双线性方法与混沌同步算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性科学中主要包含孤立子、混沌、分形三个部分。本文主要以符号计算系统Maple为工具,研究了非线性发展方程孤子解的求解以及混沌同步的算法。
     第一章主要回顾了孤立子研究的历史与发展以及非线性偏微分方程精确解的若干构造性方法,同时介绍了一些关于该学科领域的国内外学者所取得的成果。同时介绍了混沌同步的研究历史与现状。
     第二章主要以Hirota双线性方法为理论基础,介绍了用双线性方法求解偏微分方程孤子解的具体步骤和一些具体格式,同时给出一些常见方程的双线性形式。并且研究了KP方程,给出了KP方程的Wronskian解,并且证明了其解最后等价于普吕克关系。最后以双线性方法所能得到的解为形式,用待定系数法求得并证明了Zakharov–Kuznetsov(ZK)方程的N孤子解,其中的双线性形式由双线性算子线性部分和非线性部分组成。
     第三章首先介绍了广义Lorenz系统及其规范式,并且介绍几种常见的属于该规范式的几种系统,并分析给出这些系统变换到规范式的过程以及参数关系。通过Q-S混沌同步以及动推理格式,在符号计算软件Maple的帮助下,得到了广义Lorenz系统规范式与R?ssler系统的Q-S同步。
Nonlinear Science consists mainly of three parts: soliton, chaos and fractal. With the aid of computer algebra system Maple, this dissertation mainly studies the soliton solutions of nonlinear evolution equations and the algorithm of chaos synchronization.
     Chapter 1 of this dissertation is devoted to reviewing the history and development of the soliton theory and the construction of the nonlinear partial differential equation. In addition, some domestic achievements and abroad ones on the subject are presented. At the same time, the history and progress of the chaos synchronization are briefly introduced.
     Chapter 2 , based on Hirota bilinear method, introduces the concrete scheme of solving the soliton solution of the nonlinear partial differential equation. In addition, some bilinear forms of equations are given. By using Hirota bilinear method and Wronskian technique to consider the Wronskian solution of KP equation, it is shows that the bilinear equation is nothing but the Plücker relation for determinants. At last, combing the form of solution obtained by Hirota bilinear method with the unified structure method, we investigate the N-soliton solution of the Zakharov–Kuznetsov(ZK) equation, in which the Hirota bilinear operator form consists of linear and nonlinear part.
     Chap 3 introduces the generalized Lorenz canonical form at the beginning. Some systems which belong to the canonical form are given, and the relation between the parameter of these systems and the parameter of the canonical form are shown. Then, Q-S synchronization and the automatic reasoning for Q-S synchronization backstepping scheme and its algorithm are investigated. Based on the symbolic-numeric computation software Maple, the Q-S synchronization between the generalized Lorenz canonical form and the R?ssler system is obtained.
引文
[1] Zabusky N J.; Kruskal M D. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 1965,14:240-243.
    [2] Scott Russel J, Report on waves, Fourteen meeting of the British association for the advancement of science, John Murray, London,1844:311-390.
    [3] Kortewrg D J and deVries G, Phil. Mag., 1985,39:422.
    [4] Fermi E, Pasta J and Ulam, Studies of Nonlinear Problems,Ⅰ. Los Alamos Rep. LA 1940:1955.
    [5] Perring J K and Skyrme T H R, A Model Uniform Field Equation. Nucl. P hys., 1962, 31 :550.
    [6] Ablowitz M J and Clarkson P A, Solitons, nonlinear evolution equations and inverse scattering. Cambridge: Cambridge University Press, 1991.
    [7] Newell A C, Soliton in mathematics and physics. SIAM: Philadelphia, 1985.
    [8] Faddeev L D and Takhtajan L A, Hamiltonian method in the theory of solitons. Berlin: Springer-Verlag, 1987.
    [9] Matveev V B and Salle M A, Darboux transformation and Solitons. Berlin: Springer, 1991.
    [10]郭柏林,庞小峰,孤立子.北京:科学出版社,1987.
    [11]谷超豪等,孤立子理论中的Darboux变换及其几何应用.上海:上海科技出版社,1999.
    [12]李翊神,孤子与可积系统.上海:上海科技出版社,1999.
    [13]范恩贵,可积系统与计算机代数.北京:科学出版社,2004.
    [14]楼森岳等,非线性数学物理方法.北京:科学出版社,2006.
    [15]闫振亚,复杂非线性波的构造性理论及其应用.北京:科学出版社,2007.
    [16]陈登远,孤子引论.北京:科学出版社,2006.
    [17] Gardner C S et al. Method for solving the korteweg-de Vries equation. Phys. Rev. Lett.,1967,19:1095.
    [18] Calogere F, ed Nonlinear equations solvable by the spectral transform. Research notes in mathematics, 1978:26. Bulorgh R, Cardey P, Soliton,Topics in current physics,1980:17. Scott A C等著,段虞荣译,孤立子应用科学中的一个新概念.重资(84)034号.李翊神,特征值问题,散射与反散射理论.南京大学学报,1987.
    [19] Lax P.D. Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math., 1968,21:467.
    [20] Zakharov V E, Kuznetsov E A. On three-dimensional solitons. Sov Phys1974,39:285–8.
    [21] Wadati M. The modified Korteweg-de Vries equation. J. Phys. Soc.Jpn., 1972,32:168.
    [22] Ablowitz M.J. et al. Method for solving the sine-Gordon equation. Phys. Rev. Lett. 1973,30:1262. Nonlinear-evolution equations of physical significance. 1973, 31: 125.
    [23] Wahlquist H.D. and Estabrook F.B. Prolongation structures of nonlinear evolution equations. J.Math.Phys.,1975,16:1; Prolongation structures of nonlinear evolution equations. II. 1976,17:1293.
    [24] Wu K.,Guo H.Y. and Wang S.K. Prolongation structures of nonlinear evolution systems in higher dimensions. Commun.Theor.Phys,1983,2:1425; Guo H.Y., Wu K. andWang S.K. Inverse scattering transform and regular Riemann-Hilbert problem. Commun. Theor. Phys, 1983,2:1425; Guo H.Y., Wu K. and Wang S.K. Prolongation structure, B¨acklund transformation snd principal Homogeneous Hilbert problem in general relativity. Commun. Theor. Phys, 1983,2:883; Guo H.Y. et al. On the prolongation struction of Ernst equation. Commun. Theor. Phys, 1982,1:661.
    [25]谷超豪等,孤立子理论与应用.杭州:浙江科技出版社,1990.
    [26]屠规彰,非线性方程的逆散射解法,应用数学与计算数学,第一期,1979.
    [27]李翊神等,非线性科学选讲.中国科学技术大学出版社,1994.李翊神,一类发展方程和谱的变形.中国科学,A 1982,5: 386-390.李文献,一类微分方程组的逆散射方法.数学物理学报,1989,9:75-89.
    [28] Wahlquist H D, Estabrook F B. B?cklund transformations for solitons of the Korteweg-de Vriu equation. Phys. Rev. Lett., 1973,31:1386-1390.
    [29] Weiss J, Tabor M , Carnvale G, The Painleve property for partial diferential equations. J. Math. Phys. 1983,24:522.
    [30] Wadati M. et al., Simple derivation of B?cklund transformation from Riccati form of inverse method. Prog.Theor.Phys, 1975,53:418.
    [31] Gu C H. A unified explicit form of B?cklund transformations for generalized hierarchies of KdV equations. Lett. Math. Phys, 1986, 31: 325; Gu C H, Zhou Z X. On the Darboux matrices of B?cklund transformations for AKNS systems. Let. Math. Phys, 1987, 13: 179.
    [32]胡星标,李勇,DJKM方程的B?cklund变换及其非线性叠加公式.数学物理学报,1991,11:164-172. Hu X B .and Li Y, Superposition formulae of a fifth-order KdV equation and its modified equation. Acts. Math. Appl. Sin, 1988,4 :46-54. Hu X B and Clarkson P A , B?cklund transformations and nonlinear superposition formulae of a diferential-diference KdV equation. J. Phys. A, 1998,31:1405-1414. Hu X B, Zhu Z N, A B?cklund transformation and nonlinear superposition formula for the Belov–Chaltikian lattice. J. Phys. A, 1998,31 :4755-4716
    [33] Matveev V B and Sklyanin E K, On B?cklund transformations for many-body systems. J. Phys. A, 1998,31:2241. sklyanin E K, Canonicity of B?cklund transformation:γ-matrix approach. 1. L. D. Faddeev's Seminar on Mathematical Physia Amer.Amer. Math. Soc. Transt. Ser., 2000, 2: 201. Hone A N W, et al., B?cklund transformations for many-bodys systems related to KdV. J. Phys. A, 1999, 32: L299; B?cklund transformations for the s1(2) Gaudin magnet. 2001, 34 : 2477. Choudhury A G, Chowhury A R, Canonical and B?cklund transformations for discrete integrable systems and classical r-matrix. Phys. Lett. A, 2001,280:37.
    [34] Zeng Y B et al., Canonical explicit B?cklund transformations with spectrality for constrained flows of soliton hierarchies. Physica A, 2002, 303: 321.
    [35] Li Z B. and Wang M L, Travelling wave solutions to the two-dimensional KdV-Burgers equation. J. Phy. A, 1993, 26: 6027-6031.; Wang M L, Li Z B, Proc. of the 1994 Beijing Symposium on nonlinear evolution equations and infinite dimensional dynamics symtems. Zhongshan University Press, 1995, 181-185.;李志斌,张善卿,非线性波方程准确孤立子解的符号计算.数学物理学报,1997, 17(1):81-89.
    [36] Fan E G, Zhang H Q. A note on the homogeneous balance method. Phys. Lett. A, 1998, 246: 403-406; Fan E G, Zhang H Q. New exact solutions to a system of coupled KdV equations. Phys. Lett. A, 1998, 245: 389-392.
    [37]范恩贵,孤立子与可积系统.大连理工大学博士论文,1998.
    [38]闫振亚,非线性波与可积系统.大连理工大学博士论文,2002.
    [39]陈勇,孤立子理论中若干精确解方法的研究及机械化实现.大连理工大学博士论文,2003.
    [40]李彪,孤立子理论中若干精确解方法的研究及应用.大连理工大学博士论文,2005.
    [41] Ablowitz M J, Segur H, Solitons and the inverse scattering transformation, SIAM: Philadelphia. 1981.
    [42] Weiss J. The Painleve property for partial diferential equationsⅡ. B?cklund transformation, Lax pairs, and the Schwarzian derivative. J. Math. Phys, 1983,24:1405.
    [43] Jimbo M. et al., Painleve test for the self-dual Yang-Mills equation. Phys, Lett. A, 1982,92:59.
    [44] Fordy A.P. and Pickering A., Preprint, University of Leeds, 1991.
    [45]曾云波,与Al相联系的半Toda方程的Lax对与B?cklund变换.数学学报,1992,35:454.曾云波,递推算子与Painleve性质,数学年刊,1991,12A:778.
    [46]谢福鼎,Wu-Ritt消元法在偏微分代数方程中的应用.大连理工大学博士论文,2003.
    [47]郑学东,一类非线性偏微分方程组的求解与P-性质的机械化检验.大连理工大学硕士论文,2003.
    [48] Xu G Q, LI Z B. Symbolic computation of the Painleve test for nonlinear partial differential equations using Maple. Comput. Phys. Commun. 2004, 161: 65-75. Xu G Q, LI Z B. PDEPtest: a package for the Painleve test of nonlinear partial differential equations. Appl. Math. Comput. 2005, 169:1364-1379.
    [49] Lou S Y, KdV extensions with painleve property. J. Math. Phys. 1998,39:2112-2121. Chen L L, Lou S Y, Painlevéanalysis of a (2+1)-dimensional Burgers equation, Commun. Theor. Phys. 1998,29:313-316.楼森岳,推广的Painlevé展开及KdV方程的非标准截断解.物理学报1998,47:1937-1949.
    [50] Lie S, Arch of Math., 1881,6:328; Math. Ann., 1908,32:213.
    [51] Bateman H, Proc. London Math. Soc., 1909,8:223.
    [52] Cunningham E, Proc. London Math. Soc, 1909,8:77.
    [53] Birkhof G, Hydrodynamics-A study in logic,fact and simitude, tst ed. Princeton: Princeton University press,1950.
    [54] Ovsiannikov L V, Dokl. Akad. Nauk. USRR, 1958,118:438; 1959,125:492. Ovsiannikov L V, Group analysis of differential equations. New york: Academic Press, 1982. Venikov V A, Theory of Similarity and simulation. London: Mac Donald Technical and Scientific, 1969.
    [55] Bluman G W and Cole J D. J. Math. Mech., 1969,18 :1025.
    [56] Olver P J, Evolution equations possessing infinitely many symmetries. J. Math. Phys., 1977,18:1212. Olver P J, On the Hamiltonian structure of evolution equations. Math. Camb. Phill Soc, 1980,88:71.
    [57]夏铁成,吴方法及其在偏微分方程中的应用.大连理工博士论文,2002.
    [58] Fuchsseiner B, Fokas A S, Physica D, 1981,4:47.
    [59] Chen H H, et al, In Advance in nonlinear wave, ed L. Debnath, 1982, 233.
    [60]李翊神,朱国诚,一个谱可变演化方程的对称.科学通报,1986,19:1449;可积方程新的对称,李代数及谱可变演化方程.中国科学A,1987,30:235;“C可积”非线性方程的代数性质-(1)Burgers方程和Calogero方程.中国科学A,1989,32:1133.田畴,Burgers方程的新的强对称,对称和李代数,中国科学A,1987,30:1009.
    [61] Clarkson P A, Kruskal M D, New similarity reductions of the Boussinesqe quation. J. Math.Phys, 1989,30 :2201.
    [62] Lou S Y, A note on the new similarity reductions of the Boussinesq equation. Phys,lett. A, 1990, 151:133.
    [63] Lou S Y, Similarity solutions of the Kadomtsev-Petviashvili equation. J. Phys. A: Math. Gen. 1990,23:L649-L654; Generalized Boussinesq equation and KdV equation: Painlevéproperty, B?clund transformation and Lax pair, Scientia Sinica, 1991,34:1098-1108. Lou S Y, Ruan H Y, Nonclassical analysis and Painlevéproperty for the Kupershmidt equations. J. Phys. A: Math. Gen. 1993,26:4679-4688.
    [64] Nucci M C , Clarkson P A, The nonclassical method is more general than the direct method for symmetry reductions. An example of the FitzHugh-Nagumo equation. Phys,. Lett. A ,1992,164:49.
    [65] Lou S Y, Generalized dromion solutions of the (2+1) -dimensional KdV equation. J. Phys. A: Math. Gen. 1995,28:7227-7232. Lou S Y, Ruan H Y, Revisitation of the localized excitations of the 2+1 dimensional KdV equarion, J. Phys. A: Math. Gen. 2001,35:305-316.
    [66]范恩贵,齐次平衡法,Weiss-Tabor-Carnevale法及Clarkson-Kruskal约化法之间关系.物理学报,2000,49:1409.
    [67] Lou S Y, Tang X Y, Lin J,Similarity and conditional similarity reductions of a (2+1)-dimensional KdV equation via a direct method. J. Math. Phys. 2000,41:8286-8303.
    [68] Lou S Y, Tang X Y, Conditional Similarity Reduction Approach: Jimbo-Miwa equation. Chin. Phys. 2001,10:897-901.Tang X Y, Lin J, Lou S Y, Conditional similarity solution of the Boussinesq equation, Commun. Theor. Phys. 2001,35:399-404.
    [69] Hirota R, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett., 1971,27:1192; A variety of nonlinear networke quations generated from the B?cklund transformation for the Toda lattice. Prog. Theor. Phys. Suppl., 1976, 59: 64. J. Math. Phys. 1973,14:805.
    [70] Matsuno Y, Bilinear Transformation method. New york: A cademic,1984.
    [71] Hu X B, Rational solutions of integrable equations via nonlinear superposition for mulae. J .Phys.A , 1997, 30: 8225. Hu X B, Zhu Z N, A B?cklund transformation and nonlinear superposition formula for the Belov-Chaltikian lattice. J. Phys. A ,1998,31:4755; Some new results on the Blaszak-Marciniak lattice: B[a-umlaut] cklund transformation and nonlinear superposition formula. J. Math. Phys., 1998, 39: 4766. Hu X B, Wu Y T, A new integrable diferential-diference system and its explicit solutions. J. Phys. A, 1999, 32: 1515. Hu X B, Tam H W, Some new results on the Bszak-Marciniak, 3-field and 4-field lattices. Rep. Math. Phys, New integrable diferential-diference systems: Lax pairs; bilinear forms and soliton solutions. 2000, 46: 99. Tam H W et al., The Hirota-Satsuma coupled KdV equation and a coupled Ito system revisited. J. Phys. Soc. Jp, 2000, 69: 45. Hu X B et al, Lax pairs and B?cklund transformations for a coupled Ramani equation and its related system. Apl. Math. Lett, 2000,13:45.
    [72] Boiti M et al, On the spectral transform of a Korteweg-de Vries equation in two spatial dimensions. Inv. Probl, 1986,2:271; On a spectral transform of a KdV-like equation related to the Schrodinger operator in the plane. 1987,3:25-37.
    [73] Radha R, Lakshmanan M., Singularity analysis and localized coherent structures in (2+1)-dimensional generalized Korteweg-de Vries equations. J. Math. Phys., 1994,35:4746. Zhang J.F, Abundant dromion-like structures to the (2+1)-dimendional KdV equation. Chin.Phys, 2000,9:1.
    [74] Lou S Y, Generalized dromion solutions of the (2+1)-dimensional KdV equation. J. Phys. A, 1995,28:7227; Lou S Y, Ruan H Y, Revisitation of the localized excitations of the (2+1)-dimensional KdV equation. J. Phys. A, 2001,34:305.
    [75] Liu Q P, Hu X B, Zhang M X. Supersymmetric modified Korteweg-de Vries equation: bilinear approach. Nonlinearity, 2005,18:1597-1603.Liu Q P, Hu X B, Bilinearization of N=1 supersymmetric Korteweg-de Vries equation revisited. J.Phys.A:Math.Gen.2005, 38:6371-6378.
    [76] Miura R M, J. Math. Phys., 1968,9:1202.
    [77] M. J. Ablowitz et al, J. Math. Phys., 1971,20:991.
    [78] Wang M L, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A, 1996,216:67; Wang M L, Wang Y M, Zhou Y B, An auto-B?cklund transformation and exact solutions to a generalized KdV equation with variable coefficients and their applications. Phys. Lett. A, 2002, 303:45;Li Z B, Exact solutions for two nonlinear equations. Adv. in Math, 1997,26:129.
    [79] Gao Y T, Tian B, New families of exact solutions to the integrable dispersive long wave equations in 2+1-dimensional spaces. J.Phys.A, 1986,29:2895.
    [80]范恩贵,张鸿庆,非线性孤子方程的齐次平衡法.物理学报,47(1998):353. Fan E G, Zhang H Q, New exact solutions to a system of coupled KdV equations. Phys. Lett. A, 1998,245:389.
    [81]闫振亚,张鸿庆,两个非线性发展方程组精确解析解的研究.应用数学和力学,2001,22:825. Yan Z Y, New families of nontravlling wave solutions to a new (3+1)-dimensional potential-YTSF equation. Phys. Lett. A. 2003,318:78.
    [82]曹策问,AKNS方程组Lax对的非线性化.中国科学(A辑),33(1990):528. Lou S Y, Chen L L, Formally variable separation approach for nonintegrable models. J. Math. Phys. 1999,40:6491-6500.
    [83] Ott E, Grebogi C, Yorke J A. Phys Rev Lett 1990;64:1196.
    [84] Ditto W L, Rauseo S N, Spano M L,Experimental control of chaos. Phys. Rev. Lett., 1990,65:3211-3214.
    [85] Pecora L M, Carroll T L, Heagy J F, Synchronization in chaotic system. Phys. Rev. E, 1995,52:3420.
    [86]胡岗,萧井华,郑志刚,混沌控制.上海:上海科技教育出版社,2000.
    [87] Hirota R. Direct methods in soliton theory. Solitons. Springer Verlag; 1980.
    [88] Nakamura A, J Phys. Soc. Jpn. 1972,47:1701.
    [89] Hirota R. and Stasuma: progr. Theor. Suppl. 1976,59:64. Hirtarinta J. J.Math. Phys. 1987,28:1732, 2094, 2586.
    [90] Newell A C, soliton in mathematics and Physics. CBMS-NSF Regional conference series in applied mathematical society lecture note seris, 149, Cambridge, New York, 1991.
    [91]郭福奎,否定Hirota条件的一个简单方法.应用数学学报,1991,27:111-114.
    [92] Newell A C, Zeng Y B, The Hirota conditions, J. Math. Phys, 1986,27:2016 -2021.
    [93] Hu X B, Hirota-type equations, soliton solutions, B?cklund transformations and conservation laws. J. Partial Differential Equations, 1990,3:87-95. Hu X B, Generalized Hirota’s bilinear equations and their soliton solutions. J. Phys. A: Math. Gen., 1993,26:L465-474.
    [94]王琪,非线性偏微分方程求解和混沌同步.大连理工博士论文,2006.
    [95] Freeman N C and Nimmo J J C: Phys. Lett. 1983,95A:1.
    [96] Satsume J, J. Phys. Soc. Jpn. 48(1976)286.
    [97] Mischalkow K, Mrozek M. Chaos in the Lorenz equations: a computer assisted proof. PartⅡ: Details, Mathematics of Computation, 1998,67(223) :1023-1046.
    [98] StewartⅠ. The Lorenz attractor exists. Nature, 2002,406,948-949. Tucker W. The Lorenz attractor exists. Acad C R. Sci. Pairs, 1999, 328:1197- 1201.
    [99] Lorenz E N. Deterministic nonperiodic flow. J. Atmos. Sci., 1963,20:130- 141; The Essence of Chaos. USA: University of Washington Press, 1993.
    [100] Chen G R, Ueta T,“Yet another chaotic attractor,”Int. J. of Bifur. Chaos, 1999,9 :1465-1466.
    [101] http://risa.is.tokushima-u.ac.jp/~tetsushi/chen/.
    [102] Lu, J., G. Chen,“A new chaotic attractor coined,”Int. J. of Bifur Chaos, 12, 659-661, 2002.
    [103] Lu J H, Chen G R, Cheng D, Celikovsky S, Bridge the gap between the Lorenz system and the Chen system. Int. J. of Bifur. Chaos, 2002,12:2917-2926.
    [104] Celikovsky S, Vanecek A, Bilinear systems and chaos. Kybernetika, 1994,30 :403-424.
    [105] Celikovsky S, Chen G R, On a generalized Lorenz canonical form of chaotic systems. Int. J. of Bifur.Chaos, 2002,12:1789-1812.
    [106] Zhou T S, Chen G R, Celikovsky S, Si'lnikov chaos in the generalized Lorenz canonical form of dynamics systems. Nonlinearity, accepted, 2004.
    [107] Liu, C., T. Liu, L. Liu, K. Liu, A new chaotic attractor. Chaos, Solitons and Fractals, 2004,22:1031-1038.
    [108] Yang X S, Phys Lett A 1999,260:340. Yang X S, Chaos, Solitons & Fractals 2000,11:1365.
    [109] Yan Z Y, Chaos 2005,15:023902; Yan ZY, Phys Lett A, 2005,334:406.
    [110] Kanellakopoulos I et al., IEEE Trans. Autom. Control 1991, 36:1241. Krstic M et al, Nonlinear and Adaptive Control Design (Wile, New York, 1995).
    [111] Pankrat’ev E V, Computations in differential and dierence modules. Acta. Appl. Math, 1989,16,167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700