基于EST数据库和转录组测序的茶树DNA分子标记开发与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茶树(Camellia sinensis)是遗传研究和基因组信息比较缺乏的物种。目前,茶树上可有效利用的标记数量非常有限。本研究不仅以现有的公共EST数据库为基础进行茶树SSR和SNP分子标记开发应用研究,而且通过高通量RNA-seq获得大量茶树花的转录组序列,并以这些转录组序列为基础进行茶树SSR分子标记的大规模发掘,主要研究结果如下:
     (1)对NCBI网上公开的12,757条茶树ESTs序列进行聚类,成功构建了茶树的独立基因(Unigene)数据库,发现茶树的EST序列冗余率约为68.2 %,明确了茶树EST-SSRs的分布特征,设计了206对SSR引物,筛选出多态性SSR引物59对。
     (2)利用开发的SSR引物对茶树地方品种的遗传多样性取样策略和西湖龙井群体的遗传分化进行了研究,发现平均等位位点Na是最合适的遗传多样性取样参数,当用平均等位位点Na做参数,SSR引物等位位点数为5时,24个以上单株才能达到总体90 %以上的遗传变异;龙井群体具有较高的遗传多样性水平,平均多态信息含量PIC为0.4382,中度多态位点占62.5 %,高度多态位点占33.3 %。哈迪-温伯格平衡检验表明,66.7 %的SSR位点不符合哈迪-温伯格平衡。分子方差分析表明,西湖龙井五个居群间的遗传分化程度较低。
     (3)初步建立了茶树EST-SNP开发体系,明确了茶树EST中SNP的分布规律,茶树编码区的SNP发生频率约为0.58%,平均200bp就有个SNP位点,并进步推算出茶树基因组DNA序列的杂合率约为0.38%,平均300个碱基就可能出现个杂合位点。从237个多基因聚类簇中发现了818个SNP候选位点,设计了25对SNP引物进行DNA测序验证,发现EST-SNP候选位点的多态检出率为75%。
     (4)应用新代高通量测序技术对茶树花进行转录组测序,获得茶树花的转录组信息75,331条,平均序列长度为402bp,平均测序深度为23.45,平均测序覆盖度为0.895。通过基因表达水平RPKM值分布分析,发现茶树花的转录组以中低表达丰度的基因为主。经过和蛋白数据库NR、Swiss-Prot、KEGG和COG四个数据库比对,共有50,975条茶树花转录组的unigene被注释。
     (5)对茶树花转录组表达信息进行大通量SSR位点的发掘,发现了含SSRs的序列10,290条,共12,582个SSRs,茶树花转录组中SSR出现的频率为16.66 %。茶树转录组发现了340种碱基重复模式,在茶树花的转录组序列中共发现340种碱基重复模式,二碱基重复所占比例最高。茶树转录组所含微卫星序列长度呈偏正态分布,以重复长度小于15bp的SSR短重复序列最多,长度大于30bp的较长SSR序列重复所在比例很小。
     (6)自动批量设计了2,633对SSR引物,成功率为42.85 %。本研究对茶树分子标记辅助育种及功能基因的发现等都具有重要的意义。
There is little genetic and genomic information available in tea plant (Camellia sinensis), especially effective DNA markers. In this study, the existing public EST database was used to exploit SSR and SNP markers. Moreover, transcriptome information through high-throughput RNA-seq in tea flower was obtained and was used to exploit SSR sites and markers. These results of this study are sumarrized as follows:
     (1) By clustering the 12,757 ESTs of tea downloaded from NCBI, a unigene database of tea, containing 4,000 unigenes, was successfully built. It was found that the redundancy rate for ESTs from tea was approximately 68.2 %. Meanwhile, the characteristics of SSR distribution were also explicated. 206 pairs of SSR primers were designed by Primer 5 and 59 polymorphism SSR primers were found.
     (2) Both sampling strategy for genetic diversity of tea landraces and the genetic diversity and differentiation Longjing tea landrace were study, as the utilizations of the SSR primers exploited above. It was found that the mostly suitable genetic diversity parameter for the sampling of tea landrace was the number of alleles NA and when the number of alleles per SSR locus was 5, at least 24 individual tea plants were needed to reach 90% of the total genetic diversity; the level of genetic diversity within Longjing tea landrace was high. The average PIC polymorphism information content (PIC) was 0.4382. 33.3 % SSR sites in this study were classifid to high polymorphism and 62.5 % were medium polymorphism. Hardy—Weinberg eguiliberum (HWE) test displayed that 66.7 %SSR sites were not in accordance with the HWE. AMOVA analysis showed that the genetic differentiation between five populations of Longjing tea landrace was low.
     (3) An EST-SNP exploiting system for tea was established preliminarily. The SNP distribution was identified. The occurrence frequency for coding region SNP in tea was appropriately 0.58 %. It meant that there was averagely one SNP in 200bp in tea ESTs. Furthermore, the hybrid rate for tea genome was deduced to be 0.38%, averagely one hybrid DNA site per 300 bp. 818 candidated SNP were exploited from 237 multigene clusters. Then 25 pairs of SNP primers were designed and 75 % of these sites were validated to be polymorphism by DNA sequencing.
     (4) Using high-throughput Illumina RNA-seq, the transcriptome from RNA of the flowers of Camellia sinensis was analyzed and 75,531 unigenes were obtained. The average depth and coverage for sequencing was 23.45 and 0.895 respectively. Distribution of RPKM value of all unigenes was analyzed and found that the genes with low and medium expression level were dominant in gene expression pattern of tea flowers.Sequence similarity analyses of four public databases (NR, COGs of NCBI, InterPro, KEGG) found 55,088 unigenes that could be annotated.
     (5) The SSR sites in the transcriptome from RNA of the flowers in Camellia sinensis were exploited with high-through. There were 12,582 SSRs present in 10,290 unigenes, the occurrence frequency of SSRs was 16.66 %. 340 SSR motifs were founed and dinucleotide repeats were the most abundant (44.99%). The length distribution of SSRs was seriously deviated from the normal distribution. The number of short sequence SSRs with length below 15 bp was maximum; the SSRs with length above 30 bp were in small proportion.
     (6)Automatically, 2,633 pairs of SSR primers were designed. 42.85 % of SSR sites were successfully used for primer design.
     These methods were efficient in functional gene discovery and useful for molecular marker-assisted breeding of tea.
引文
1.艾华水,黄路生.FS2M01.pl,转换片段大小表为0/1矩阵的Perl脚本.生物信息学,2006 ,4 (2) :69-91
    2.柴呈森,姜蔚,李娜,等.单、双子叶作物间EST-SSRs引物和标记的通用性研究.西北农林科技大学学报(自然科学版),2010,38(1):75-82
    3.陈军方,任正隆,高丽锋,等.从小麦EST序列中开发新的SSR引物.作物学报,2005,31(2):154-158
    4.邓玉营,徐立安,张博,等.黄花柳基因组微卫星分离及多态性位点检测.分子植物育种,2008,6(1):89-94
    5.段云裳,成浩,姜燕华,等.乌龙茶品种(系)遗传多样性与亲缘关系的SSR分析.茶叶科学,2010,30(2):141-148
    6.段云裳,姜燕华,王丽鸳,等.中国红、绿茶适制品种(系)遗传多样性与亲缘关系的SSR分析.中国农业科学,2011,44(1):99-109
    7.范彦辉,陶士珩.用Perl实现在Windows下本地化运行BLAST.生物信息学,2008,8(4):178-179
    8.冯付军,李祥龙,王建涛,等.山羊不同组织来源EST片段的生物信息学分析.生物信息学, 2008, 6(1): 14-17
    9.郭勇.利用EST-CAPS标记构建桉树遗传图谱. [硕士学位论文].北京:中国林业科学研究院,2008
    10.洪彦彬,陈小平,刘海燕,等.源于大豆EST的花生属(Arachis)同源SSR标记的开发及利用.作物学报,2010, 36(3): 410-421
    11.黄福平,梁月荣,陆建良,等.应用RAPD和ISSR分子标记构建茶树回交1代部分遗传图谱.茶叶科学, 2006, 26(3): 171-176
    12.黄建安,李家贤,黄意欢,等.茶树AFLP分子连锁图谱的构建.茶叶科学, 2005, 25(1): 7-15
    13.黄建安,黄意欢,罗军武,等.茶树多酚氧化酶基因的SNP分析.湖南农业大学学报, 2007, 33(4): 454-458
    14.季鹏章,张俊,王平盛,等.云南古茶树(园)遗传多样性的ISSR分析,茶叶科学, 2007, 27(4): 271-279
    15.姜春芽,徐小彪,廖娇,等.基于EST的猕猴桃SSR标记的建立.果树学报2010,27(4): 622-625
    16.姜燕华.我国茶树地方品种遗传多样性及人为选择影响的研究.[硕士学位论文].北京:中国农业科学院,2010
    17.金基强,陈亮,姚明哲等.茶树简化EcoTILLING技术的建立.茶叶科学. 2010,30(1):19-26
    18.金基强,崔海瑞,陈文岳,等.茶树EST-SSR的信息分析与标记建立,茶叶科学,2006,26(1):17-23
    19.金基强,崔海瑞,龚晓春,等.用EST-SSR标记对茶树种质资源的研究,遗传,2007,29(1): 103-108
    20.金燕,卢宝荣.遗传多样性的取样策略.生物多样性, 2003, 11(2): 155-161
    21.黎裕,王天宇,田松杰,等.利用分子标记分析遗传多样性时的玉米群体取样策略研究.植物遗传资源学报,2003 ,4 (4):314-317
    22.李强,万建民. SSRHunter,个本地化的SSR位点搜索软件的开发.遗传, 2005, 27(5): 808-810
    23.李腊梅,马军辉,罗列万,等.龙井43在浙江省的推广及效益分析.茶叶, 2007, 33 (1) : 38-40
    24.李淑娴,张新叶,王英亚,等.桉树EST序列中微卫星含量及相关特征。植物学报,2010, 45 (3): 363–371
    25.李永强,李宏伟,高丽锋,等.基于表达序列标签的微卫星标记( EST-SSRs)研究进展,植物遗传资源学报,2004,5(1):91-95
    26.刘本英,王平盛,周红杰,等.云南茶组植物ISSR-PCR反应体系的建立。云南农业大学学报,2006 (增):21-25
    27.刘振,王新超,赵丽萍,等.基于EST-SSR的西南茶区茶树资源遗传多样性和亲缘关系分析.分子植物育种,2008,6(1):100-110
    28.骆蒙,贾继增.植物基因组表达序列标签(EST)计划研究进展.生物化学与生物物理进展, 2001 , 28(4) :494-497
    29.吕炳建.结直肠癌电子表达谱的生物信息学分析及差异表达基因研究。浙江大学博士学位论文, 2007
    30.庞晓斌,毛新国,景蕊莲,等.小麦EST数据批量分析平台的构建与应用.麦类作物学报, 2006, 16(3): 146-151
    31.乔婷婷,马春雷,周炎花,等.浙江省茶树地方品种与选育品种遗传多样性和群体结构的EST-SSR分析.作物学报, 2010, 36(5): 744?753
    32.曲妮妮,龚世园,黄桂菊,等.基于FIASCO技术的合浦珠母贝微卫星标记分离与筛选研究。热带海洋学报,2010,29(3):47-54
    33.沈程文.茶树安化云台山种有性个体基因组差异的研究,湖南农业大学硕士学位论文, 2001, 18-28
    34.史成颖,宛晓春,江昌俊,等.茶苗嫩根cDNA文库的构建和EST分析.南京农业大学学报, 2009, 32 (1) : 126-130
    35.史春梦,粟永萍.全基因组基因表达频谱研究的新方法—SAGE和IPGI.生物工程进展, 2001, 21 (2) : 65-67
    36.束永俊,李勇,朱延明等.大豆EST-SNP的挖掘、鉴定及其CAPS标记的开发.作物学报,2010, 36(4): 574-579
    37.汤继凤,曹永生,高丽锋,等.用生物信息学技术构建cSSR分子标记开发体系,中国农业科学, 2004, 37(3): 328-332
    38.汤继凤.主要作物EST分析系统的构建及应用。中国农业科学院研究生院硕士学位论文, 2006
    39.田中淳. RAPDをべースにしたチャの连锁地图の作成と遗传解析への利用の可能性.茶業研究報告, 1996,84(别册):44~45
    40.王丽鸳,姜燕华,段云裳,等.茶树EST-SSRs分布特征及引物开发.植物遗传资源学报, 2009 a, 10(4) : 511-516
    41.王丽鸳,刘本英,姜燕华,等.用SSR分子标记研究茶组植物种间亲缘进化关系,茶叶科学,2009b,29(5):341-346
    42.王曦,汪小我,王立坤,等.新代高通量RNA测序数据的处理与分析。生物化学与生物物理进展,2010, 37(8): 834-846
    43.王益,左云娟,周世良.茶微卫星引物的开发,全国茶业科技学术研讨会论文集,2007
    44.王长彪,郭旺珍,蔡彩平,等.雷蒙德氏棉EST-SSRs分布特征及开发与利用.科学通报,2006,51(3):316-320
    45.王长彪.与棉纤维发育相关的EST生物信息学分析[硕士学位论文].南京:南京农业大学, 2007
    46.吴晓雷,贺超英,陈受宜,等.用SSR分子标记研究大豆属种间亲缘进化关系.遗传学报,2001,28(4):359-366
    47.徐静,吕炳建,张昊,等.电子基因表达谱分析平台的建立及其应用.浙江大学学报:工学版,2006 ,40 (2) :186-191
    48.杨惠敏,王根轩.种新的分子武器—SAGE.生物技术,2001, 11 (4) : 35-37
    49.杨素娟,王玉书,杨亚军,等.早生高香绿茶品种龙井长叶的选育.中国茶叶, 1995 (6) : 14-161
    50.姚明哲,陈亮.分子标记在茶树遗传育种上的应用.生物技术通报,2003,5:27-30
    51.姚明哲,乔婷婷,马春雷,等.EST-SSR标记与茶树表型性状关联的初步分析.茶叶科学,2010,30(1):45-51
    52.张博.杨树比较作图及重要性状QTLs定位.[博士学位论文].南京:南京林业大学,2005
    53.张成岗,欧阳曙光,张绍文,等.基于PC/Linux的核酸序列分析系统的构建及其应用.生物化学与生物物理进展, 2001, 28(2):263-266
    54.张秋生.基于公共序列数据库的Cucumis属EST-SSR标记的鉴定、开发和利用[博士学位论文].武汉:华中农业大学,2006
    55.张群宇,刘耀光,梅曼彤.基因表达系列分析( SAGE).生命的化学, 1999, 19 (4) : 184 -186
    56.张晓红.桉树EST-SNP的开发及EST图谱的构建.[硕士学位论文].南京:南京农业大学,2009
    57.张艳欣,林忠旭,李武,等.海岛棉EST-SSR引物的开发与应用研究.科学通报,2007,52(15):1779-1787
    58.赵琼,李信,周德贵,等.后基因组时代下作物的SNP分型方法.分子植物育种,2010,8 (1):125-133
    59.赵茹,程舟,陆伟峰,卢宝荣.基于分子标记的野生大豆居群遗传多样性估算与取样策略.科学通报,2006,51(9): 1042-1048
    60.赵岩,孔凡美,王涛,等. EST-SSR标记在翦股颖上的通用性及其利用.园艺学报,2010,37(3):485–490
    61.中国茶树品种志,2001,7,上海科学技术出版社,上海
    62.周锦,刘义飞,黄宏文.基于EST数据库进行SNP分子标记开发的研究进展及在猕猴桃属植物中的应用研究.热带亚热带植物学报,2011,19(2):184-194
    63.周猛,童春发,施季森.充分利用Bioperl加速生物信息学的研究.生物信息学,2006,6(1):43-45
    64.周猛.林木EST数据分析系统的建立与应用[硕士学位论文].南京:南京林业大学, 2007
    65.周延清. DNA分子标记技术在植物研究中的应用.北京:化学工业出版社, 2005
    66. Audic, S. and Claverie J. M. The significance of digital gene expression profiles. Genome Res, 1997, 7(10): 986-95
    67. Arnold C, Rossetto M, Mcnally J, et al.The application of SSRs characterized for grape (Vitisvnifera) to conservation studied in Vitaceae. A merican Journal of Botany,2002,89 (1) :22-281
    68. Barker G, Batley J, Sullivan H O, et al. Redundancy based detection of sequence polymorphisms in expressed sequence tag date using autoSNP. Bioinformatics 2003,19:421-422
    69. Batley J, Barker G, Sullivan H O, et al. Mining for single nucleotide polymorphisms and insertions deletions in maize expressed sequence tag data. Plant Physical 2003, 132: 84-91
    70. Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research, 1999, 27(2): 573-580
    71. Berardini T Z, Mundodi S, Reiser R, et al. Functional annotation of the Arabidopsis genome using controlled vocabularies. Plant Physiology 2004, 135:1-11.
    72. Botstein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hun Genet 1980, 32(3):314-331
    73. Bundock P C, Christopher J T, Eggler P, et al. Single nucleotide polymorphisms in cytochrome P450 genes from barley. Theoretical and Applied Genetics 2003,106(4):676-682
    74. Bundock P C, Henry R J. Single nucleotide polymorphism, haplotype diversity and recombination in the Isa gene of barley. Theoretical and Applied Genetics 2004,109(3):543-551
    75. Cardle L, Ramsay L, Milbourne D, et al. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 2000, 156(2):847-854
    76. Chen L, Zhao L P, Gao Q K. Generation and analysis of expressed sequence tags from the tender shoots cDNA library of tea plant (Camellia sinensis). 2005 Plant Science, 168:359-363
    77. Chini A, Fonseca S, Fernandez G, et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 2007,448:666-671
    78. Conesa A, Gotz S, Garcia-Gomez J M, et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21(18): 3674-3676
    79. Cordeiro G M, Eliot F, McIntyre C L, et al. Characterization of single nucleotide polymorphisms in sugarcane ESTs. Theoretical and Applied Genetics 2006,113(2):331-343
    80. Diatchhenko L, Lan Y F, Campbell A P, et al. Suppression subtractive hybridization A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci 1996, 93:6026-6030
    81. Duguid J R, Rohwer R G and Seed B, Isolation of cDNAs of scrapie-modulated RNAs by subtractive hybridization of a cDNA library. PANS 1988,85:5738-5742
    82. Ostrander E A, Jong P M, Rine J, et al. Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequences. Proc Natl Acad Sci 1992,89:3419-3423
    83. Eulgem T, Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcription factors. Trends Plant Sci 2000, 5:199-206
    84. Excoffier L, Laval L G, Schneider S. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 2005, 1: 47–50
    85. Feltus F A, Wan J, Schulze S R, et al. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res 2004, 14: 1812–1819
    86. Frankel O H, Hawkes J G. Crop Genetic Resources for Today and Tomorrow: Optimum Sampling Strategies in Genetic Conservation. Cambridge: Cambridge University Press, 1975: 53–80
    87. Fraser L G, Tsang G K, Datson P M, et al. A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes. BMC Genomics 2009, 10:102
    88. Frazer K A, Ballinger D G, Cox D R, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007, 449(7164): 851-861
    89. Freeman S, West J, James C, et al.Isolation and characterization of highly polymorphic microsatellites in tea (Camellia sinensis). Molecular Ecology Notes 2004, 4:324-326
    90. Gabriel S, Ziaugra L, and Tabbaa D. SNP genotyping using the Sequenom MassARRAY iPLEX platform, Curr Protoc Hum Genet, Chapter 2: Unit 212. 2009
    91. Gao L F, Jing R L, Huo N X, et al. One hundred and one new microsatellite loci derived from ESTs(EST-SSRs) in bread wheat. Theor Appl Genet 2004,108, 1392-1400
    92. Gao L F, Tang J F, Li H W, et al. Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed,2003, 12:245-261
    93. Gaudet M, Jorge V, Paolucci I. Genetic linkage maps of Populus nigra L. including AFLPs, SSRs, SNPs, and sex trait, Tree Genetics & Genomes 2008, 4:25-36
    94. Gunasekare MTK. Applications of molecular markers to the genetic improvement of Camellia sinensis L. (tea). Hortic. Sci. Biotech 2007, 82(2):161-169
    95. Guryev V, Koudijs M J, Berezikov E, et al. Genetic variation in the zebrafish. Genom Res 2006,16(4): 491-497
    96. Hackett CA, Wachira FN, Paul S, et al. Construction of a genetic linkage map for Camellia sinensis (tea). Heredity 2000, 85(4): 346-355
    97. Haynes P A ,Miller S ,Radabaugh T,et al . The wildcat toolbox : a set of perl script utilities for use in peptide mass spectral database searching and proteomics experiments. J Biomol Tech 2006 ,17 (2) :97-102
    98. Hong S P, Shin S K, Lee E H, et al. High-resolution human papillomavirus genotyping by MALDI-TOF mass spectrometry, Nat Protoc 2008, 3(9): 1476-1484
    99. Hough C D, Sherman C A, Pizer E S, et al. Large-scale serial analysis of gene expression reveals genes differentially exp ressed in varian cancer. Cancer Research 2000, 60: 6281-6287
    100. Iseli, C, Jongeneel C V, et al. ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol 1999:138-48
    101. Jan A, Bart J, Martien A. POSA: Perl Objects for DNA Sequencing Data Analysis. BMC Genomics 2004, 5 (1):60-64
    102. Jeffrey A, Lexer C. A set of novel DNA polymorphisms within candidate genes potentially involved in ecological divergence between Populus alba and P. tremula, two hybridizing European forest trees. Molecular Ecology Resources 2008, 8: 188-192
    103. Jewell E, Robinson A, Savage D, et al. SSR primer and SSR taxonomy tree: biome SSR discovery. Nucleic Acids Res 2006, 34, 656–659
    104. Jeworutzki E, Roelfsema M, Anschütz U, et al. Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca-associated opening of plasma membrane anion channels. The Plant Journal 2010, 62:367-378
    105. Ju J, Kim D H, Bi L, et al. Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proc Natl Acad Sci USA 2006, 103(52): 19635-19640
    106. Yang J B, Yang J, Li H T,et al. Isolation and characterization of 15 microsatellite markers from wild tea plant (Camellia taliensis) using FIASCO method. Conservation Genetics 2009, 10(5): 1621-1623
    107. Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008,36 : D480-4
    108. Kashi Y, King D, Soller M. Simple sequence repeats as a source of quantitative genetic variation. Trends Genet 1997, 13: 74–78
    109. Kijas J M, Fowler J C, Garbett C A, et al. Enrichment of microsatellite from the citrus genome using biotinylated oligonucleotide sequence bound to streptavidin-coated magnetic particles. Biotechniques 1994,16(4): 656?662
    110. Komori T, Nitta N. Utilization of the CAPS/dCAPS Method to Convert Rice SNPs into PCR-based Markers. Breeding Science 2005, 55: 93-98
    111. Konieczny A, and Ausubel F M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers, Plant J 1993, 4(2): 403-410
    112. Kota R, Rudd S, Facius A, et al. Snipping polymorphisms from large EST collections in barley (Hordeum vulgare L.) Molecular Genetics and Genomics 2003,270(1):24-33
    113. Kuraoka K, Matsumura S, Hamai Y, et al. A single nucleotide polymorphism in the transmembrane domain coding region of HER -2 is associated with development and malignan phenotype of gastric cancer. Int J Cancer 2003, 107(4): 593-596
    114. Labate J A, Baldo A M. Tomato SNP discovery by EST mining and resequencing. Molecular breeding 2005,16:343-349
    115. Lazo G R, Chao S, Hummel D D, et al. Development of an expressed sequence tag (EST) resource for wheat (Triticum aestivum L.): EST generation, unigeneanalysis, probe selection and bioinformatics for a 16,000-Locus Bin-Delineated map. Genetics 2004, 168: 585-593
    116. Lee S, Zhou G L, Clark T, et al. The pattern of gene expression in human CD15 + myeloid p rogenitor cells. Proc Natl Acad Sci USA 2001, 98: 3340-3345
    117. Li S, Yin T M. Map and analysis of microsatellites in genome of Populus: the first sequenced perennial plant. Sci China C Life Sci 2007, 50: 690–699
    118. Li Y C, Korol A B, Beiles A, et al. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 2002, 11, 2453–2465
    119. Li R, Zhu H, Ruan j, et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010, 20(2):265-72
    120. Liang C, Jaiswal P., Hebbard C., et al. Gramene: a growing plant comparative genomics resource. Nucleic Acids Res 2008, 36(D): 947-953
    121. Lima L S, Gramacho K P, Carels N, et al. Single nucleotide polymorphisms from Theobroma cacao expressed sequence tags associated with witches’broom disease in cacao. Genet 2009, 8 (3): 799-808
    122. Liu K J, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics Applications Note 2005, 21(9): 2128–2129
    123. Ma R C, Xie H, Xu Y, et al. Development of SSR markers for the phylogenetic analysis of almond trees from China and the Mediterranean region. Genome 2004, 47(6): 1091-1104
    124. Mardis, E R. The impact of next-generation sequencing technology on genetics. Trends in Genetics 2008, 24 (3): 142–149
    125. Margulies M, Egholm M, Altman W E, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437(7057): 376-380
    126. Marioni J C, Mason C E, Mane S M, et al. RNA-seq: an assessment of technical reproducibility and comparison with gene expressionarrays. Genome Res 2008, 18(9): 1509-1517
    127. Marques C M, Brondani R P, Grattapaglia D, et al. Conservation and synteny of SSR loci and QTLs for vegetative propagation in four Eucalyptus species.Theor Appl Genet 2002, 105: 474–478
    128. Marth G T, Korf I, Yandell M D, et al. A general approach to single-nucleotide polymorphism discovery. Nature Genet 1999,23:452-456.
    129. Matsumoto S, Takeuchi A, Hayatsu M. Molecular cloning of phenylalanine ammonialyase cDNA and classification of varieties and cultivars of tea plants (Camellia sinensis) using the tea PAL cDNA probe. Theor Appl Genet 1994, 89: 671-675
    130. Mewan K M, Saha M C, Konstantin C, et al. Construction of a genomic and EST SSR based saturated genetic linkage map of tea (Camellia sinensis L.). Proceedings of the 3rd International Conference on O-Cha (tea) Culture and Science (ICOS), 2007
    131. Miya A, Albert P, Shinya T, et al. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci 2007,104:19613-19618
    132. Mochida K, Yamazaki Y, Ogihara Y. Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol. Genet. Genomics 2003, 270: 371-377
    133. Montgomery J, Wittwer C T, Palais R, et al. Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis, Nat. Protoc 2007,2 (1): 59-66
    134. Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 2008, 5(7): 621-628
    135. Moury B, Pflieger S, Blattes A. et al. A CAPS marker to assist selection of tomato spotted wilt virus (TSWV) resistance in pepper.Genome 2000,43(1): 137-142
    136. Nagaraj S H, Deshpande N, Gasser R B, et al. ESTExplorer: an expressed sequence tag (EST) assembly and annotation platform. Nucleic Acids Research 2007, 35: W143-W147
    137. Neff M M, Neff J D, Chory J, et al. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics, Plant J 1998,14(3): 387-392
    138. Nei M, Li W H. Mathematical modeling for studying genetic variation in terms of restriction endonuclease. Proc Natl Acad Sci (USA) 1979, 74:5269–5273
    139. Ni S, Yao M Z, Chen L, et al. Germplasm and breeding research of tea plant, Camellia sinensis (L.) O. Kuntze, based on DNA molecular marker approaches. Front Agric China 2008, 2(2): 200-207
    140. Nishida N, Koike A, Tajima A, et al. Evaluating the performance of Affymetrix SNP Array 6.0 platform with 400 Japanese individuals.BMC Genomics 2008, 9: 431
    141. Novaes E, Drost D R, Farmerie W G. High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 2008, 9: 312
    142. Novelli V M, Takita M A, Machado M A, et al. Identification and analysis of single nucleotide polymorphisms (SNPs) in citrus. Euphytica 2004, 138: 227-237
    143. Ohsako T, Ohgushi T, Motosugi H, et al. Microsatellite variability within and among local landrace populations of tea, Camellia sinensis (L.) O. Kuntze, in Kyoto, Japan. Genet Resour Crop Evol 2008,(55):1047–1053
    144. Ossowski S, Schneeberger K, Clark R M,et al. Sequencing of natural strains of Arabidopsis thaliana with short reads, Genome Res 2008,18 (12):2024-2033
    145. Ota S, Tanaka J. RAPD-based linkage mapping using F1 segregating populations derived from crossings between tea cultivar 'Sayamakaori' and strain 'Kana-Ck17'. Breeding Res 1999, 1:16
    146. Park J S, Kim J B, Hahn B S, et al. EST analysis of genes involved in secondary metabolism in Camellia sinensis (tea), using suppression subtractive hybridization. Plant Science 2004, 166:953-961
    147. Peakall R, Gilmore S, Keys W, et al. Cross species amplification of soybean (Glycinemax ) simple sequence repeats (SSRs) within the Genus and other legume genera : implications for the transferability of SSRs in plants. Mol Biol Evol 1998,15 (10) :1275-1287
    148. Peng J H, Nore L, Lapitan V. Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genomics 2005, 5: 80-96
    149. Picoult-Newberg L, Ideker T E, Pohl M G, et al. Mining SNPs from EST databases.Genome Research 1999,9:167-174
    150. Powell W, Machray GC, Provan J. Polymorphism revealed by simple sequence repeats. Trends Plant Science 1996,1:215-222
    151. Pyh?j?rvi T, García-Gil M R, Knürr Timo, et al. Demographic History Has Influenced Nucleotide Diversity in European Pinus sylvestris Populations. Genetics 2007, 177: 1713-1724
    152. Peakall R, Gilmore S, Keys W, et al. Cross species amplification of soybean (Glycinemax ) simple sequence repeats (SSRs) within the Genus and other legume genera : implications for the transferability of SSRs in plants. Mol Biol Evol 1998,15 (10) :1275-1287
    153. Rota L R, Kantety R V, Yu J K. Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice , wheat , and barley. BMC Genomics 2005, 6:23
    154. Rozen S and Skaletsky H J. Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds)Bioinformatics Methods and Protocols: Methods in Molecular Biology.Humana Press, Totowa, NJ:365-386,2003
    155. Rudd S, Sehoof H, Mayer K. PlantMarkers: a database of predicted molecular markers from Plants]. Nucleic Acids Research 2005,33:628-632
    156. Rudd S. Expressed sequence tags: alternative or complement to whole genome sequences. TRENDs in Plant Science 2003, 8:321-329
    157. Ruparel H, Bi L, Li Z, et al. Design and synthesis of a 3-O-allyl photocleavable fluorescent nucleotide as a reversible terminator for DNA sequencing by synthesis. Proc Natl Acad Sci USA 2005,102(17): 5932-5937
    158. Sanger F, Nicklen S, Coulson A R. DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 1977,74 (12):5463-5467
    159. Savage D, Batley J, Erwin T, et al. SNPServer: a real-time SNP discovery tool. Nucleic Acids Research 2005,33:493-495
    160. Schlotterer C. Genealogical inference of closely related species based on microsatellites. Genet Res 2001, 78: 209–212
    161. Schlotterer C, Tautz D. Slippage synthesis of simple sequence DNA. Nucleic Acids Res 1992, 20, 211–215
    162. Seo T S, Bai X, Kim D H, et al. Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescent nucleotides.Proc Natl Acad Sci USA 2005, 102(17): 5926-5931
    163. Sharma P, Kumar S. Differential display-mediated identification of three drought-responsive expressed sequence tags in tea [Camellia sinensis (L) O. Kuntze]. J Biosci, 2005, 30:231-235
    164. Sharma R, Bhardwaj P, Negi R, et al. Identification, characterization and utilization of unigene derived microsatellite markers in tea (Camellia sinensis L.). BMC Plant Biol 2009,9:53
    165. Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol 2008, 26(10): 1135-1145
    166. Shi C Y, Yang H, Wei C L, et al. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics 2011, 12, 131
    167. Sive H L, John S T. A simple subtractive hybridization technique employing photoactivatable biotin and phenol extraction. Nucleic Acids Res 1988,16(22):10937-10938
    168. Snelling W M , Casas E, Stone R T, et al. Linkage mapping bovine EST-based SNP. BMC Genomics 2005, 6: 74
    169. Somers DJ, Kirkpatrick R, Moniwa M, et al. Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome 2003,46:431-437
    170. Sultan M, Schulz M H, Richard H, et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 2008, 321(5891): 956-960
    171. Syvanen A C. Accessing genetic variation: Genotyping single nucleotide polymorphisms. Nature Review Genetics 2001, 2: 930-942
    172. Takeuchi A, Matsumoto S, Hayatsu M. Chalcone synthase from Camellia sinensis: isolation of the cDNAs and the organ-specific and sugar-responsive expression of the genes. Plant Cell Physiol 1994, 35 (7): 1011– 1018
    173. Taniguchi F, Tanaka J, Kono I, et al. Construction of genetic linkage map of tea using SSR markers. Proceedings of the 3rd International Conference on O-Cha (tea) Culture and Science(ICOS),2007
    174. Tautz D, Trick M, Dover G A. Cryptic simplicity in DNA is a major source of genetic variation. Nature 1986, 322: 652–656
    175. Taylor J, Schenck I, Blankenberg D, et al. Using galaxy to perform large-scale interactive data analyses. Current Protocols in Bioinformatics. USA: John Wiley and Sens, Inc., 2007, Unit 10.5
    176. Temesgen B, Brown G R, Harry D E, et al. Genetic mapping of expressed sequence tag polymorphism(ESTP) markers in loblolly Pine(Pinus taeda L.). Theoretieal and APPlied Genetics 2001, 102(5):664-675
    177. Temnykh S, DeClerck G, Lukashova A, et al.Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome research 2001, 11: 1441-1452
    178. The Scripps Research Institute, Baylor College of Medicine, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007,449: 851-861
    179. Thiel T, Michalek W, Varshney R K, et al. Exploiting EST data-bases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L). Theor Appl Genet 2003, 106: 411-422
    180. Tokuko U, Takayuki K, Yoshihiko T, et al. Development and polymorphism of simple sequence repeat DNA markers for S horea curtisii and other Dipterocarpaceae species. Heredity ,1998, 81 :422-4281
    181. Tragoonrung S, Kanazin V, Hayes P M, et al.Sequence-tagged-site-facilitated PCR for barley genome mapping.Theor Appl Genet 1992,84(78):1002-1008
    182. Trapnell C, Pachter L, Salzberg S L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25(9): 1105-1111
    183. Ujihara T, Ohta R, Hayashi N, et al. Identification of Japanese and Chinese green tea cultivars by using simple sequence repeat markers to encourage proper labeling. Biosci Biotechnol Biochem 2009, 73(1):15-20
    184. Useche F J, Gao G, Hanafey M, et al. High throughput identification database storage and analysis of SNPs in EST sequence. Genome Informatics 2001,12:194-203
    185. Varshney R K, Beier U, Khlestkina E K, et al. Single nucleotide polymorphisms in rye (Secal cereal L.): discovery, frequency and applications for genome mapping and diversity studied. Theor. Appl. Genet 2007, 114(6):1105-1116
    186. Velculescu V E, Madden S L, Zhang L, et al. Analysis of human transcriptomes. Natural Genetics 1999, 23: 387-388
    187. Velculescu V E, Zhang L, Zhou W, et al. Characterization of the yeast transcriptome. Cell 1997, 88: 243-251
    188. Velculescu V E, Zhang L, Vogelstein B, et al. Serial analysis of gene expression. Science 1995, 270(5235):484-487
    189. Wachira F N, Waugh R , Hackett C A, et al. Detection of Genetic Diversity in Tea (Camellia sinensis)Using RAPD Markers.Genome 1995, 38 :201-210
    190. Wang D G, Fan J B, Shao C J, et al. Large-scale identification mapping and genotyping of single-nucleotide polymorphisms in the human genome. Science 1998, 280(5366): 1077-1082
    191. Wang J, Wang W, Li R, et al. The diploid genome sequence of an Asian individual, Nature 2008, 456(7218): 60-65
    192. Wang X W, Luan J B, Li J M, et al. De novo characterization of a whitefly transcriptome and analysis its gene expression during development. BMC Genomics 2010, 11:400
    193. Wang Z, Gerstein M and Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews | genetics 2009, 10: 57-63
    194. Wang Z, Zou Y., Li X., et al. Cytoplasmic male sterility of rice with boroⅡcytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing, The Plant Cell 2006,18(3): 676-687
    195. Weber J L. Informativeness of human (dC-dA)n·(dG-dT)n polymorphisms. Genomics 1990, 7: 524-530
    196. Weiland J J, Yu M H. A cleaved amplified polymorphic sequence (CAPS) marker associated with root-knot nematode resistance in sugar beet .Crop Science 2003, 43(5): 1814-1818
    197. Wheeler D L, Barrett T, Benson D A, et al. Database resources of the national center for biotechnology information . Nucleic Acids Research 2005, 33( 1) : 39-45
    198. Wiltshire T, Pletcher M T, Batalov S, et al. Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proc Natl Acad Sci USA 2003, 100: 3380-3385
    199. Xie D X, Feys B F, James S, et al. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 1998, 280:1091-1094
    200. Yasodha R, Ghosh M, Sumathi R,et al. Cross-species amplification of Eucalyptus SSR markers in Casuarinaceae. Acta Bot Croat 2005, 64:115–120
    201. Ye J, Fang L, Zhang Y et al. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 2006, 34(Web Server issue): W293- W297
    202. Zane L, Bargellon L, Patarnello T. Strategies for microsatellite isolation: a review. Molecular Ecology 2002, 11(1): 1?16
    203. Zhao L P, Liu Z, Chen L, et al. Generation and characterization of 24 novel EST derived microsatellites from tea plant (Camellia sinensis) and cross-species amplification in its closely related species and varieties. Conserv Genet 2007, 9:1327–1331
    204. Zhou G L, Chen J J, Lee S, et al. The pattern of gene expression in human CD34 + stem /p rogenitor cells. Proc Natl Acad Sci USA 2001, 98: 13966-13971
    205. Zhou L, Wang L, Palais R, et al. High-resolution DNA melting analysis for simultaneous mutation scanning and genotyping in solution. Clin Chem 2005, 51(10): 1770-1777
    206. Zhu T, Zhou J, An Y, et al. Construction and characterization of a rock-cluster-based EST analysis pipeline. Computational Biology and Chemistry 2006, 30: 81-86
    207. Zipfel C. Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 2008, 20:10-16
    208. Zou J H, Chen Z X, Zhang S Y, et al. Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice (Oryza sativa L.) . Plant 2005, 222(4): 604-612
    209. Zou Y P, Song G E. A novel molecular marker—SNPs and its application. Biodiversity Science 2003, 11(5): 370-382

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700