乳腺癌转移抑制基因BRMSI功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究乳腺癌转移抑制基因BRMS1对乳癌细胞生长、增殖、侵袭、转移以及辐射敏感性的影响以及涉及的相关作用机制,为研究乳癌的发生、发展和转移和治疗提供新的研究方向和实验依据。
     方法:
     1、参照GeneBank中BRMS1的基因序列,通过自行设计并扩增得到BRMS1基因cDNA的引物一对,构建了携带有全长BRMS1 cDNA的真核表达载体(pcDNA3-BRMS1);
     2、应用阳离子脂质体Lipofactamin2000介导,进行pcDNA3-BRMS1转染,阳性克隆通过在含G418的培养基中培养筛选得到,并应用RT-PCR和Western Blot法检测阳性克隆中BRMS1的mRNA和蛋白的表达;
     3、应用MTT法分析BRMS1基因转染对体外培养的乳癌细胞生长、增殖的影响;
     4、应用划痕实验和Boyden小室法,分析BRMS1基因转染对体外培养的乳癌细胞侵袭、转移能力的影响;
     5、采用流式细胞术分析BRMS1基因转染对细胞周期进程和细胞凋亡的影响;
     6、采用裸鼠原位接种肿瘤模型,观察BRMS1基因在体内对乳癌生长、转移的影响;
     7、采用裸鼠尾静脉接种肿瘤转移模型观察BRMS1基因对体内乳癌转移的影响;
     8、通过细胞克隆形成实验分析BRMS1基因对乳癌细胞辐射敏感性的影响;
     9、采用染色体畸变分析、PCC断片研究BRMS1基因对肿瘤细胞基因组不稳定性的影响;
     10、采用Western Blot法检测BRMS1基因对DNA损伤修复相关蛋白表达水平的影响;
     11、采用GST-pull down和免疫共沉淀方法检测BRMS1与核受体直接结合;
     12、采用荧光素酶报告基因测定方法测定转录活性。
     结果:
     1、自行构建的BRMS1真核表达载体,经过限制性核酸内切酶BamH I和Xho I酶切后电泳和扩增片断测序,证实载体构建成功;
     2、G418筛选得到的稳定阳性克隆,经RT-PCR和Western Blot证实,转染BRMS1基因可以在乳癌细胞中提高BRMS的表达水平,表明高BRMS1表达的细胞株筛选成功;
     3、MTT的结果表明BRMS1对乳癌细胞MDA-MB-231、MDA-MB-435的生长无明显影响;
     4、划痕实验结果表明BRMS1基因对乳腺癌细胞MDA-MB-231、MDA-MB-435体外迁移能力无明显影响;
     5、Boyden小室实验结果表明:BRMS1基因转染细胞的穿越细胞数与未转染组相比显著减少(p<0.05),BRMS1基因转染细胞的穿越细胞数与空载体组相比也显著减少(p<0.05);
     6、流式细胞术分析结果表明:BRMS1基因对乳腺癌细胞MDA-MB-231、MDA-MB-435的周期分布及凋亡无明显改变;
     7、裸鼠原位接种肿瘤实验结果表明:BRMS1基因对裸鼠的体重及肿瘤的生长速度及肿瘤大小无明显影响;BRMS1基因转染组的原位肿瘤分化程度较高,而恶性程度偏低;
     8、肿瘤转移模型观察:未转染对照组裸鼠有5例明显的肺转移,5例出现肝转移;转染空载体组裸鼠也出现5例肺转移,4例肝转移,而BRMS1转基因裸鼠组只有1例出现肝转移。表明体内BRMS1高表达能抑制乳腺癌肿瘤的转移;
     9、肿瘤组织血管实验:与未转染组比较,BRMS1转基因组裸鼠的肿瘤血管数目较少,有显著统计差异(P<0.05),表明BRMS1基因能抑制乳腺癌血管生成;
     10、克隆形成实验结果: BRMS1转染组与未转染组及空载体组的生存曲线基本一致,表明BRMS1基因不影响肿瘤细胞受照射后的存活率;
     11、染色体畸变分析、PCC断片分析结果:不同剂量的X射线照射后,BRMS1转染组的染色体畸变率及PCC断片率低于空载体组与未转染组;
     12、Western Blot法检测DNA损伤修复相关蛋白表达,BRMS1基因对辐射修复相关蛋白FEN-1、XRCC1和Ku-70的表达无明显影响;
     13、BRMS1可以与雄激素,雌激素等多种核受体蛋白结合,同时作为协同抑制因子抑制AR和ER-α的转录活性。
     结论:
     1、在体外实验中,BRMS1基因通过降低肿瘤癌细胞的侵袭能力而抑制肿瘤细胞的转移能力;BRMS1基因不影响乳腺癌细胞MDA-MB-231和MDA-MB-435的增殖能力、迁移和转移能力;不影响肿瘤细胞的细胞周期分布与凋亡;
     2、BRMS1基因不影响裸鼠原位移植肿瘤的形成及肿瘤细胞本身的生长;BRMS1基因通过抑制移植肿瘤的血管生成及促进体内移植肿瘤的分化,从而降低肿瘤的恶性程度,抑制裸鼠移植肿瘤的远处转移;
     3、BRMS1基因对肿瘤细胞受照射后的存活率无明显影响;不影响肿瘤细胞受照前后相关辐射损伤修复蛋白的表达。BRMS1基因通过降低肿瘤细胞的基因组不稳定性而在一定程度上降低了肿瘤细胞的放射敏感性;
     4、BRMS1与核受体蛋白结合,调节核受体的转录活性将揭示BRMS1基因的新的重要功能和作用,开辟了一新的研究方向和领域。
Objective To investigate the anti-cancer activities of breast cancer metastasis suppressor1 (BRMS1) in two invasive breast cancer cell lines. Method
     1.Based on the BRMS1 gene sequence from the Genebank, a full-length BRMS1 cDNA was amplified by a pair of specifically designed primers and constructed into a pcDNA3 eukaryotic expression vector.
     2. Cell lines with high expression of BRMS1 were established by stable transfection of pcDNA3-BRMS1 expression under the help of cationic liposome (Lipofactamin2000) and selection in medium containing G418.
     3.The effect of BRMS1 overexpression on cell growth and proliferation were observed using MTT method.
     4.Cell migration and invasion were determined by in vitro scratch and modified Boyden chamber assays.
     5.Alteration of cell cycle progression and apoptosis induction were studied by flow cytometry.
     6.BRMS1 role on the tumor growth and metastasis in vivo were studied in nude mice with orthotopic injection of breast cancer cells.
     7.The effects of BRMS1 on lung metastasis was observed via tail intravenous injection of breast cancer cells.
     8.Radiosensitivity was analyzed by colony forming assays.
     9.Analysis of chromosomal aberrations and PCC fragments were performed to determine the effect of BRMS1 overexpression on genomic instability.
     10.Western blot assay was used to measure protein expression.
     11.In vitro GST pull-down and in vivo immunoprecipitation-WB assays were employed to determine protein-protein interaction.
     12.Luciferase assay was used to determine transcriptional activity
     Results
     1.Construction of the BRMS1 eukaryotic expression vector was confirmed by sequencing and digestion with restriction endonucleases BamH I and Xho I.
     2.Characterization of G418 resistance clone by RT-PCR and Western blot indicates that BRMS1 over-expressing cell lines have been established.
     3.Ectopic expression of BRMS1 did not produce any effects on cell growth in both MDA-MB-231 and MDA-MB-435.
     4.Ectopic expression of BRMS1 did not alter migration ability of MDA-MB-231 and MDA-MB-435 cells, but significantly reduced cell invasion.
     6.BRMS1 overexpression did not cause any effects on cell cycle progression in both MDA-MB-231 and MDA-MB-435.
     7.Enhanced expression of BRMS1 did not impact the body weight and tumor growth rate and tumor size. However, tumor with BRMS1 overexpression had well differentiation and low malignant degree compared to control tumors.
     8.BRMS1 significantly reduced lung and liver metastases and angiogenesis (formation of new blood vessels).
     10.BRMS1 overexpression did not influence sensitivity of breast cancer to radiotherapy, accompanying with no alteration of DNA damage repair proteins.
     11.Less chromosomal aberrations and PCC fragments were found in the cells with BRMS1 overexpression.
     12.BRMS1 associated with nuclear hormone receptors, including AR, ER(ER-αand ER-β), PR(PRA and PR-B), GR, RXRαand VDR and inhibited AR and ER-αtranscriptional activations.
     Conclusion
     In in vitro cell models, enhanced expression of BRMS1 by stable transfection of a full-length of BRMS1 cDNA significantly reduces or inhibits potentials of cell invasion, without alteration of cell growth and migration in two highly invasive breast cancer cell lines MDA-MB-231 and MDA-MB-435. Also, no alteration of cell cycle progression and apoptosis induction were observed in the cells with BRMS1 overexpression. In in vivo animal models, tumor formation and growth in nude mouse by orthotopic injection of breast cancer cells with BRMS1 overexpression exhibited no difference from those in the control cells. However, a significant decrease in malignant degree, remote metastasis and angiogenesis was observed in BRMS1 overexpression tumors. Increased expression of BRMS1 did not affect radiosensitivity, but indeed decreased the genomic instability caused by stresses. In summary, BRMS1 plays an important role in breast cancer development and progression as a metastatic and angiogenesis suppressor, and is a potential target to improve therapy of breast cancer. Furthermore, the BRMS1 association with different nuclear hormone receptors as a co-repressor will provide a new avenue to explore other biological functions of BRMS1, besides metastasis and angiogenesis suppression.
引文
1. Jemal A, Siegel R, Xu J, et al. Cancer Statistics, 2010. CA Cancer J Clin, 2010.
    2. Welch DR,Rinker-Schaefer CW. What defines a useful marker of metastasis in human cancer[J].J Natl Cancer Inst,1999,91(16):1351-1353.
    3. Yoshida BA,Scoloff M,Welch DR,et al. Metastasis-suppressor genes:a review and perspective on an emerging field[J].J Natl Cancer Inst,2000,92(21):1717-1730.
    4. Shirasaki F,Takata M,Hatta N,et al. Loss of expression of the metastasis suppressor gene Kiss-1 during melanoma progression and its association with LOH of chromosonle 6q16.3-q23[J].CancerRes.2001.61(20):7422-7425.
    5. Jackson P,Rowe A,Grimm MO,et al. An ahematively spliced KAI1 mRNA is expressed at low levels in human bladder cancers an d bladder cancer cell lines and is not associated with invasive behaviour[J].Oncol Rep,2007,18 (6):1357-1363.
    6. Nie Q, Zhu W, Liu LX, et al. The mechanism and in fluence on the biological behavior of human high-metastatic large cell lung cancer cell lines with transfect -ion of nm23- H1 gene. Chin J Lung Cancer, 2008,11(3): 349-353.
    7. Seraj MJ,Samant RS,Verderame MF,et al. Functional evidence for a novel human breast carcinoma metastasis suppressor BRMSI,encoded at chromosome l1ql3 Cancer Res,2000.60:2764-69.
    8.秦荣,张巧玉.BRMS1的研究进展[J].重庆医学,2004,33(6):921.
    9. Nikolaev AY,Papanikolaou Na, Li M ,et al. Identification of a novel BRMS1 -homologue protein p40 as a component of the mSin3A/p33(ING1b)/HDAC1 deacetylase complex.Biochem Biophys Res Commun,2004,323(4):1216.
    10. Samant RS.Debies MT,Shevde LA,et al. Identification and characterization of the murine ortholog(brms1)of breast-cancermetastasis suppressor 1(BRMS1), Int J Cancer,2002,97:15-20.
    11. Cicek M ,Samant RS,Kinter M ,et al. Identfication of metastasis associatedproteins through protein analysis of metastatic MDA-MB-435 cells[J].Clin Exp Metastasis,2004,21(2):149.
    12. Shevde I.A,Samant RS,Goldberg SF,et al. Suppression of human melanoma metastasis by the metastasis suppressor gene,Exp Cell Res,2002,273(2):229.
    13. Zhang S,I in QD,DI W.Suppression of human ovarian carcinoma metastasis by the metastasis-suppressor gene,Int J Gynecol Cancer,2006,16(2):522.
    14. Saunders, MM,Seraj, MJ,Li,Z et al.Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication.[J].Cancer research,2001,61(5)3.
    15. Kapoor P,Saunders MM,I i z,et al. Breast cancer metastatiac potential:corre -lation with increased heterotypic gap junctional intercellular communication betw -een breast cancer cells and osteoblastic cells.[J].Int J Cancer,2004,25:693.
    16. Dewald DB,Torabinejad J,Samant RS,et al. Metastasis suppression by breast cancer metastasis suppressor 1 involves reduction of phosphoinositide signaling in MDA-MB-435 breast carcinoma cells[J].Cancer Res,2005,65(3):713.
    17. Margueron R,Duong V,Castet A,et al. Histone deacetylase inhibition and estrogen signaling in human breast cancer cells[J]. Biochemical Pharmacology,2004,68:1239.
    1. Seraj MJ,Samant RS,Verderame MF,et al. Functional evidence for a novel human breast carcinoma metastasis suppressor BRMSI,encoded at chromosome l1ql3 Cancer Res,2000.60:2764-69.
    2. Smith,PW, Liu,Y, Siefert, et al. Breast cancer metastasis suppressor 1 (BRMS1) suppresses metastasis and correlates with improved patient survival in non-small cell lung cancer.[J].Cancer letters,2009,276(2)8.
    3. Samant RS.Debies MT,Shevde LA,et al. Identification and characterization of the murine ortholog(brms1)of breast-cancer metastasis suppressor 1(BRMS1), Int J Cancer,2002,97:15-20.
    4. Cicek M ,Samant RS,Kinter M ,et al. Identfication of metastasis associated proteins through protein analysis of metastatic MDA-MB-435 cells[J].Clin Exp Metastasis,2004,21(2):149.
    5. Shevde I.A,Samant RS,Goldberg SF,et al. Suppression of human melanoma metastasis by the metastasis suppressor gene,Exp Cell Res,2002,273(2):229.
    6. Zhang S,L in QD,DI W , et al. Suppression of human ovarian carcinoma metastasis by the metastasis-suppressor gene,Int J Gynecol Cancer,2006,16(2):522.
    7. Rivera J,Megías D,Bravo J,et al. Sorting nexin 6 interacts with breast cancer metastasis suppressor-1 and promotes transcriptional repression. J Cell Biochem. 2010 Sep 9.
    8. Frolova N, Edmonds MD, Bodenstine TM,et al. A shift from nuclear to cytoplasmic breast cancer metastasis suppressor 1 expression is associated with highly proli -ferative estrogen receptor-negative breast cancers. Tumour Biol.2009;30(3):148-59.
    9. Smith PW, Liu Y, Siefert SA, et al. Breast cancer metastasis suppressor 1 supp -resses metastasis and correlates with improved patient survival in non-small cell lung cancer. Cancer Lett. 2009 Apr 18; 276(2):196-203.
    10. Neumann E,M Schaefer-Ridder, Y Wang, et al. Hofschneider gene transfer into mouse lyoma by elec-troporation in high electric filds.EMBO,1982;1(7):841-845.
    11. Jagannatban S,Berlyn R Mellein,Samir Mitragotri , et al. An Experimental and Theoretical Analysis of UI-trasound-Induced Permeabilization of Cell Mem -branes .Biophysical Journal,2003 , 84(5):3087-3091.
    1. Kumar CC. Signaling by integrin receptors.Oncogene,1998,17:1365.
    2.严泉剑,李六金,张宇梅,等.生长曲线拟合及细胞群体倍增时间的简化计算.第四军医大学学报, 2002,23:923-923.
    3. Li Y, Tang ZY, Ye SL, et al. Establishment of cell colons with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97[J].World J Gastroenterol,2001,7(5):630-636.
    4. Zhang YD,Li H,Li YK,et a1.Study on antitumor efect of GM-HAS magnetic adriamycin nanopartlcles on hepatic careininoma cells in vitro[J].China Medical Engineering 2004,12(4):21-25.
    5.王元天,许纯孝.比色法测定膀胱癌细胞的体外侵袭力.肿瘤,2001,121(1):45.
    6. Shevde I.A,Samant RS,Goldberg SF,et a1.Suppression of human melanoma metastasis by the metastasis suppressor gene,Exp Cell Res,2002,273(2):229.
    7.丁健,于皆平,李丹等.促胃液素对结肠癌细胞侵袭力的影响.中华肿瘤杂志,2005 ,27(4)213-215.
    8.王化丽等,肝细胞生长因子对卵巢癌细胞侵袭作用的影响.中华妇产科杂志, 2005,40(8):576-578.
    9. Samant RS.Debies MT,Shevde LA,et a1. Identification and characterization of the murine ortholog(brms1) of breast-cancer metastasis suppressor 1(BRMS1). Int J Cancer, 2002, 97:15-20.
    10. Cicek M ,Samant RS,Kinter M ,et a1.Identfication of metastasis associated proteins through protein analysis of metastatic MDA-MB-435 cells[J].Clin Exp Metastasis,2004,21(2):149.
    11. Blagosklonny MV, Pardee AB. Exploiting cancer cell cycling for selective protection of normal cells. Cancer Res, 2001, 61(11): 4301-4305.
    12.邵荣光.细胞周期调控与肿瘤治疗[A].北京:化学工业出版社, 2004, 140-157.
    13. Lee JM,Bernstein A . Apotosis,cancer and the p53 tumor suppresser gene [J].Cancer Metastasis Rev, 1995, 14: 149-153.
    14. Yeping Du, Liping Xu, Jinhua Miao.转染AP-2α基因对结肠癌SW620细胞增殖及凋亡的影响[J].中德临床肿瘤学杂志(英文版),2010,9(4):221-225.
    15. Wenwu Wang, Xuenong Ouyang, Hao Jiang.人乳腺癌细胞凋亡与去磷酸化RB蛋白和PCNA的关系[J].中德临床肿瘤学杂志(英文版),2010,9(5):258-261.
    16. Inoue H,Shiraki K,Yamanaka T,et a1. Abstract Functional expression of tumor necrosis factor-related apoptosis-inducing ligand in human colonic adenocaroinoma cells. Laboratory Investigation,2002,19(2):143-146.
    17. Shiraki K,Yamanaka T,Inoue H,et a1. Expression of TNF-related apoptosis -inducing ligand in human hepatocellular carcinoma.International Journal of Oncolo gy ,2005,22(3):234-238.
    1. Metge BJ, Liu S, Riker AIFodstad O,et al. Elevated osteopontin levels in metastatic melanoma correlate with epigenetic silencing of breast cancer metastasis suppressor
    1. Oncology. 2010;78(1):75-86.
    2. Vaidya KS, Sanchez JJ, Kim EL, et al. Expression of the Breast Cancer Metastasis Suppressor 1 (BRMS1) maintains in vitro chemosensitivity of breast cancer cells. Cancer Lett. 2009 Aug 18;281(1):100-7.
    3. Seraj MJ,Samant RS,Verderame MF,et a1.Functional evidence for a novel human breast carcinoma metastasis suppressor BRMSI,encoded at chromosome l1ql3 Cancer Res,2000.60:2764-69.
    4. Samant RS.Debies MT,Shevde LA,et a1. Identification and characterization of the murine ortholog(brms1)of breast-cancermetastasis suppressor 1(BRMS1), Int J Cancer,2002,97:15-20.
    5. Fisher ER,Palekar A,Rockette,H, et al. Pathologic findings from the National Surgical Adjuvant Breast Project (Protocol No. 4). V Significance of axillary.Cancer, 1978,42(4): 20-38.
    6. Pantelouris EM .Absence of thymus in a mouse mutant.Nature (Lond), 1968, 217: 370-371.
    7. Kozlowski JM,Fidler IJ,Campbell D,et al. Metastia behavior of human tumor cell lines grown in the nude mouse. Cancer Research.1984;44:3522-3529.
    8. Price JE, Polyzos A, Zhang RD. et al. Tumorigenicity and metastasis of human breast carcionoma cell lines in nude mice. CancerResearch. 1990;50:717-721
    9. Bao L, Matsumura Y, Badan D, et al. Effect of inoculation site and Matrigel on growth and metastasis of human breast cancer cells. Br J Cancer,199470:228-232.
    10. Fridman R,Kibbey MC,Royce LS,et al. Enhanced tumor growth of both primary and established human and murine tumor cells in athymic mice after coinjection with Matrigel. J Natl Cancer Inst,1991;83:769-774.
    11. Clarke R. human brerst cancer cell line xenografts as models of breast cancer-Theimmunobiologies of recipient mice and the characteristics of several tumorigenic cell lines. Breast Cancer Res Treat.1996:39:69-86.
    12. Saunders,MM,Seraj,MJ,Li,Z et a1.Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication.[J].Cancer research,2001,61(5)3
    13. Kerbel RS. Inhibition of tumoer angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents. BioEssays. 1991, 13:31-36
    14. Griffioen AW, Molema G. Angiogenesis: Potentials for pharmacologic intervention in the treatments of cancer vardiovascular diseases and chonic inflammation. Pharmacal Rev. 2000, 52: 238-262.
    15. Folkman J. Tumor angiogenesis:T herapeutic implication. N Engl J Med, 1971, 285: 1182-1186.
    16.杨毅军.血管内皮生长因子与肿瘤血管生成[J].中国普外基础与临床杂志,2001,8(3):205.
    17.孙宁霞.肿瘤生长抑制因子——血管抑素和内皮抑素[J].生物技术通讯,2001,12(2):144.
    18. Kerbel RS. Antiangiogenic therapy:a universal chemosensitization strategy for cance[J].Science,2006,312:1171-1175.
    19. Weidner N , Semple JP , Welch WR , et al.Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma[J].New Engl J Med,1991,324:1-8.
    20. Guidi AJ,Schnitt SJ,Fischer L,et al. Vascular permeability factor expression and angiogenesis in patients with ductal carcinoma in situ of the breast[J].Cancer,1997,80:1945-1953.
    21. Weidner N,Folkman J,Pozza F,et al. Tumor angiogenesis:a new significant and independent prognostic indicator in early-stage breast carcinoma[J].J Nat Cancer Inst,1992,84:1875-1887.
    22. Price JE. Metastasis from human breast cancer cell lines. Breast Cancer Res Treat,1996;39:93-102.
    1. Seraj MJ,Samant RS,Verderame MF,et a1.Functional evidence for a novel human breast carcinoma metastasis suppressor BRMSI,encoded at chromosome l1ql3 Cancer Res,2000.60:2764-69.
    2. Cicek M ,Samant RS,Kinter M ,et a1.Identfication of metastasis associated proteins through protein analysis of metastatic MDA-MB-435 cells[J].Clin Exp Metastasis,2004,21(2):149.
    3. Vaidya KS, Sanchez JJ, Kim EL, Welch DR,et a1.Expression of the Breast Cancer Metastasis Suppressor 1 (BRMS1) maintains in vitro chemosensitivity of breast cancer cells. Cancer Lett. 2009 Aug 18;281(1):100-7.
    4. West CM, Davidson SE, Roberts SA,,et a1.The independence of intrinsic radio-sensitivity as a prognostic factor for patient response to radiotherapy of carcinoma of the cervix.Br J Cancer. 1997;76(9):1184-90.
    5. Coco Martin JM, Mooren E, Ottenheim C, et a1.Potential of radiation-induced chromosome aberrations to predict radiosensitivity in human tumour cells.Int J Radiat Biol. 1999 Sep ; 75(9 ): 1161-1168.
    6. Kawata T, Ito H, George K, et a1.Radiation-induced chromosome aberrations in ataxia telangiectasia cells: high frequency of deletions and misrejoining detected by fluorescence in situ hybridization.Radiat Res. 2003 May;159(5):597-603.
    7. Hall LL, Thing JP, Guo XW, et a1. A brief staurosporine treatment of mitotic cells triggers premature exit from mitosis an d polyploid cell formation.Cancer Res, 1996,56: 3551-3559.
    8. Rouse J & Jackson SP. Interfaces between the detection,signaling,and repair of DNA damage. Science,2002,297:547-551.
    9. Maser RS,Depinho RA.Connecting chromsomes, crisis, and Cancer . Science ,2002,297:565-569.
    10.方福德.癌基因组学研究的新趋势[J].中华肿瘤杂志,2007,29(7).
    11. Rajagopalan H, Nowak MA, Vogelstein B, et al. The significance of unstablechromosomes in colorectal cancer. Nat Rev Cancer. 2003, 3(9): 695-701.
    12. Rajagopalan H, Lengauer C. CIN-ful cancers.Cancer Chemother Pharmacol, 2004,54 ( Suppl 1): S65-68.
    13. Brennan RJ, Schiesd RH. Persistent genomic instability in the yeast Saccharomyces cerevisiae induced by ionizing radiation and DNA-damaging agents. Radiat Res, 2001, 155: 768-777.
    14. Pandita TK, Pathak S, Ceard CR, et al. Chromosome end associations, telomeras and telomerase activity in ataxia telangiectasia cells. Cytogenet Cell Genet, 1995,71(1): 86-93.
    15. Romney CA,Paulauskis JD,Nagasawa H,et al.Multiple manifestation of X-ray-induced genomic instability in Chinese hamster ovary(CHO)cells [J].Mol Carcinog,2001,32(3):118-127.
    16. Kadhim MA,Marsden SJ,Malcolmson AM,et a1.Long-term genomic instability in human lymphocytes induced by single particle irradiation [J].Radiat Res,2001,155:122-126.
    17.王继先,金璀珍,白玉书等著.放射生物剂量学[M]北京:原子能出版社, 1997: 200- 201.
    18. Johnson R Rao P N.Mammalian cell fusion: induction of premature chromosome condensation in interphase nuclei. Nature, 1970,226(5427):717-722
    19. Kawata T ,Durante M, Frusawa Y ,et a1.G2-chromosome aberrations induced by high-LET radiations. Adv Space Res .2001,27(2):383-39l
    20. Suzuki M,Kase Kan ai, et a1.LET dependence of cell death and chromatin-break induction in normal human cells irradiated by neon-ion beams。Im J Radiat Biol,1997,72(5):497—503.
    21.杨建设等,利用PCC技术预测γ射线对肝癌细胞的辐射效应,2005原子核物理评论,22(2):213-215.
    22. Saunders,MM,Seraj,MJ,Li,Z, et al.Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication.[J].Cancer research,2001,61(5)3
    23. Wu Y, McEwen GD, Harihar S, et a1.BRMS1 expression alters the ultrastructural, biomechanical and biochemical properties of MDA-MB-435 human breast carcinoma cells: an AFM and Raman microspectroscopy study. Cancer Lett. 2010 Jul 1;293(1):82-91.
    24. Wood RD,Mitchell M,Sgouros J,et a1.Human DNA repair genes [J]. Science,2001,291:1284-1289.
    25. Matullo G,Palli D.Peluso M,et a1.XRCC1,XRCC3.XPD genepoly morphisms,smoking and 32P DNA adducts in a sample of healthy subjects [J].carcinogenesis,2001,22:1437-144.
    1. Kelly DP. Introduction to the nuclear receptor review series. Circ Res. 2010, 106(10): 1557-8.
    2. Stanisi? V, Lonard DM, O'Malley BW. Modulation of steroid hormone receptor activity. Prog Brain Res. 2010, 181: 153-76.
    3. Krasowski MD, Ni A, Hagey LR, Ekins S. Evolution of promiscuous nuclear hormone receptors: LXR, FXR, VDR, PXR, and CAR. Mol Cell Endocrinol. 2010 Jul 6.
    4. Moore TW, Mayne CG, Katzenellenbogen JA. Minireview: Not picking pockets: nuclear receptor alternate-site modulators (NRAMs). Mol Endocrinol. 2010, 24(4): 683-95.
    5. O'Malley BW, Kumar R. Nuclear receptor coregulators in cancer biology. Cancer Res. 2009, 69(21): 8217-22.
    6. Han SJ, Lonard DM, O'Malley BW. Multi-modulation of nuclear receptor coactivators through posttranslational modifications. Trends Endocrinol Metab. 2009, 20(1): 8-15.
    7. Shelly W, Draper MW, Krishnan V, Wong M, Jaffe RB. Selective estrogen receptor modulators: an update on recent clinical findings. Obstet Gynecol Surv. 2008, 63(3):163-81.
    8. Savkur RS, Burris TP. The coactivator LXXLL nuclear receptor recognition motif. J Pept Res. 2004, 63(3): 207-12.
    9. Mahajan MA, Samuels HH. Nuclear receptor coactivator/coregulator NCoA6(NRC) is a pleiotropic coregulator involved in transcription, cell survival, growth and development. Nucl Recept Signal. 2008, 6:e002.
    10. Agoulnik IU, Weigel NL. Androgen receptor coactivators and prostate cancer. Adv Exp Med Biol. 2008, 617: 245-55.
    11. Conzen SD. Minireview: nuclear receptors and breast cancer. Mol Endocrinol. 2008,22(10): 2215-28.
    12. Gururaj AE, Rayala SK, Vadlamudi RK, Kumar R. Novel mechanisms of resistance to endocrine therapy: genomic and nongenomic considerations. Clin Cancer Res. 2006, 12(3 Pt 2): 1001s-1007s.
    13. Hall JM, McDonnell DP. Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Mol Interv. 2005, 5(6): 343-57.
    14. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Str?m A, Treuter E, Warner M, Gustafsson JA. Estrogen receptors: how do they signal and what are their targets. Physiol Rev. 2007, 87(3): 905-31.
    15. Ricke WA, Wang Y, Cunha GR. Steroid hormones and carcinogenesis of the prostate: the role of estrogens. Differentiation. 2007, 75(9): 871-82.
    16. McKenna NJ, Xu J, Nawaz Z, et al. Nuclear receptor coactiva tors: multiple enzymes, multiple complexes, multiple functions. J Steroid Biochem Mol Biol, 1999, 69: 3-12.
    17. RosenfeldMG, Glass CK. Coregulator codes of transcrip tional regulation by nuclear receptors. J Biol Chem, 2001, 276: 36865-36868.
    18. HanWenling, Lou Yaxin, Tang Junmin, et al. Molecular cloning and characterization of chemokine2like factor 1 (CKLF1) , a novel human cytokine with unique structure and potential chemotactic activity. Biochem J, 2001, 357:127-135.
    19. TrussM, Bartsch J, SchelbertA, et al. Hormone induces binding of recep tors and transcrip tion factors to a rearranged nucleosome on the MMTV p romoter in vivo. Embo J, 1995, 14: 1737 -1751.
    20. Ogryzko VV, Schiltz RL, Russanova V, et al. The transcrip tional coactivators p300 and CBP are histone acetyltransferases.Cell, 1996, 87: 953-959.
    1. Jemal A, Siegel R, Xu J, et al. Cancer Statistics, 2010. CA Cancer J Clin, 2010.
    2. Welch DR,Rinker-Schaefer CW. What defines a useful marker of metastasis in human cancer[J].J Natl Cancer Inst,1999,91(16):1351-1353.
    3. Yoshida BA,Scoloff M,Welch DR,et a1.Metastasis-suppressor genes:a review and perspective on an emerging field[J].J Natl Cancer Inst,2000,92(21):1717-1730.
    4. Shirasaki F,Takata M,Hatta N,et a1.Loss of expression of the metastasis suppressor gene Kiss-1 during melanoma progression and its association with LOH of chromosonle 6q16.3-q23[J].CancerRes.2001.61(20):7422-7425.
    5. Jackson P,Rowe A,Grimm MO,et a1.An ahematively spliced KAI1 mRNA is expressed at low levels in human bladder cancers an d bladder cancer cell lines and is not associated with invasive behaviour[J].Oncol Rep,2007,18 (6):1357-1363.
    6. Nie Q, Zhu W, Liu LX, et al. The mechanism and in flu en ce on the biological behavior of human high-metastatic large cell lung cancer cell lines with transfect -ion of nm23- H1 gene. Chin J Lung Cancer, 2008,11(3): 349 - 353.
    7. Seraj MJ,Samant RS,Verderame MF,et a1.Functional evidence for a novel human breast carcinoma metastasis suppressor BRMSI,encoded at chromosome l1ql3 Cancer Res,2000.60:2764-69.
    8.秦荣,张巧玉.BRMS1的研究进展[J].重庆医学,2004,33(6):921.
    9. Nikolaev AY ,Papanikolaou NA,Li M ,et a1.Identification of a novel BRMS1-homologue protein p40 as a component of the mSin3A/p33(ING1b)/HDAC1 deacetylase complex.Biochem Biophys Res Commun,2004,323(4):1216.
    10. Samant RS.Debies MT,Shevde LA,et a1. Identification and characterization of the murine ortholog(brms1)of breast-cancermetastasis suppressor 1(BRMS1), Int J Cancer,2002,97:15-20.
    11.唐鲁兵,高海东,刘焕涛.等BRMS1 mRNA在乳腺癌中的表达与腋淋巴结转移的关系.[J].山东大学学报医学版。2005.12,(43):l163-1169.
    12. Seraj MJ,Harding MA,Gildea JJ,et a1.The relationship of BRMS1 and RhoG D12 gene expression to metastatic in lineage related human bladder cancer cell lines[J].Clin Exp Metastasis,2000,18(6):519-525.
    13. Welch DR,Rinker-Schaefer CW. What defines a useful marker of metastasis in human cancer[J].J Natl Cancer Inst,1999,91(16):1351-1353.
    14. MeehanWJ,Samant RS,Hopper JE,et a1.Breast cancer metastasis suppressor l for ms complexes with retinoblastoma-binding protein 1 an d the mSin3 histone deaeetylase comp lex and represses transcription[J].J Biol Chem,2004,279(2):1562-1569.
    15. Shevde I.A,Samant RS,Goldberg SF,et a1.Suppression of human melanoma metastasis by the metastasis suppressor gene,Exp Cell Res,2002,273(2):229.
    16. Zhang S,I in QD,DI W.Suppression of human ovarian carcinoma metastasis by the metastasis-suppressor gene,Int J Gynecol Cancer,2006,16(2):522.
    17. Liu Y,Phillip W,Smith,et a1.Breast cancer metastasis suppresor 1 modulates NF -kappaB -dependent transcription through deacetylation of RelA/p65 in non-small cell lung ccancer cells. Cancer Res,2006,1012.
    18. Marnie M,Saunders M,Seraj MJ,et a1.Breast cancer metastatic potential correlates with a breakdown in homespecific and beterospecific gap junctional intercellular communication.Cancer Res ,2001,61:1765-1767.
    19. Kapoor P,Saunders MM,I i z,et a1.Breast cancer metastatiac potential:correlation with increased heterotypic gap junctional intercellular communication between breast cancer cells and osteoblastic cells.[J].Int J Cancer,2004,25:693-697.
    20. Liu Y,Philip W,Smith,et a1.Breast cancer metastasis suppressor 1 functions as a corepressor by enhancing HDAC1-mediated deacetylation of RelA/p65 and promoting apoptosis.Mol Cell Biol,2006, Dec 25;8683 -8696.
    21. Cicek M ,Samant RS,Kinter M ,et a1.Identfication of metastasis associatedproteins through protein analysis of metastatic MDA-MB-435 cells[J].Clin Exp Metastasis,2004,21(2):149.
    22. Lalita A.Shevde,Rajeev S,et a1. BRMS1 appears to regulate osteopontin expression in metastatic breast cancer. Cancer Res,2004,45(9):315-318.
    23. Rajeev S, Samant,David Clark,et a1.A novel NF-KB site is involved in regulation of esteopentinby breast cancer metastasis suppressor 1. Cancer Res, 2007,47(6):806-808.
    24. Nikolaev AY ,Papanikolaou NA,Li M ,et a1.Identification of a novel BRMS1-homologue protein p40 as a component of the mSin3A/p33(ING1b) /HDAC1 deacetylase complex.Biochem Biophys Res Commun,2004,323(4):1216.
    25. DeWald DB,Torabinejad J,Samant RS,et al.Metastasis suppression by breast cancer metastasis suppressor 1 involves reduction of phosphoinositide signaling in MDA-MB-435 breast carcinoma cells [J].Cancer Res,2005,65(3):713-717.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700