步明确Aβ对钾通道功能的影响及钾通道功能异常产生的毒性作用;为明确HN拮抗Aβ神经毒的电生理(钾通道)机制;明确PKC在Aβ引起钾通道功能异常时的作用及HN的拮抗作用;明确钾通道在Aβ所致凋亡中的作用以及HN的神经保护作用,我们设计了以下三部分实验:(1)采用全细胞膜片钳技术观察Aβ对钙非依赖性的钾电流(包括快速失活钾电流和延迟整流钾电流)的影响,以及HN对Aβ引起的钾通道功能改变的拮抗作用;(2)采用全细胞膜片钳技术和免疫蛋白印迹技术观察PKC在Aβ引起钾通道功能改变过程中的作用和HN拮抗作用;(3)采用细胞毒性检测方法和凋亡检测手段,观察钾通道在Aβ诱导的神经毒尤其是诱导凋亡产生中的作用,以及HN的保护作用。为深入理解钾通道功能异常、Aβ神经毒性作用及AD的病理机制提供理论依据。
     第一部分: Aβ25-35介导的钙非依赖性钾电流的抑制及HN的拮抗作用
     为了深入理解Aβ的神经毒作用的离子机制及探讨HN发挥神经保护作用的电生理机制,本实验利用全细胞膜片钳技术观察Aβ25-35对急性分离的海马神经元钙非依赖性的钾电流(包括快速失活钾电流(fast transient current,IA)和延迟整流钾电流(delayed rectifier-like current,IK))的影响以及HN的拮抗作用。实验过程中,我们采用三种不同的给药顺序进行观察,即在灌流Aβ之前、同时或之后给予同等浓度的HN。在全细胞电压钳记录的条件下,给予细胞由-40~+70mV(阶跃10mV)的去极化脉冲,分别记录钙非依赖性的总的钾电流和IK电流,再经公式换算得出IA。依据文献报道,IK取其158ms处的稳态电流,而IA取其峰值电流进行分析。在同一海马神经元上,比较HN不同的给药方式对Aβ引起的钾电流作用的影响。
     结果显示:(1)单独应用Aβ25-35 (5 mol/L),使钙非依赖性的总的钾电流、IK和IA都受到明显的抑制,其相对电流幅度分别为66.23±10.29% (n=11, p<0.05)、71.94±11.20% (n=11, p<0.05)和47.95±19.25% (n=11, p<0.05);(2)HN (5 mol/L)预处理取消了Aβ25-35 (5 mol/L)对钙非依赖性的钾电流的抑制作用。在HN预处理条件下,给予Aβ25-35后,其电流幅度基本不变(103.70±6.64%和80.16±9.78%, n=8, p>0.05),即HN取消了Aβ对钾电流的抑制;(3)HN (5 mol/L)后处理逆转了Aβ25-35 (5 mol/L)引起的对钙非依赖性钾电流的抑制。总的钾电流、IK和IA电流幅度分别为80.50±10.05% (n=11)、87.49±13.50% (n=11)和59.71±22.75% (n=11),同Aβ25-35处理组相比,均有统计学差异(n=11, p<0.05);(4)HN (5 mol/L)与Aβ25-35 (5 mol/L)同时作用于神经元时,HN同样拮抗了Aβ25-35对钾通道的抑制作用。总的钾电流,IK,IA相对电流幅度分别为122.82±18.89% (n=5), 116.46±17.40% (n=5), 99.71±30.42% (n=5),同Aβ25-35处理组相比,均具有统计学差异(n=5, p <0.05);(5)Aβ25-35以及使用钾通道的阻断剂TEA和4-AP或提高细胞外钾离子浓度能够显著的增高细胞内钙离子水平;(6) HN与Aβ25-35同时作用于神经元时,HN能够拮抗Aβ25-35引起的胞内钙升高。
     以上结果表明:(1)急性给予Aβ25-35可使分离神经元的钙非依赖性的总的钾电流包括IK、IA抑制,这种作用可能通过提高兴奋性影响钙稳态,如形成钙超载而发挥毒性作用;(2)HN拮抗Aβ25-35介导的对钙非依赖性钾电流的抑制以及胞内钙升高;(3)电压依赖性钾通道可能是HN拮抗Aβ发挥神经保护作用的靶点之一;(4)结合以往实验和本实验结果推测,HN和Aβ可能作用于细胞膜同一靶点而发挥作用,HN比Aβ可能更具有亲和力。
     第二部分: PKC介导的Aβ25-35对钾通道的抑制及HN的拮抗作用
     鉴于PKC在钾通道调节过程中的重要作用,即PKC激活可抑制钾电流以及广泛报道的PKC介导Aβ的毒性作用。在第一部分研究结果的基础上(Aβ抑制钙非依赖性钾电流),通过使用PKC的激动剂PDBu和阻断剂chelerythrine,应用全细胞膜片钳技术观察PKC是否介导了Aβ对钙非依赖性钾电流的抑制和HN的拮抗作用。同时,采用蛋白免疫印迹技术进一步观察Aβ对PKC的活化以及HN的拮抗作用。
     结果显示:(1)不同浓度的PKC激动剂PDBu (1 mol/L, 10 mol/L, 100 mol/L)能够剂量依赖性抑制延迟整流钾电流(IK),相对于对照组,IK的电流幅度分别为85.00±5.75% (n=5, p <0.05), 67.13±6.83% (n=5, p <0.05)和54.25±8.90% (n=5, p <0.05)。而快速失活钾电流(IA)则不受PDBu的影响;(2)PKC阻断剂chelerythrine (20 mol/L)能够拮抗Aβ引起的对IK的抑制。钙非依赖性的总的钾电流和IK相对于正常电流幅度分别为107.08±6.54% (n=12)和106.90±20.54% (n=12),而同单独应用Aβ25-35 (5 mol/L)时两种电流的相对值分别为66.23±10.29% (n=11)和71.94±11.20% (n=11),均有统计学差异(p<0.05)(;3)HN拮抗PKC激动剂PDBu引起的对IK的抑制。第一部分的实验结果证实,HN能拮抗Aβ25-35介导的对钙非依赖性钾电流的抑制,且前述的实验证实Aβ通过PKC介导其对IK的抑制。因此,我们观察了HN对PKC激动剂PDBu引起IK抑制的影响。结果发现,在PDBu (5 mol/L)之后给予HN (5 mol/L),IK相对电流幅度升高为84.60±6.79% (n=8,p <0.05 vs PDBu组),即HN能够拮抗由PDBu引起的对IK的抑制作用;(4)Aβ25-35促进神经元PKC的活化。Aβ25-35 (5 mol/L)作用30 min后能够激活PKC,即磷酸化的PKC明显增多,而Aβ(5 mol/L)和HN (5 mol/L)共同作用30 min后,同单独应用Aβ组相比,PKC的磷酸化水平不再增加(n=4, p<0.05)。
     以上结果表明:(1)PKC激动剂剂量依赖性的抑制IK,即激活PKC模拟了Aβ对钾通道的作用;(2)Aβ能够活化(磷酸化)神经元PKC,活化的PKC介导了对钾通道的抑制,而PKC阻断剂拮抗Aβ引起的IK电流的抑制;(3)HN抑制Aβ诱导的PKC的活化(磷酸化);(4)HN拮抗PKC介导的Aβ对IK的抑制。综上,Aβ通过活化PKC介导其对钾通道的作用,这可能是Aβ毒性作用的重要机制之一,抑制Aβ对PKC的活化及抑制PKC介导的毒性作用可能是HN拮抗Aβ神经毒的机制之一。
     第三部分:钾通道开放介导的Aβ25-35致凋亡及HN的拮抗作用
     我们前一部分的实验及其他一些电生理实验观察显示,Aβ能够抑制钾通道开放及钾电流,使膜电位负值变小,由此导致膜容易去极化,动作电位的时程和有效不应期延长,胞内钙内流增多,继发钙超载,从而导致细胞毒性。新近的文献报道,钾通道开放增加、钾外流增多亦可产生毒性作用,但不是影响兴奋性和钙信号而是诱导凋亡。在培养的神经元发现慢性孵育Aβ通过引起钾通道开放增加,大量钾外流诱导凋亡发生。上述Aβ对钾通道的不同作用(通道抑制,钾电流减少或通道开放,钾外流增加)是在不同的实验条件下观察的结果,前者是在电生理记录条件下通过急性给药观察的结果,后者是在细胞培养条件下慢性孵育药物观察的结果。我们在完成了电生理条件下进行的Aβ对钾通道功能影响的观察后,设计了本部分实验,即使用原代培养的皮层神经元,观察钾通道在Aβ引起的神经元凋亡中的作用及HN的拮抗作用。
     实验中采用钾通道的阻断剂,包括对IK敏感的TEA和其同源类似物TPeA以及对IA敏感的4-AP以及使用高浓度的KCl提高细胞外钾离子浓度来抑制钾离子外流,观察阻止钾离子过渡外流能否拮抗Aβ引起的神经元死亡;同时应用钾离子的载体valinomycin(相当于开放剂)诱导神经元凋亡(这是目前研究钾外流增多引起凋亡的通用模型),在此基础上观察HN对钾外流增多引起凋亡的拮抗作用,明确HN拮抗Aβ引起神经元死亡的可能机制。实验过程采用原代培养的皮层神经元,通过细胞毒性检测方法(cck-8试剂盒,乳酸脱氢酶试剂盒,Calcein-AM染色)和凋亡检测方法(流式细胞术,caspase-3试剂盒,TUNEL染色)分析钾通道在Aβ诱导的细胞凋亡中的作用。
     结果显示:(1)Aβ25-35 (25 mol/L)孵育24 h引起皮层神经元的凋亡,使用钾通道(IK)的阻断剂TEA (5 mmol/L)、TPeA (1 nmol/L )或提高细胞外的钾离子浓度(KCl 25 mmol/L)预处理30分钟,抑制了Aβ25-35诱导的细胞凋亡,而IA的阻断剂4-AP (5 mmol/L)预孵育则对Aβ25-35引起的神经元凋亡没有保护作用;(2)钾离子载体valinomycin (10 nmol/L, 100 nmol/L, 1000 nmol/L)通过钾通道的开放,钾离子的外流剂量依赖性的降低神经元的细胞活力,并导致凋亡发生;(3) HN (5 mol/L)预处理16 h能够拮抗由valinomycin(100 nmol/L)诱导的细胞凋亡,而15 mol/L和25 mol/L HN却未能发挥保护作用;(4)HN (25 mol/L)预处理16 h能够拮抗Aβ25-35 (25 mol/L)引起的皮层神经元凋亡。
     以上结果表明:(1)在离体神经细胞培养的条件下,Aβ导致培养神经元产生凋亡;(2)Aβ引起的神经元凋亡与慢性孵育Aβ引起钾通道开放导致钾离子大量外流有关;(3)HN可拮抗钾通道开放诱导的神经元凋亡。综上,HN可通过拮抗钾通道开放抑制Aβ诱导的神经元凋亡,这可能是HN拮抗Aβ致凋亡作用的机制之一
     综上结果,可得出如下结论:
     (1)急性给予Aβ25-35可使分离的神经元钙非依赖的钾通道(钾电流)抑制,包括IA和IK,进而引起细胞内钙离子浓度的升高; HN可拮抗由Aβ25-35诱导的钙非依赖性的钾电流的抑制以及胞内钙升高;
     (2)Aβ25-35可能通过活化PKC系统介导对钾电流的抑制;
     (3)HN通过拮抗Aβ25-35诱导的PKC活化(磷酸化)从而拮抗Aβ25-35诱导的对钾电流的抑制;
     (4)慢性孵育Aβ25-35导致培养的神经元凋亡,钾通道的大量开放可能是介导Aβ25-35致凋亡的机制之一;
     (5)HN可通过拮抗钾通道开放抑制Aβ诱导的神经元凋亡,这可能是HN拮抗Aβ致凋亡作用的机制之一;
     (6)钾通道功能异常无论是开放抑制(钾电流减小)或开放增加(钾外流增加)均可造成毒性作用,前者通过提高神经兴奋性或引起胞内钙超载而产生毒性作用,而后者则通过诱导凋亡发挥毒性作用;
     (7)不同的实验条件及给药方式可能通过不同的机制使Aβ产生对钾通道的不同效应。电生理记录过程的急性给药使通道抑制,钾电流减小;而细胞培养过程的慢性孵育可使通道开放增加,钾外流增加。急性给药产生的钾通道抑制可能是Aβ对膜通道及膜电流产生的直接效应,而慢性孵育可能是由于上调了钾通道蛋白表达,使其数量增加,开放增加。
Alzheimer’s disease (AD) is a primary irreversible neurodegenerative disorder characterized by the presence of extensive extracellular amyloid plaques, intracellular neurofibrillary tangles and neuronal death in cerebral cortex and hippocampus, along with progressive impairment of learning, memory and unrelenting cognitive decline.β-amyloid (Aβ) is a polypeptide of 39-43 amino acids and major protein component of senile plaques. As reported widely, the full-length of Aβmolecules, no matter in vivo or in vitro experiments, is neurotoxic. In addition, it is generally accepted that Aβ25-35, a shorter fragment of Aβpeptide, exerts a similar effect as that of the full molecule in different experimental models and thus widely used for exploring the neurotoxicity of Aβ. Several lines of evidence indicates that an abnormal accumulation of Aβis the leading cause and pathological characteristic of AD. Therefore, it is critical to study the mechanisms of Aβ-induced neurotoxicity and find a neuroprotective agence for inhibiting the Aβ’s toxicity.
     Multiple evidence has been reported to show that the disruption of ion homeostasis is one of molecular mechanisms of the neurotoxicity of Aβ. Recent reports suggested that changes in ionic content, primarily K+currents, played a pivotal role in the progression of AD. There are several types of K+ currents in hippocampal neurons which co-exist and apparently contribute specifically to various aspects of neuronal electrophysical properties, such as the resting potential, spike repolarization, spike-frequency adaptation, and delayed excitation. In addition, K+ currents also regulate Ca2+ influx and affect the Ca2+ homeostasis. Accordingly, functional alterations of K+ channels would lead to profound changes in neuronal excitability and intracellular Ca2+ concentration, and finally result in subsequent neuronal dysfunction and even cell death. It was reported that alternations of potassium channel, played an important role in learning and memory. In central nervous system and periphery tissue of AD, there exists abnormal function of potassium channel. Very recently, there was evidence showing that disfunction of K+ channels were involved in apoptosis, in which increase of K+ efflux contributed to apoptosis.
     However, the relationship between potassium channel dysfunction and pathophysiology of AD is still unclear. Although there were multiple evidence showing the Aβ-induced alternations of potassium currents, there is definitely debate concerning the effects of Aβon potassium channels, especially in different experimental conditions, alternation of potassium currents subjected to Aβwere even opposite.
     Calcium/phospholipid-regulated protein kinase C (PKC) signaling is known to be involved in cellular functions relevant to brain health and disease, including ion channel modulations, receptor regulations, neurotransmitter release, synaptic plasticity, and neuronal survival. The modulation of K+ channel activities via protein phosphorylation is crucial with regard to the regulation of both neuronal excitability and cellular signaling. The activation of PKC has been shown to modulate neuronal K+ currents in vitro and the expression of KV (voltage-dependent K+ current) family. Furthermore, convincing evidences indicate a close link between Aβand PKC. For example, PKC mediates Aβ31-35-induced suppression of hippocampal late-phase long-term potentiation in vivo. Thus, whether PKC is involved in the modulation of Aβon Ca2+-independent K+ currents?
     Studies have demonstrated that apoptosis is a major form of neuronal death in AD which could be induced by Aβ31-35. Massive evidence supported that apoptosis occured while K+ efflux is increasing. Thus, whether potassium channels involve in Aβ-induced cell death? Whether K+ channel blockers antagonize neuronal apoptosis induced by Aβ25-35?
     Humanin (HN) is a 24 amino peptide encoded by a newly identified gene cloned from an apparently normal brain region from patients with AD. Initial studies showed that HN peptide was demonstrated as a selectively neuroprotective factor rescuing neurons from Alzheimer’s disease-related insults. Recently, evidence has revealed that HN appeared possessing a broader spectrum of protective activity other than AD-related insults. Thus, HN may play an important protective role in neurodegenerative disease including AD and other pathological insults. Although investigations had paid attention to the mechanisms underlying the neuroprotection of HN, no evidence showed its electrophysiological effects on the neurons.We have testified that HN can antagonize Aβinduced cell death. And whether K+ channel involved in HN against Aβinduced toxicity? Whether HN can protect neurons from K+ efflux induced cell death?
     Previous experiments showed that HN against Aβ-induced inhibition of Ca2+-dependent K+ currents. Therefore, the purposes of the present study are as follows: (1) clarifying the effects of Aβon the Ca2+-independent K+ currents including a fast transient current (IA) and a delayed rectifier-like current (IK) in hippocampal CA1 neurons and the effects of HN on Aβ-mediated change of Ca2+-independent K+ currents by using whole cell patch clamp technique and calcium fluorescent image;(2) evaluating the potential involvement of PKC in Aβ-mediated the alterations of Ca2+-independent K+ currents and the possible mechanism of HN against Aβ-mediated change of Ca2+-independent K+ currents by using whole cell patch clamp and Western blot techniques; (3) investigating the involvement of K+ channel in Aβ-induced cell death (including apoposis) and antagonistic effects of HN by using cell toxicity assay (cck-8 cell viability assay, LDH release and Caicein-AM staining), apoptosis assay (the quantitative analysis of sub-summit of PI, the measurement of caspase-3 and TUNEL staining ).
     PartⅠ:Humanin suppressed Aβ25-35-mediated inhibition of Ca2+-independent K+ currents
     In order to explore the electrophysiological mechanisms underlying the Aβ-induced neurotoxicity and the neuroprotection of HN, we designed the experimemts to investigate the effects of HN on Aβ25-35 mediated inhibition of the Ca2+-independent K+ currents including IA and IK in hippocampal CA1 neurons by using whole cell patch clamp technique and calcium fluorescent image. Command potential -80 mV, total K+ currents stimulated with 200 ms depolarizing pulse from -40 mV to +70 mV in 10 mV steps following a hyperpolarizing prepulse of 150 ms to -110 mV. IK stimulated with similar protocol as total K+ currents, except for a 150 ms prepulse to -50 mV. The amplitude of total K+ currents, IA was measured at the peak of the current, and the amplitude of IK was measured at 158 ms of the current.
     The results showed that: (1) After application of Aβ25-35 (5 mol/L), the amplitude of total K+ currents were significantly decreased throughout the entire voltage-clamp step. The relative amplitude of total K+ currents, IK and IA were 66.23±10.29% (n=11, p<0.05), 71.94±11.20% (n=11, p<0.05) and 47.95±19.25% (n=11, p<0.05), respectively; (2) Pretreatment with HN (5 mol/L), prevented Aβ25-35-mediated inhibition of K+ currents in hippocampal CA1 neurons. The amplitude of total K+ currents were unchanged after application of Aβ25-35 in the presence of HN (103.70±6.64% and 80.16±9.78%, n=8, p>0.05); (3) Post-treatment with HN, reversed Aβ25-35-mediated inhibition of K+ currents in hippocampal CA1 neurons. The relative amplitude of total K+ currents, IK and IA were 80.50±10.05% (n=11, p<0.05 vs Aβ25-35 group), 87.49±13.50% (n=11, p<0.05 vs Aβ25-35 group) and 59.71±22.75% (n=11, p<0.05 vs Aβ25-35 group);(4) In the presence of mixture of Aβ25-35 and HN simultaneously, HN antagonized Aβ25-35-mediated inhibition of K+ currents in hippocampal CA1 neurons. Compared with control, the relative current amplitude of total K+, IK and IA current were 122.82±18.89% (n=5, p>0.05), 116.46± 17.40% (n=5, p>0.05) and 99.71±30.42% (n=5, p>0.05), respectively. Aβ25-35 did not elicit the inhibition of K+ currents; (5) the [Ca2+]i was significantly increased by application of K+ channel blocker as well as Aβ25-35; (6) Aβ25-35-induced elevation in [Ca2+]i was suppressed by HN.
     These results indicated that: (1) the average amplitude of total K+ currents (including IA and IK) were significantly decreased after acute application of Aβ25-35 in isolated hippocampal CA1 neurons which in turn produce the toxic events including increasing the cellular excitability or enhancing Ca2+ influx (Ca2+ overloading); (2) HN suppressed Aβ25-35-induced inhibition of Ca2+-independent K+ currents and Aβ25-35-induced elevation of [Ca2+]i in hippocampal CA1 neurons; (3) voltage-dependent potassium channel might be one of the targets for HN against Aβ25-35-induced neurotoxicit; (4) combind the previous study and the present results, we hypothesis that HN might suppress the Aβ-mediated responses including electrophysiologial activaties (Aβ-mediated inhibition of IA and IK) by competently occupying the same receptor, no matter the applying ways (before/after Aβ, or coapplied HN and Aβ) of HN and HN is more potent than Aβ.
     PartⅡ:Roles of PKC in Aβ25-35-induced inhibition of Ca2+-independent K+ currents and Antagonism of HN
     The activation of PKC has been shown to modulate neuronal K+ currents and convincing evidence indicates a close link between PKC and activites of Aβ. In the first part of experiment, we have showed that Aβ25-35 suppressed the Ca2+-independent K+ currents including IA and IK. Thus, in the present study, PKC agonist PDBu and antagonist chelerythrine chloride were used to explore if PKC signaling pathway involved in Aβ25–35-induced suppression of IK and further elucidate the mechanism of how HN antagonizes Aβ’s effects, in which whole-cell patch clamp and westerm blot were performed in acutely dissociated rat hippacampal neurons.
     The results showed that: (1) Application of PDBu (1 mol/L, 10 mol/L, 100 mol/L), an activator of PKC resulted in a dose-dependent depression of IK. The relative currents amplitude were 85.00±5.75% (n=5, p<0.05), 67.13±6.83% (n=5, p<0.05), 54.25±8.90% (n=5, p<0.05), respectively. While IA had no significant change after application of PDBU; (2) Application of chelerythrine (20 mol/L), an inhibitor of PKC, antagonized Aβ-induced inhibition of IK in hippocampal CA1 neurons. The relative current amplitude of total K+ currents and IK were 107.08±6.54% (n=12, p>0.05), 106.90±20.54% (n=12, p>0.05). In other words, Aβ25-35-induced inhibition of total K+ currents and IK were prevented; (3) HN (5 mol/L) reversed PDBu (5 mol/L)-induced inhibition of IK in hippocampal CA1 neurons. The inhibition of IK was reduced to 15.4 % (n=5, p<0.05 vs PDBu 5 mol/L group); (4) Aβ25-35 (5 mol/L) activated PKC or phosphorytated PKC. Coadministration of Aβand HN (5 mol/L, each) suppressed Aβ-induced phosphorylation of PKC in hippocampal neurons (n=4, p<0.05).
     These results indicated that: (1) PKC activator, PDBu resulted in a dose-dependent depression of IK which mimiced the effects of Aβon K+ currents; (2) Aβactivated PKC (phosphorylation of PKC) and in turn mediate Aβ-induced inhibition of K+ currents, while PKC inhibitor chelerythrine antagonized Aβ-induced inhibition of IK; (3) HN suppressed Aβ25-35-induced inhibition of K+ currents by antagonizing Aβ-induced phosphorylation of PKC and PKC-mediated effection on K+ currents. Therefore, PKC is involved in, the depressive effects of Aβon IK which may be one of mechanisms of Aβinduced neurotoxicity; inhibition of PKC-mediated Aβneurotoxicity may be one of mechanisms of HN against Aβinduced neurotoxicity.
     Part : Roles of K+ channels in Aβ-induced Neurotoxicity and Antagonism of HN
     It is well known that suppression of IA and IK channels caused by Aβcould lead to increase duration of depolarization during an action potential, which in turn increase Ca2+ influx, or Ca2+ overloading, and Ca2+-dependent insults. However, the results concerning the effects of Aβon membrane K+ channels were definitely different. It was reported recently that enhanced K+ efflux had been shown to be an essential process of early apoptotic cell shrinkage and also of downstream caspase activation and DNA fragmentation leading neuronal apoptosis.
     In order to identify whether the K+ channel is involved in Aβ-induced neurotoxicity and antagonism of HN, potassium channel blocker (including TEA for IK, TPeA, analog of TEA, 4-AP for IA) and elevated extracellular [K+] (25 mmol/L KCl) were used to observe if inhibition of K+ currents could suppress Aβ-induced cell death. Additionally, to observe whether HN can antagonize K+ efflux-induced apoptosis, K+ ionophores, valinomycin, a potassium ionophore that allows K+ efflux based on the K+ electrochemical gradient, and can induce apoptosis in many cell types, was used for observations.
     The results showed that: (1) Aβ25–35 (25 mol/L) produced neurotoxic damage in cortical cell cultures and pretreated with potassium channel blocker TEA (5 mmol/L), TPeA (1 nmol/L) or elevated extracellular K+ (25 mmol/L KCl) 30 min earlier than Aβ25-35, attenuated Aβ25–35-induced neuronal insults measured by cell viability and apoptosis assay; while 4-AP (5 mmol/L) had no significant protection against Aβ25-35-induced neuronal death; (2) K+ ionophore, valinomycin (10 nmol/L, 100 nmol/L, 1000 nmol/L) inhibited neuronal cell viability and increased apoptotic rate in a dose-dependent manner by K+ efflux; (3) Pretreatment of HN (5 mol/L) for 16 h, inhibited valinomycin (100 nmol/L)-induced neuronal insults; while HN (15 mol/L and 25 mol/L) had no effects on them; (4) Pretreated with HN (25 mol/L) for 16 h antagonized Aβ25–35 (25 mol/L)-induced neuronal insults.
     These results demonstrated that: (1) Chronic exposing of Aβinduced cultured neuronal apoptosis; (2) Cultured neuronal apoptosis induced by Aβwas related with K+ channels open and subsequently massive K+ efflux; (3) IK might play an important role in certain form of cell toxicity and programmed cell death induced by Aβ; (4) HN, at least partly, protected neuron from K+ channels open-mediated cell apoptosis. Therefore, HN protected neuron from K+ channels opening-mediated cell apoptosis, which might be one of mechanism of HN against Aβinduced neuronal apoptosis.
     Conclusions:
     (1) Aβ25-35 significantly decreased the amplitude of total K+ currents (including IA and IK) and subsequently induced elevation of [Ca2+]i; HN suppresses Aβ25-35-induced inhibition of Ca2+-independent K+ currents and elevation of [Ca2+]i;
     (2) Aβ25-35 activate PKC and in turn mediate the inhibition of K+ currents;
     (3) HN suppressed Aβ25-35-induced inhibition of K+ currents by antagonizing Aβ-induced phosphorylation of PKC and PKC-mediated inhibition of K+ currents;
     (4) Chronic exposing of Aβinduced cultured neuronal apoptosis; massive K+ channels open might be one of mechanisms of Aβinduced neuronal apoptosis;
     (5) HN protected neuron from K+ channels opening-mediated cell apoptosis, which might be one of mechanism of HN against Aβinduced neuronal apoptosis;
     (6) Aβ25-35-induced alternations in K+ ionic homeostasis although it exerted different effects on K+ flux, acute application of Aβ25-35 suppressed K+ currents which in turn increase intracellular Ca2+ (Ca2+ overloading) or excitability; long exposure of Aβenhanced K+ currents which in turn induce apoptosis. However, these different effects of Aβ25-35 definitely produced the same events or toxic results including over excitibility (Ca2+ overloading) or apoptosis which might provide the molecular mechanisms of Aβunderlying the neurodegeneration occurred in AD.
     (7) The different application of Aβon K+ currents in neurons induced different results by disparate mechanisms. Aβsuppresses K+ channels activity is because acute application of Aβresulted from direct interaction with K+ channels, while Aβmediate the excessive K+ efflux owing to chronic exposure to Aβresulted from the increased expression of potassium channel protein which in turn enhance the K+ efflux.
引文
Albert JL, Nerbonne JM. 1995. Calcium-independent depolarization-activated potassium currents in superior colliculus-projecting rat visual cortical neurons. J Neurophysiol 73:2163-2178.
    Alkon DL, Nelson TJ, Zhao W, Cavallaro S. 1998. Time domains of neuronal Ca2+ signaling and associative memory: steps through a calexcitin, ryanodine receptor, K+ channel cascade. Trends Neurosci 21:529-537.
    Ashall F, Goate AM. 1994. Role of the beta-amyloid precursor protein in Alzheimer's disease. Trends Biochem Sci 19:42-46.
    Brown DA, Gahwiler BH, Griffith WH, Halliwell JV. 1990. Membrane currents in hippocampal neurons. Prog Brain Res 83:141-160.
    Budde T, Mager R, Pape HC. 1992. Different Types of Potassium Outward Current in Relay Neurons Acutely Isolated from the Rat Lateral Geniculate Nucleus. Eur J Neurosci 4:708-722.
    Checler F. 1995. Processing of the beta-amyloid precursor protein and its regulation in Alzheimer's disease. J Neurochem 65:1431-1444.
    Colom LV, Diaz ME, Beers DR, Neely A, Xie WJ, Appel SH. 1998. Role of potassium channels in amyloid-induced cell death. J Neurochem 70:1925-1934.
    Connor JA, Stevens CF. 1971. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J Physiol 213:31-53.
    Debanne D, Guerineau NC, Gahwiler BH, Thompson SM. 1997. Action-potential propagation gated by an axonal I(A)-like K+ conductance in hippocampus. Nature 389:286-289.
    Ficker E, Heinemann U. 1992. Slow and fast transient potassium currents in cultured rat hippocampal cells. J Physiol 445:431-455.
    Foehring RC, Surmeier DJ. 1993. Voltage-gated potassium currents in acutely dissociated rat cortical neurons. J Neurophysiol 70:51-63.
    Gao BX, Ziskind-Conhaim L. 1998. Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons. J Neurophysiol 80:3047-3061.
    Giese KP, Storm JF, Reuter D, Fedorov NB, Shao LR, Leicher T, Pongs O, Silva AJ. 1998. Reduced K+ channel inactivation, spike broadening, and after-hyperpolarization in Kvbeta1.1-deficient mice with impaired learning. Learn Mem 5:257-273.
    Good TA, Smith DO, Murphy RM. 1996. Beta-amyloid peptide blocks the fast-inactivating K+ current in rat hippocampal neurons. Biophys J 70:296-304.
    Goodman Y, Mattson MP. 1996. K+ channel openers protect hippocampal neurons againstoxidative injury and amyloid beta-peptide toxicity. Brain Res 706:328-332.
    Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC. 2003. Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423:456-461.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85-100.
    Hartley DM, Walsh DM, Ye CP, Diehl T, Vasquez S, Vassilev PM, Teplow DB, Selkoe DJ. 1999. Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 19:8876-8884.
    Hashimoto Y, Ito Y, Niikura T, Shao Z, Hata M, Oyama F, Nishimoto I. 2001a. Mechanisms of neuroprotection by a novel rescue factor humanin from Swedish mutant amyloid precursor protein. Biochem Biophys Res Commun 283:460-468.
    Hashimoto Y, Niikura T, Ito Y, Sudo H, Hata M, Arakawa E, Abe Y, Kita Y, Nishimoto I. 2001b. Detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer's disease-relevant insults. J Neurosci 21:9235-9245.
    Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, Kita Y, Kawasumi M, Kouyama K, Doyu M, Sobue G, Koide T, Tsuji S, Lang J, Kurokawa K, Nishimoto I. 2001c. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Abeta. Proc Natl Acad Sci U S A 98:6336-6341.
    Hille B. 1978. Ionic channels in excitable membranes. Current problems and biophysical approaches. Biophys J 22:283-294.
    Hille B. 1986. Ionic channels: molecular pores of excitable membranes. Harvey Lect 82:47-69.
    Hoffman DA, Magee JC, Colbert CM, Johnston D. 1997. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387:869-875.
    Hu H, Yang D, Lin Z, Wu C, Zhou P, Dai D. 1998. Blockade of bepridil on IA and IK in acutely isolated hippocampal CA1 neurons. Brain Res 809:149-154.
    Huguenard JR, Coulter DA, Prince DA. 1991. A fast transient potassium current in thalamic relay neurons: kinetics of activation and inactivation. J Neurophysiol 66:1304-1315.
    Kabogo D, Rauw G, Amritraj A, Baker G, Kar S. 2008. beta-Amyloid-related peptides potentiate K(+)-evoked glutamate release from adult rat hippocampal slices. Neurobiol Aging.
    Kar S, Seto D, Gaudreau P, Quirion R. 1996. Beta-amyloid-related peptides inhibit potassium-evoked acetylcholine release from rat hippocampal slices. J Neurosci 16:1034-1040.
    Kay AR, Wong RK. 1986. Isolation of neurons suitable for patch-clamping from adultmammalian central nervous systems. J Neurosci Methods 16:227-238.
    Klee R, Ficker E, Heinemann U. 1995. Comparison of voltage-dependent potassium currents in rat pyramidal neurons acutely isolated from hippocampal regions CA1 and CA3. J Neurophysiol 74:1982-1995.
    Klein WL, Krafft GA, Finch CE. 2001. Targeting small Abeta oligomers: the solution to an Alzheimer's disease conundrum? Trends Neurosci 24:219-224.
    Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL. 1998.
    Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95:6448-6453.
    Li LM Qiao JT, Zhang Ce. 2009. Effects of Humanin on elevation of intracellular calcium induced by amyloidβ-peptide (31-35) in cultured cortical neurons. Acta physiologica sinica 61:1-4.
    Limón ID DA, Mendieta L, Chamorro G, Espinosa B, Zenteno E, Guevara J. 2008. Amyloid-beta (25-35) impairs memory and increases NO in the temporal cortex of rats. Neurosci Res 25:in press.
    Lockery SR, Spitzer NC. 1992. Reconstruction of action potential development from whole-cell currents of differentiating spinal neurons. J Neurosci 12:2268-2287.
    Lorenzo A, Yankner BA. 1994. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci U S A 91:12243-12247.
    Ma M, Koester J. 1996. The role of K+ currents in frequency-dependent spike broadening in Aplysia R20 neurons: a dynamic-clamp analysis. J Neurosci 16:4089-4101.
    Mattson MP. 2004. Pathways towards and away from Alzheimer's disease. Nature 430:631-639.
    Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE. 1992. beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 12:376-389.
    Mogensen HS, Beatty DM, Morris SJ, Jorgensen OS. 1998. Amyloid beta-peptide(25-35) changes [Ca2+] in hippocampal neurons. Neuroreport 9:1553-1558.
    Nishimoto I, Matsuoka M, niikura T. 2004. Unravelling the role of Humanin. Trends Mol Med 10:102-105.
    Numann RE, Wadman WJ, Wong RK. 1987. Outward currents of single hippocampal cells obtained from the adult guinea-pig. J Physiol 393:331-353.
    Pike CJ, Walencewicz AJ, Glabe CG, Cotman CW. 1991. In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res 563:311-314.
    Price SA, Held B, Pearson HA. 1998. Amyloid beta protein increases Ca2+ currents in rat cerebellar granule neurones. Neuroreport 9:539-545.
    Qi JS, Ye L, Qiao JT. 2004. Amyloid beta-protein fragment 31-35 suppresses delayed rectifying potassium channels in membrane patches excised from hippocampal neurons in rats. Synapse 51:165-172.
    Reddy PH, Mani G, Park BS, Jacques J, Murdoch G, Whetsell W, Jr., Kaye J, Manczak M. 2005. Differential loss of synaptic proteins in Alzheimer's disease: implications for synaptic dysfunction. J Alzheimers Dis 7:103-117; discussion 173-180.
    Rogawski MA. 1986. Single voltage-dependent potassium channels in cultured rat hippocampal neurons. J Neurophysiol 56:481-493.
    Rudy B. 1988. Diversity and ubiquity of K channels. Neuroscience 25:729-749.
    Sah P, Gibb AJ, Gage PW. 1988. Potassium current activated by depolarization of dissociated neurons from adult guinea pig hippocampus. J Gen Physiol 92:263-278.
    Segal M. 1983. Rat hippocampal neurons in culture: responses to electrical and chemical stimuli. J Neurophysiol 50:1249-1264.
    Segal M, Barker JL. 1984. Rat hippocampal neurons in culture: potassium conductances. J Neurophysiol 51:1409-1433.
    Segal M, Rogawski MA, Barker JL. 1984. A transient potassium conductance regulates the excitability of cultured hippocampal and spinal neurons. J Neurosci 4:604-609.
    Selkoe DJ. 1993. Physiological production of the beta-amyloid protein and the mechanism of Alzheimer's disease. Trends Neurosci 16:403-409.
    Selkoe DJ. 1996. Amyloid beta-protein and the genetics of Alzheimer's disease. J Biol Chem 271:18295-18298.
    Selkoe DJ. 2001. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81:741-766.
    Spigelman I, Zhang L, Carlen PL. 1992. Patch-clamp study of postnatal development of CA1 neurons in rat hippocampal slices: membrane excitability and K+ currents. J Neurophysiol 68:55-69.
    Storm JF. 1988. Temporal integration by a slowly inactivating K+ current in hippocampal neurons. Nature 336:379-381.
    Storm JF. 1990. Potassium currents in hippocampal pyramidal cells. Prog Brain Res 83:161-187.
    Surmeier DJ, Bargas J, Kitai ST. 1989. Two types of A-current differing in voltage-dependence are expressed by neurons of the rat neostriatum. Neurosci Lett 103:331-337.
    Tanzi RE, Bertram L. 2005. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120:545-555.
    Wu RL, Barish ME. 1992. Two pharmacologically and kinetically distinct transient potassium currents in cultured embryonic mouse hippocampal neurons. J Neurosci 12:2235-2246.
    Xiu J, Nordberg A, Zhang JT, Guan ZZ. 2005. Expression of nicotinic receptors on primary cultures of rat astrocytes and up-regulation of the alpha7, alpha4 and beta2 subunits in response to nanomolar concentrations of the beta-amyloid peptide(1-42). Neurochem Int 47:281-290.
    Ying G, Iribarren P, Zhou Y, Gong W, Zhang N, Yu ZX, Le Y, Cui Y, Wang JM. 2004. Humanin, a newly identified neuroprotective factor, uses the G protein-coupled formylpeptide receptor-like-1 as a functional receptor. J Immunol 172:7078-7085.
    Yu SP, Farhangrazi ZS, Ying HS, Yeh CH, Choi DW. 1998. Enhancement of outward potassium current may participate in beta-amyloid peptide-induced cortical neuronal death. Neurobiol Dis 5:81-88.
    Zhang GQ, Hao XM, Zhou PA, Wu CH, Dai DZ. 2001. Puerarin blocks transient outward K+ current and delayed rectifier K+ current in mice hippocampal CA1 neurons. Acta Pharmacol Sin 22:253-256.
    Acosta E, Mendoza V, Castro E, Cruzblanca H. 2007. Modulation of a delayed-rectifier K+ current by angiotensin II in rat sympathetic neurons. J Neurophysiol 98:79-85.
    Aiello EA, Clement-Chomienne O, Sontag DP, Walsh MP, Cole WC. 1996. Protein kinase C inhibits delayed rectifier K+ current in rabbit vascular smooth muscle cells. Am J Physiol 271:H109-119.
    Alkon DL, Nelson TJ, Zhao W, Cavallaro S. 1998. Time domains of neuronal Ca2+ signaling and associative memory: steps through a calexcitin, ryanodine receptor, K+ channel cascade. Trends Neurosci 21:529-537.
    Chauhan A, Chauhan VP, Brockerhoff H, Wisniewski HM. 1991. Action of amyloid beta-protein on protein kinase C activity. Life Sci 49:1555-1562.
    Chin JH, Harris K, MacTavish D, Jhamandas JH. 2002. Nociceptin/orphanin FQ modulation of ionic conductances in rat basal forebrain neurons. J Pharmacol Exp Ther 303:188-195.
    Doerner D, Pitler TA, Alger BE. 1988. Protein kinase C activators block specific calcium and potassium current components in isolated hippocampal neurons. J Neurosci 8:4069-4078.
    Etcheberrigaray R, Tan M, Dewachter I, Kuiperi C, Van der Auwera I, Wera S, Qiao L, Bank B, Nelson TJ, Kozikowski AP, Van Leuven F, Alkon DL. 2004. Therapeutic effects of PKC activators in Alzheimer's disease transgenic mice. Proc Natl Acad Sci U S A 101:11141-11146.
    Fluhrer R, Friedlein A, Haass C, Walter J. 2004. Phosphorylation of presenilin 1 at the caspase recognition site regulates its proteolytic processing and the progression of apoptosis. J Biol Chem 279:1585-1593.
    Furukawa Y, Kim HN, Kubo T. 1995. Up- and down-modulation of a cloned Aplysia K+ channel (AKv1.1a) by the activators of protein kinase C. Zoolog Sci 12:35-44.
    Gu Z, Zhong P, Yan Z. 2003. Activation of muscarinic receptors inhibits beta-amyloid peptide-induced signaling in cortical slices. J Biol Chem 278:17546-17556.
    Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC. 2003. Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423:456-461.
    Haass C, Koo EH, Mellon A, Hung AY, Selkoe DJ. 1992. Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357:500-503.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85-100.
    Hashimoto Y, Tsuji O, Niikura T, Yamagishi Y, Ishizaka M, Kawasumi M, Chiba T, Kanekura K, Yamada M, Tsukamoto E, Kouyama K, Terashita K, Aiso S, Lin A, Nishimoto I. 2003. Involvement of c-Jun N-terminal kinase in amyloid precursor protein-mediated neuronal cell death. J Neurochem 84:864-877.
    Huang FL, Yoshida Y, Nakabayashi H, Huang KP. 1987. Differential distribution of protein kinase C isozymes in the various regions of brain. J Biol Chem 262:15714-15720.
    Huang FL, Yoshida Y, Nakabayashi H, Young WS, 3rd, Huang KP. 1988. Immunocytochemical localization of protein kinase C isozymes in rat brain. J Neurosci 8:4734-4744.
    Hull M, Muksch B, Akundi RS, Waschbisch A, Hoozemans JJ, Veerhuis R, Fiebich BL. 2006. Amyloid beta peptide (25-35) activates protein kinase C leading to cyclooxygenase-2 induction and prostaglandin E2 release in primary midbrain astrocytes. Neurochem Int 48:663-672.
    Ikonen M, Liu B, Hashimoto Y, Ma L, Lee KW, Niikura T, Nishimoto I, Cohen P. 2003. Interaction between the Alzheimer's survival peptide humanin and insulin-like growth factor-binding protein 3 regulates cell survival and apoptosis. Proc Natl Acad Sci U S A 100:13042-13047.
    Jaken S, Kiley SC. 1987. Purification and characterization of three types of protein kinase C from rabbit brain cytosol. Proc Natl Acad Sci U S A 84:4418-4422.
    Jonas EA, Kaczmarek LK. 1996. Regulation of potassium channels by protein kinases. Curr Opin Neurobiol 6:318-323.
    Jun-Fang Zhang J-SQ, Jian-Tian Qiao. 2008. Protein kinase C mediates amyloidβ-protein fragment 31-35-induced suppression of hippocampal late-phase long-term potentiation in vivo. Neurobiology of Learning and Memory in press.
    Katzman R. 1986. Alzheimer's disease. N Engl J Med 314:964-973.
    Kay AR, Wong RK. 1986. Isolation of neurons suitable for patch-clamping from adult mammalian central nervous systems. J Neurosci Methods 16:227-238.
    Levitan IB. 1994. Modulation of ion channels by protein phosphorylation and dephosphorylation. Annu Rev Physiol 56:193-212.
    Li LM, Qiao JT, Zhang Ce. 2009. Effects of Humanin on elevation of intracellular calcium induced by amyloidβ-peptide (31-35) in cultured cortical neurons. acta physiologica sinica 61:1-5.
    Liu X, Xu Y, Zhang Z. 2003. Changes in delayed rectifier K+ channel function and its regulation by protein kinase C pathway in bronchial myocytes from asthmatic rats. Chin Med J (Engl) 116:1799-1803.
    Luciano F, Zhai D, Zhu X, Bailly-Maitre B, Ricci JE, Satterthwait AC, Reed JC. 2005. Cytoprotective peptide humanin binds and inhibits proapoptotic Bcl-2/Bax family protein BimEL. J Biol Chem 280:15825-15835.
    Luo Y, Hawver DB, Iwasaki K, Sunderland T, Roth GS, Wolozin B. 1997. Physiological levels of beta-amyloid peptide stimulate protein kinase C in PC12 cells. Brain Res 769:287-295.
    Nakai M, Hojo K, Yagi K, Saito N, Taniguchi T, Terashima A, Kawamata T, Hashimoto T, Maeda K, Gschwendt M, Yamamoto H, Miyamoto E, Tanaka C. 1999. Amyloid beta protein (25-35) phosphorylates MARCKS through tyrosine kinase-activated protein kinase C signaling pathway in microglia. J Neurochem 72:1179-1186.
    Nishizuka Y. 1988. The heterogeneity and differential expression of multiple species of the protein kinase C family. Biofactors 1:17-20.
    Nishizuka Y. 1989. Studies and prospectives of the protein kinase c family for cellular regulation. Cancer 63:1892-1903.
    Olariu A, Yamada K, Mamiya T, Hefco V, Nabeshima T. 2002. Memory impairment induced by chronic intracerebroventricular infusion of beta-amyloid (1-40) involves downregulation of protein kinase C. Brain Res 957:278-286.
    Pan SJ, Zhu M, Raizada MK, Sumners C, Gelband CH. 2001. ANG II-mediated inhibition of neuronal delayed rectifier K+ current: role of protein kinase C-alpha. Am J Physiol Cell Physiol 281:C17-23.
    Peretz T, Levin G, Moran O, Thornhill WB, Chikvashvili D, Lotan I. 1996. Modulation by protein kinase C activation of rat brain delayed-rectifier K+ channel expressed in Xenopus oocytes. FEBS Lett 381:71-76.
    Qu L, Li Y, Tian H, Wang Z, Cui L, Jin H, Wang W, Yang L. 2007. Effects of PKC on inhibition of delayed rectifier potassium currents by N/OFQ. Biochem Biophys Res Commun 356:582-586.
    Reinhart PH, Levitan IB. 1995. Kinase and phosphatase activities intimately associated with a reconstituted calcium-dependent potassium channel. J Neurosci 15:4572-4579.
    Rogawski MA. 1986. Single voltage-dependent potassium channels in cultured rat hippocampal neurons. J Neurophysiol 56:481-493.
    Routtenberg A. 1986. Synaptic plasticity and protein kinase C. Prog Brain Res 69:211-234.
    Sekiguchi K, Tsukuda M, Ogita K, Kikkawa U, Nishizuka Y. 1987. Three distinct forms of rat brain protein kinase C: differential response to unsaturated fatty acids. Biochem Biophys Res Commun 145:797-802.
    Selkoe DJ. 1991. The molecular pathology of Alzheimer's disease. Neuron 6:487-498.
    Shearman MS, Naor Z, Kikkawa U, Nishizuka Y. 1987. Differential expression of multiple protein kinase C subspecies in rat central nervous tissue. Biochem Biophys Res Commun 147:911-919.
    Shearman MS, Sekiguchi K, Nishizuka Y. 1989. Modulation of ion channel activity: a key function of the protein kinase C enzyme family. Pharmacol Rev 41:211-237.
    Storm JF. 1990. Potassium currents in hippocampal pyramidal cells. Prog Brain Res 83:161-187.
    Takai Y, Kishimoto A, Inoue M, Nishizuka Y. 1977. Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. I. Purification and characterization of an active enzyme from bovine cerebellum. J Biol Chem 252:7603-7609.
    Thinakaran G, Teplow DB, Siman R, Greenberg B, Sisodia SS. 1996. Metabolism of the "Swedish" amyloid precursor protein variant in neuro2a (N2a) cells. Evidence that cleavage at the "beta-secretase" site occurs in the golgi apparatus. J Biol Chem 271:9390-9397.
    Willaime-Morawek S, Brami-Cherrier K, Mariani J, Caboche J, Brugg B. 2003. C-Jun N-terminal kinases/c-Jun and p38 pathways cooperate in ceramide-induced neuronal apoptosis. Neuroscience 119:387-397.
    Woodgett JR, Hunter T. 1987. Isolation and characterization of two distinct forms of protein kinase C. J Biol Chem 262:4836-4843.
    Yao WD, Wu CF. 2001. Distinct roles of CaMKII and PKA in regulation of firing patterns and K(+) currents in Drosophila neurons. J Neurophysiol 85:1384-1394.
    Zhai D, Luciano F, Zhu X, Guo B, Satterthwait AC, Reed JC. 2005. Humanin binds and nullifies Bid activity by blocking its activation of Bax and Bak. J Biol Chem 280:15815-15824.
    Zou P, Ding Y, Sha Y, Hu B, Nie S. 2003. Humanin peptides block calcium influx of rat hippocampal neurons by altering fibrogenesis of Abeta(1-40). Peptides 24:679-685.
    Abdalah R, Wei L, Francis K, Yu SP. 2006. Valinomycin-induced apoptosis in Chinese hamster ovary cells. Neurosci Lett 405:68-73.
    Abdul M, Hoosein N. 2002. Expression and activity of potassium ion channels in human prostate cancer. Cancer Lett 186:99-105.
    Adams JM, Cory S. 2002. Apoptosomes: engines for caspase activation. Curr Opin Cell Biol 14:715-720.
    Allbritton NL, Verret CR, Wolley RC, Eisen HN. 1988. Calcium ion concentrations and DNA fragmentation in target cell destruction by murine cloned cytotoxic T lymphocytes. J Exp Med 167:514-527.
    Archer S, Rich S. 2000. Primary pulmonary hypertension: a vascular biology and translational research "Work in progress". Circulation 102:2781-2791. Barinaga M. 1998. Is apoptosis key in Alzheimer's disease? Science 281:1303-1304.
    Bortner CD, Cidlowski JA. 1999. Caspase independent/dependent regulation of K(+), cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J Biol Chem 274:21953-21962.
    Bortner CD, Hughes FM, Jr., Cidlowski JA. 1997. A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem 272:32436-32442.
    Burg ED, Remillard CV, Yuan JX. 2006. K+ channels in apoptosis. J Membr Biol 209:3-20.
    Cain K, Langlais C, Sun XM, Brown DG, Cohen GM. 2001. Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. J Biol Chem 276:41985-41990.
    Caricasole A, Bruno V, Cappuccio I, Melchiorri D, Copani A, Nicoletti F. 2002. A novel rat gene encoding a Humanin-like peptide endowed with broad neuroprotective activity. FASEB J 16:1331-1333.
    Carl A, Frey BW, Ward SM, Sanders KM, Kenyon JL. 1993. Inhibition of slow-wave repolarization and Ca(2+)-activated K+ channels by quaternary ammonium ions. Am J Physiol 264:C625-631.
    Chin LS, Park CC, Zitnay KM, Sinha M, DiPatri AJ, Jr., Perillan P, Simard JM. 1997. 4-Aminopyridine causes apoptosis and blocks an outward rectifier K+ channel in malignant astrocytoma cell lines. J Neurosci Res 48:122-127.
    Choi BY, Kim HY, Lee KH, Cho YH, Kong G. 1999. Clofilium, a potassium channel blocker, induces apoptosis of human promyelocytic leukemia (HL-60) cells via Bcl-2-insensitiveactivation of caspase-3. Cancer Lett 147:85-93.
    Choi DW. 1996. Ischemia-induced neuronal apoptosis. Curr Opin Neurobiol 6:667-672.
    Colom LV, Diaz ME, Beers DR, Neely A, Xie WJ, Appel SH. 1998. Role of potassium channels in amyloid-induced cell death. J Neurochem 70:1925-1934.
    Dallaporta B, Hirsch T, Susin SA, Zamzami N, Larochette N, Brenner C, Marzo I, Kroemer G. 1998. Potassium leakage during the apoptotic degradation phase. J Immunol 160:5605-5615.
    Dallaporta B, Marchetti P, de Pablo MA, Maisse C, Duc HT, Metivier D, Zamzami N, Geuskens M, Kroemer G. 1999. Plasma membrane potential in thymocyte apoptosis. J Immunol 162:6534-6542.
    Davies NW, Spruce AE, Standen NB, Stanfield PR. 1989. Multiple blocking mechanisms of ATP-sensitive potassium channels of frog skeletal muscle by tetraethylammonium ions. J Physiol 413:31-48.
    Duff HJ, Mitchell LB, Wyse DG, Gillis AM, Sheldon RS. 1991. Mexiletine/quinidine combination therapy: electrophysiologic correlates of anti-arrhythmic efficacy. Clin Invest Med 14:476-483.
    Estus S, Tucker HM, van Rooyen C, Wright S, Brigham EF, Wogulis M, Rydel RE. 1997. Aggregated amyloid-beta protein induces cortical neuronal apoptosis and concomitant "apoptotic" pattern of gene induction. J Neurosci 17:7736-7745.
    Furlong IJ, Lopez Mediavilla C, Ascaso R, Lopez Rivas A, Collins MK. 1998. Induction of apoptosis by valinomycin: mitochondrial permeability transition causes intracellular acidification. Cell Death Differ 5:214-221.
    Gantner F, Uhlig S, Wendel A. 1995. Quinine inhibits release of tumor necrosis factor, apoptosis, necrosis and mortality in a murine model of septic liver failure. Eur J Pharmacol 294:353-355.
    Giovanni A, Keramaris E, Morris EJ, Hou ST, O'Hare M, Dyson N, Robertson GS, Slack RS, Park DS. 2000. E2F1 mediates death of B-amyloid-treated cortical neurons in a manner independent of p53 and dependent on Bax and caspase 3. J Biol Chem 275:11553-11560.
    Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC. 2003. Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423:456-461.
    Hashimoto Y, Niikura T, Ito Y, Sudo H, Hata M, Arakawa E, Abe Y, Kita Y, Nishimoto I. 2001a. Detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer's disease-relevant insults. J Neurosci 21:9235-9245.
    Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, Kita Y, Kawasumi M, KouyamaK, Doyu M, Sobue G, Koide T, Tsuji S, Lang J, Kurokawa K, Nishimoto I. 2001b. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Abeta. Proc Natl Acad Sci U S A 98:6336-6341.
    Hashimoto Y, Tsuji O, Niikura T, Yamagishi Y, Ishizaka M, Kawasumi M, Chiba T, Kanekura K, Yamada M, Tsukamoto E, Kouyama K, Terashita K, Aiso S, Lin A, Nishimoto I. 2003. Involvement of c-Jun N-terminal kinase in amyloid precursor protein-mediated neuronal cell death. J Neurochem 84:864-877.
    Hengartner MO, Ellis RE, Horvitz HR. 1992. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356:494-499.
    Hughes FM, Jr., Bortner CD, Purdy GD, Cidlowski JA. 1997. Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J Biol Chem 272:30567-30576.
    Ikonen M, Liu B, Hashimoto Y, Ma L, Lee KW, Niikura T, Nishimoto I, Cohen P. 2003. Interaction between the Alzheimer's survival peptide humanin and insulin-like growth factor-binding protein 3 regulates cell survival and apoptosis. Proc Natl Acad Sci U S A 100:13042-13047.
    Im WB, Quandt FN. 1992. Mechanism of asymmetric block of K channels by tetraalkylammonium ions in mouse neuroblastoma cells. J Membr Biol 130:115-124.
    Inai Y, Yabuki M, Kanno T, Akiyama J, Yasuda T, Utsumi K. 1997. Valinomycin induces apoptosis of ascites hepatoma cells (AH-130) in relation to mitochondrial membrane potential. Cell Struct Funct 22:555-563.
    Jacobson MD, Evan GI. 1994. Apoptosis. Breaking the ICE. Curr Biol 4:337-340.
    Johnson EM, Jr., Greenlund LJ, Akins PT, Hsu CY. 1995. Neuronal apoptosis: current understanding of molecular mechanisms and potential role in ischemic brain injury. J Neurotrauma 12:843-852.
    Kariya S, Takahashi N, Ooba N, Kawahara M, Nakayama H, Ueno S. 2002. Humanin inhibits cell death of serum-deprived PC12h cells. Neuroreport 13:903-907.
    Kerr JF, Wyllie AH, Currie AR. 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239-257.
    Kim JA, Kang YS, Jung MW, Kang GH, Lee SH, Lee YS. 2000. Ca2+ influx mediates apoptosis induced by 4-aminopyridine, a K+ channel blocker, in HepG2 human hepatoblastoma cells. Pharmacology 60:74-81.
    Kirsch GE, Taglialatela M, Brown AM. 1991. Internal and external TEA block in single cloned K+ channels. Am J Physiol 261:C583-590.
    Krick S, Platoshyn O, Sweeney M, Kim H, Yuan JX. 2001. Activation of K+ channels inducesapoptosis in vascular smooth muscle cells. Am J Physiol Cell Physiol 280:C970-979.
    Langton PD, Nelson MT, Huang Y, Standen NB. 1991. Block of calcium-activated potassium channels in mammalian arterial myocytes by tetraethylammonium ions. Am J Physiol 260:H927-934.
    Lavretsky EP, Jarvik LF. 1992. A group of potassium-channel blockers-acetylcholine releasers: new potentials for Alzheimer disease? A review. J Clin Psychopharmacol 12:110-118.
    Li H, Yuan J. 1999. Deciphering the pathways of life and death. Curr Opin Cell Biol 11:261-266.
    Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ, Cotman CW. 1993. Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci U S A 90:7951-7955.
    Luciano F, Zhai D, Zhu X, Bailly-Maitre B, Ricci JE, Satterthwait AC, Reed JC. 2005. Cytoprotective peptide humanin binds and inhibits proapoptotic Bcl-2/Bax family protein BimEL. J Biol Chem 280:15825-15835.
    Majno G, Joris I. 1995. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3-15.
    Manikkam M, Li Y, Mitchell BM, Mason DE, Freeman LC. 2002. Potassium channel antagonists influence porcine granulosa cell proliferation, differentiation, and apoptosis. Biol Reprod 67:88-98.
    Masliah E, Terry RD, Alford M, DeTeresa R, Hansen LA. 1991. Cortical and subcortical patterns of synaptophysinlike immunoreactivity in Alzheimer's disease. Am J Pathol 138:235-246.
    Masliah E, Terry RD, DeTeresa RM, Hansen LA. 1989. Immunohistochemical quantification of the synapse-related protein synaptophysin in Alzheimer disease. Neurosci Lett 103:234-239.
    McCarthy JV, Cotter TG. 1997. Cell shrinkage and apoptosis: a role for potassium and sodium ion efflux. Cell Death Differ 4:756-770.
    Okada Y, Maeno E. 2001. Apoptosis, cell volume regulation and volume-regulatory chloride channels. Comp Biochem Physiol A Mol Integr Physiol 130:377-383.
    Orlov SN, Thorin-Trescases N, Kotelevtsev SV, Tremblay J, Hamet P. 1999. Inversion of the intracellular Na+/K+ ratio blocks apoptosis in vascular smooth muscle at a site upstream of caspase-3. J Biol Chem 274:16545-16552.
    Perez GI, Maravei DV, Trbovich AM, Cidlowski JA, Tilly JL, Hughes FM, Jr. 2000. Identification of potassium-dependent and -independent components of the apoptotic machinery in mouse ovarian germ cells and granulosa cells. Biol Reprod 63:1358-1369.
    Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD. 1993. Programmed celldeath and the control of cell survival: lessons from the nervous system. Science 262:695-700.
    Spassova M, Lu Z. 1999. Tuning the voltage dependence of tetraethylammonium block with permeant ions in an inward-rectifier K+ channel. J Gen Physiol 114:415-426.
    Stadelmann C, Bruck W, Bancher C, Jellinger K, Lassmann H. 1998. Alzheimer disease: DNA fragmentation indicates increased neuronal vulnerability, but not apoptosis. J Neuropathol Exp Neurol 57:456-464.
    Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R. 1991. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572-580.
    Thompson CB. 1995. Apoptosis in the pathogenesis and treatment of disease. Science 267:1456-1462.
    Thompson GJ, Langlais C, Cain K, Conley EC, Cohen GM. 2001. Elevated extracellular [K+] inhibits death-receptor- and chemical-mediated apoptosis prior to caspase activation and cytochrome c release. Biochem J 357:137-145.
    Wang L, Xu D, Dai W, Lu L. 1999. An ultraviolet-activated K+ channel mediates apoptosis of myeloblastic leukemia cells. J Biol Chem 274:3678-3685.
    Wang X, Xiao AY, Ichinose T, Yu SP. 2000. Effects of tetraethylammonium analogs on apoptosis and membrane currents in cultured cortical neurons. J Pharmacol Exp Ther 295:524-530.
    Wang XQ, Xiao AY, Sheline C, Hyrc K, Yang A, Goldberg MP, Choi DW, Yu SP. 2003a. Apoptotic insults impair Na+, K+-ATPase activity as a mechanism of neuronal death mediated by concurrent ATP deficiency and oxidant stress. J Cell Sci 116:2099-2110.
    Wang XQ, Xiao AY, Yang A, LaRose L, Wei L, Yu SP. 2003b. Block of Na+,K+-ATPase and induction of hybrid death by 4-aminopyridine in cultured cortical neurons. J Pharmacol Exp Ther 305:502-506.
    Wesseling H, Agoston S, Van Dam GB, Pasma J, DeWit DJ, Havinga H. 1984. Effects of 4-aminopyridine in elderly patients with Alzheimer's disease. N Engl J Med 310:988-989.
    Willaime-Morawek S, Brami-Cherrier K, Mariani J, Caboche J, Brugg B. 2003. C-Jun N-terminal kinases/c-Jun and p38 pathways cooperate in ceramide-induced neuronal apoptosis. Neuroscience 119:387-397.
    Xu X, Chua CC, Gao J, Hamdy RC, Chua BH. 2006. Humanin is a novel neuroprotective agent against stroke. Stroke 37:2613-2619.
    Yan XZ, Qiao JT, Dou Y, Qiao ZD. 1999. Beta-amyloid peptide fragment 31-35 induces apoptosis in cultured cortical neurons. Neuroscience 92:177-184.
    Yang NC, Jeng KC, Ho WM, Hu ML. 2002. ATP depletion is an important factor in DHEA-induced growth inhibition and apoptosis in BV-2 cells. Life Sci 70:1979-1988.
    Yu HB, Li ZB, Zhang HX, Wang XL. 2006. Role of potassium channels in Abeta(1-40)-activated apoptotic pathway in cultured cortical neurons. J Neurosci Res 84:1475-1484.
    Yu SP, Choi DW. 2000. Ions, cell volume, and apoptosis. Proc Natl Acad Sci U S A 97:9360-9362.
    Yu SP, Farhangrazi ZS, Ying HS, Yeh CH, Choi DW. 1998. Enhancement of outward potassium current may participate in beta-amyloid peptide-induced cortical neuronal death. Neurobiol Dis 5:81-88.
    Yu SP, Yeh C, Strasser U, Tian M, Choi DW. 1999a. NMDA receptor-mediated K+ efflux and neuronal apoptosis. Science 284:336-339.
    Yu SP, Yeh CH, Gottron F, Wang X, Grabb MC, Choi DW. 1999b. Role of the outward delayed rectifier K+ current in ceramide-induced caspase activation and apoptosis in cultured cortical neurons. J Neurochem 73:933-941.
    Yu SP, Yeh CH, Sensi SL, Gwag BJ, Canzoniero LM, Farhangrazi ZS, Ying HS, Tian M, Dugan LL, Choi DW. 1997. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278:114-117.
    Yunqi Zhu YL, Jingyi Liu, Xiaorong Yang, Ce Zhang. 2009. Protective effects of Humanin on hypoxia-induced neuronal death. Neural Regen Res 4:1065-1069.
    Zhai D, Luciano F, Zhu X, Guo B, Satterthwait AC, Reed JC. 2005. Humanin binds and nullifies Bid activity by blocking its activation of Bax and Bak. J Biol Chem 280:15815-15824.
    Zou P, Ding Y, Sha Y, Hu B, Nie S. 2003. Humanin peptides block calcium influx of rat hippocampal neurons by altering fibrogenesis of Abeta(1-40). Peptides 24:679-685.
    1. Gulbins, E., et al., Physiology of apoptosis. Am J Physiol Renal Physiol, 2000. 279(4): p. F605-15.
    2. Kluck, R.M., et al., The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science, 1997. 275(5303): p. 1132-6.
    3. Yang, J., et al., Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science, 1997. 275(5303): p. 1129-32.
    4. Du, C., et al., Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 2000. 102(1): p. 33-42.
    5. Hegde, R., et al., Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem, 2002. 277(1): p. 432-8.
    6. Suzuki, Y., et al., A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell, 2001. 8(3): p. 613-21.
    7. Verhagen, A.M., et al., Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell, 2000. 102(1): p. 43-53.
    8. Verhagen, A.M., et al., HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem, 2002. 277(1): p. 445-54.
    9. Deveraux, Q.L., et al., Endogenous inhibitors of caspases. J Clin Immunol, 1999. 19(6): p. 388-98.
    10. Wang, X., The expanding role of mitochondria in apoptosis. Genes Dev, 2001. 15(22): p. 2922-33.
    11. Kim, K.J., J.M. Cheek, and E.D. Crandall, Contribution of active Na+ and Cl- fluxes to net ion transport by alveolar epithelium. Respir Physiol, 1991. 85(2): p. 245-56.
    12. Xiao, A.Y., et al., Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J Neurosci, 2002. 22(4): p. 1350-62.
    13. Yuan, X.J., Role of calcium-activated chloride current in regulating pulmonary vasomotor tone. Am J Physiol, 1997. 272(5 Pt 1): p. L959-68.
    14. Bock, J., et al., Actinomycin D-induced apoptosis involves the potassium channel Kv1.3. Biochem Biophys Res Commun, 2002. 295(2): p. 526-31.
    15. Krick, S., et al., Activation of K+ channels induces apoptosis in vascular smooth muscle cells. Am J Physiol Cell Physiol, 2001. 280(4): p. C970-9.
    16. Krick, S., et al., Nitric oxide induces apoptosis by activating K+ channels in pulmonaryvascular smooth muscle cells. Am J Physiol Heart Circ Physiol, 2002. 282(1): p. H184-93.
    17. Wang, J., S. Morishima, and Y. Okada, IK channels are involved in the regulatory volume decrease in human epithelial cells. Am J Physiol Cell Physiol, 2003. 284(1): p. C77-84.
    18. Yu, S.P., et al., Mediation of neuronal apoptosis by enhancement of outward potassium current. Science, 1997. 278(5335): p. 114-7.
    19. Dallaporta, B., et al., Plasma membrane potential in thymocyte apoptosis. J Immunol, 1999. 162(11): p. 6534-42.
    20. Inai, Y., et al., Valinomycin induces apoptosis of ascites hepatoma cells (AH-130) in relation to mitochondrial membrane potential. Cell Struct Funct, 1997. 22(5): p. 555-63.
    21. Bortner, C.D., M. Gomez-Angelats, and J.A. Cidlowski, Plasma membrane depolarization without repolarization is an early molecular event in anti-Fas-induced apoptosis. J Biol Chem, 2001. 276(6): p. 4304-14.
    22. Mann, C.L., et al., Glucocorticoid-induced plasma membrane depolarization during thymocyte apoptosis: association with cell shrinkage and degradation of the Na(+)/K(+)-adenosine triphosphatase. Endocrinology, 2001. 142(12): p. 5059-68.
    23. Gomez-Angelats, M., C.D. Bortner, and J.A. Cidlowski, Protein kinase C (PKC) inhibits fas receptor-induced apoptosis through modulation of the loss of K+ and cell shrinkage. A role for PKC upstream of caspases. J Biol Chem, 2000. 275(26): p. 19609-19.
    24. Maeno, E., et al., Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Natl Acad Sci U S A, 2000. 97(17): p. 9487-92.
    25. Bortner, C.D., F.M. Hughes, Jr., and J.A. Cidlowski, A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem, 1997. 272(51): p. 32436-42.
    26. Vu, C.C., C.D. Bortner, and J.A. Cidlowski, Differential involvement of initiator caspases in apoptotic volume decrease and potassium efflux during Fas- and UV-induced cell death. J Biol Chem, 2001. 276(40): p. 37602-11.
    27. Krick, S., et al., Augmented K(+) currents and mitochondrial membrane depolarization in pulmonary artery myocyte apoptosis. Am J Physiol Lung Cell Mol Physiol, 2001. 281(4): p. L887-94.
    28. Platoshyn, O., et al., Cytochrome c activates K+ channels before inducing apoptosis. Am J Physiol Cell Physiol, 2002. 283(4): p. C1298-305.
    29. O'Donnell, M.E. and N.E. Owen, Regulation of ion pumps and carriers in vascular smooth muscle. Physiol Rev, 1994. 74(3): p. 683-721.
    30. Lesage, F. and M. Lazdunski, Molecular and functional properties of two-pore-domainpotassium channels. Am J Physiol Renal Physiol, 2000. 279(5): p. F793-801.
    31. Mandegar, M., C.V. Remillard, and J.X. Yuan, Ion channels in pulmonary arterial hypertension. Prog Cardiovasc Dis, 2002. 45(2): p. 81-114.
    32. Nelson, M.T. and J.M. Quayle, Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol, 1995. 268(4 Pt 1): p. C799-822.
    33. Kowaltowski, A.J., et al., Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria. Am J Physiol Heart Circ Physiol, 2001. 280(2): p. H649-57.
    34. Ekhterae, D., et al., Bcl-2 decreases voltage-gated K+ channel activity and enhances survival in vascular smooth muscle cells. Am J Physiol Cell Physiol, 2001. 281(1): p. C157-65.
    35. McLaughlin, B., et al., p38 activation is required upstream of potassium current enhancement and caspase cleavage in thiol oxidant-induced neuronal apoptosis. J Neurosci, 2001. 21(10): p. 3303-11.
    36. D'Souza, F.M., et al., Mechanism of eNOS gene transfer inhibition of vascular smooth muscle cell proliferation. Am J Physiol Cell Physiol, 2003. 284(1): p. C191-9.
    37. Nietsch, H.H., et al., Activation of potassium and chloride channels by tumor necrosis factor alpha. Role in liver cell death. J Biol Chem, 2000. 275(27): p. 20556-61.
    38. Wang, H., et al., HERG K+ channel, a regulator of tumor cell apoptosis and proliferation. Cancer Res, 2002. 62(17): p. 4843-8.
    39. Debska, G., et al., Potassium channel openers depolarize hippocampal mitochondria. Brain Res, 2001. 892(1): p. 42-50.
    40. Liu, D., et al., Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release. J Cereb Blood Flow Metab, 2002. 22(4): p. 431-43.
    41. Nicholls, D.G. and S.L. Budd, Mitochondria and neuronal survival. Physiol Rev, 2000. 80(1): p. 315-60.
    42. Holmuhamedov, E.L., et al., Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol, 1998. 275(5 Pt 2): p. H1567-76.
    43. Paucek, P., et al., Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K+ channel from rat liver and beef heart mitochondria. J Biol Chem, 1992. 267(36): p. 26062-9.
    44. Gross, G.J. and R.M. Fryer, Sarcolemmal versus mitochondrial ATP-sensitive K+channels and myocardial preconditioning. Circ Res, 1999. 84(9): p. 973-9.
    45. Sasaki, N., et al., Activation of mitochondrial ATP-dependent potassium channels by nitric oxide. Circulation, 2000. 101(4): p. 439-45.
    46. Zhang, H.Y., et al., H(2)O(2) opens mitochondrial K(ATP) channels and inhibits GABA receptors via protein kinase C-epsilon in cardiomyocytes. Am J Physiol Heart Circ Physiol, 2002. 282(4): p. H1395-403.
    47. Forbes, R.A., C. Steenbergen, and E. Murphy, Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res, 2001. 88(8): p. 802-9.
    48. Yao, Z., et al., Role of reactive oxygen species in acetylcholine-induced preconditioning in cardiomyocytes. Am J Physiol, 1999. 277(6 Pt 2): p. H2504-9.
    49. Siemen, D., et al., Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem Biophys Res Commun, 1999. 257(2): p. 549-54.
    50. Xu, W., et al., Cytoprotective role of Ca2+- activated K+ channels in the cardiac inner mitochondrial membrane. Science, 2002. 298(5595): p. 1029-33.
    51. Wible, B.A., et al., Increased K+ efflux and apoptosis induced by the potassium channel modulatory protein KChAP/PIAS3beta in prostate cancer cells. J Biol Chem, 2002. 277(20): p. 17852-62.
    52. Yu, S.P., et al., Role of the outward delayed rectifier K+ current in ceramide-induced caspase activation and apoptosis in cultured cortical neurons. J Neurochem, 1999. 73(3): p. 933-41.
    53. Szabo, I., et al., Tyrosine phosphorylation-dependent suppression of a voltage-gated K+ channel in T lymphocytes upon Fas stimulation. J Biol Chem, 1996. 271(34): p. 20465-9.
    54. Wang, N.S., et al., Transient expression of wild-type or mitochondrially targeted Bcl-2 induces apoptosis, whereas transient expression of endoplasmic reticulum-targeted Bcl-2 is protective against Bax-induced cell death. J Biol Chem, 2001. 276(47): p. 44117-28.
    55. Koseki, T., et al., ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc Natl Acad Sci U S A, 1998. 95(9): p. 5156-60.
    56. Ekhterae, D., et al., ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ Res, 1999. 85(12): p. e70-7.
    57. Neuss, M., et al., The apoptotic regulatory protein ARC (apoptosis repressor with caspase recruitment domain) prevents oxidant stress-mediated cell death by preservingmitochondrial function. J Biol Chem, 2001. 276(36): p. 33915-22.
    58. Bal-Price, A., V. Borutaite, and G.C. Brown, Mitochondria mediate nitric oxide-induced cell death. Ann N Y Acad Sci, 1999. 893: p. 376-8.
    59. Green, D.R. and J.C. Reed, Mitochondria and apoptosis. Science, 1998. 281(5381): p. 1309-12.
    60. Heiskanen, K.M., et al., Mitochondrial depolarization accompanies cytochrome c release during apoptosis in PC6 cells. J Biol Chem, 1999. 274(9): p. 5654-8.
    61. Kulms, D. and T. Schwarz, Molecular mechanisms of UV-induced apoptosis. Photodermatol Photoimmunol Photomed, 2000. 16(5): p. 195-201.
    62. Bossy-Wetzel, E., D.D. Newmeyer, and D.R. Green, Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J, 1998. 17(1): p. 37-49.
    63. Bortner, C.D. and J.A. Cidlowski, A necessary role for cell shrinkage in apoptosis. Biochem Pharmacol, 1998. 56(12): p. 1549-59.
    64. Cain, K., et al., Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. J Biol Chem, 2001. 276(45): p. 41985-90.
    65. Thompson, G.J., et al., Elevated extracellular [K+] inhibits death-receptor- and chemical-mediated apoptosis prior to caspase activation and cytochrome c release. Biochem J, 2001. 357(Pt 1): p. 137-45.
    66. Dallaporta, B., et al., Potassium leakage during the apoptotic degradation phase. J Immunol, 1998. 160(11): p. 5605-15.
    67. Nadeau, H., et al., ROMK1 (Kir1.1) causes apoptosis and chronic silencing of hippocampal neurons. J Neurophysiol, 2000. 84(2): p. 1062-75.
    68. Hughes, F.M., Jr., et al., Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J Biol Chem, 1997. 272(48): p. 30567-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700