柑橘溃疡病菌重组单链抗体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因工程重组单克隆抗体(recombination monoclonal antibody, RMA)是90年代以来,人们利用基因工程重组技术,有目的地在基因水平上对抗体分子进行切割、拼接或修饰,或者直接合成基因序列,再将重组DNA或重组蛋白基因导入细胞表达产生的一类抗体,其化学结构特点与单克隆抗体相同,具有稳定的免疫特异性。其中单链抗体(singe chain variable fragment,ScFv)由于低或无免疫原性、分子量小、组织穿透力强,成本低,可大规模生产等特点已广泛应用于医学领域。单链抗体可以通过噬菌体展示技术或核糖体展示技术加以制备。其中,核糖体展示技术完全在体外进行,其库容量远远大于噬菌体展示文库,此外核糖体展示技术简便的建库和筛选方法,勿需选择压力,通过引入突变和重组技术来提高靶标蛋白的亲和力等优点都使核糖体展示技术显示出了诱人的发展前景。
     国内外关于植物病原菌重组抗体的研究鲜见报道。只有少数应用噬菌体展示文库筛选了几种植物病原菌单链抗体,并将其应用于诊断研究中。至今无应用核糖体展示技术筛选植物病原菌单链重组抗体的报道。柑桔溃疡病(citrus bacterial canker disease, CBCD)是影响全球柑桔种植业发展的重大检疫性病害,其病原菌为地毯草黄单胞柑桔致病变种(Xanthomonas axonopodis pv. citri),是国内外重大检疫性有害生物。因抗病品种和特效药剂缺乏,美国、巴西等主要柑桔种植大国对柑桔溃疡病仍然沿用挖除病树集中烧毁的根除方法。目前我国正在实施的柑桔非疫生产区建设,强化植物检疫,严防疫害传入的监控策略,都迫切需要建立快速、特异、准确的诊断技术及防控措施。柑橘黄单孢菌(Xac)其细胞外有一层脂多糖(LPS),其有助于菌体吸附和吸收养分,增强病菌的抗逆能力,已经证实这些胞外多糖和糖蛋白是影响寄主与病原物接触识别或抑制识别和致病的生化因子。在病原菌与寄主表面接触时,识别作用决定了寄主-病原物互作性质。LPS由类脂A、核心多糖和O特异性多糖侧链(O特异性LPS)组成。其中O特异性LPS决定病原菌的种属特异性。
     本研究应用核糖体展示技术建立抗柑橘溃疡病菌单链抗体文库,用O特异性LPS作为抗原筛选特异于柑橘溃疡病菌的单链抗体,并将筛选的单链抗体进行表达、纯化、研究其亲和力及特异性。本研究筛选的单链抗体可为柑橘溃疡病菌的血清学诊断提供诊断试剂,而且还可用于进一步研究柑橘溃疡病菌与寄主的初步识别机制,为柑橘溃疡病菌的生物防治提供理论依据。其主要研究结果如下:
     ①利用柑橘溃疡病菌细胞悬浮液免疫BALB/c小鼠,免疫后小鼠抗血清效价为2500倍左右,符合建库要求。
     ②提取小鼠脾细胞mRNA,构建的单链抗体文库重链大小为350bp左右,轻链为650bp左右,经linker (Gly3Ser)4连接后单链抗体大小为1.2kb左右。将单链抗体文库DNA克隆到大肠杆菌JM109中,随机挑选了9个克隆子测序表明,9条单链抗体序列都是开放阅读框,其重链分别属于VH1、VH2、VH3基因家簇,轻链属于VKⅠ、VKⅢ、VKⅣ亚基因家簇。每个单链抗体的互补决定区(CDRs)都为不同的CDR,其中氨基酸序列变化多样,说明构建的单链抗体文库多样性好,适合于进一步进行单链抗体的筛选。
     ③将构建的单链抗体文库进行体外转录和体外翻译后,产生了单链抗体-核糖体-mRNA(ARM)三联复合体文库。用柑橘溃疡病菌O特异性脂多糖亲和筛选翻译产生的ARM三联复合体,洗涤后,将保留的ARM复合体解离,释放mRNA,并对mRNA进行了反转录PCR扩增得到筛选后的单链抗体DNA文库,然后重复体外转录-体外翻译-亲和筛选-RT-PCR扩增过程,得到反复筛选几轮的单链抗体DNA文库。结果显示第一轮核糖体展示后回收的mRNA量非常少,分光光度计已测不出其浓度,反转录RCR后,扩增得到的条带非常弱,说明在原始未筛选的抗体文库中,能与柑橘溃疡病菌O特异性脂多糖作用的单链抗体数量较少。经过三轮筛选后,得到的mRNA量逐渐增多,经RT-PCR后,产生了比较亮的扩增条带。说明在核糖体展示过程中,抗原阳性的单链抗体得到了富集。
     ④将未经过筛选的原始单链抗体文库DNA和经过三轮筛选的单链抗体文库DNA与噬菌体表达载体pCANTAB5E相连接后,转入大肠杆菌TG1中小量表达。表达后用间接ELISA测定单链抗体与抗原的结合活性。结果表明从未经过筛选的原始单链抗体文库中随机挑取的60个克隆子表达产物与柑橘溃疡病菌O特异性脂多糖几乎没有结合能力;而从经过三轮筛选后的单链抗体文库中挑取的60个克隆子中有30%与单链抗体有较好的结合能力。从三轮筛选后的单链抗体文库中共挑取了180个克隆子,用间接ELISA法初筛到60株抗原阳性的单链抗体;然后用生物传感技术(biosensor, biacore)对筛选的抗原阳性的单链抗体进行了复筛,筛选了3株高亲和力的单链抗体(GX13、GX44和GX95)以用于下一步的表达鉴定。
     ⑤将筛选的高亲和力抗原阳性的克隆子从大肠杆菌TG1中转入高表达菌株HB2151中进行可溶性表达。并优化了表达条件。优化的表达条件如下:将单链抗体单克隆子接种于5 ml 2×YTAG中,30℃250 r/min培养过夜;次日将1ml过夜培养液加入50 ml 2×YTAG (2×YT培养基中含2%葡萄糖,100μg/ml氨苄青霉素)中,30℃250 r/min培养至OD_(600)为0.6-0.8;3500 r/min离心20 min,弃去上清;50 ml 2×YTAI(2×YT培养基中含1 mM IPTG,100μg/ml氨苄青霉素)重悬沉淀,30℃250 r/min培养7 h;3500 r/min离心20 min,沉淀用0.5 ml冰冷的1×TES (0.2 M Tris–HCl [pH 8.0], 0.5 mM EDTA, 0.5 M sucrose)重悬,再加入0.75 ml冰冷的1/4×TES,Vortex重悬,冰上孵育30 min,高速离心l0 min,留取上清,-20℃保存,此上清中含有分泌至细胞周质中的(perplasmic extract)抗体。
     ⑥单链抗体表达后,其表达产物主要集中于细胞周质提取物中,具有抗体活性。将浓缩的周质提取物进行SDS-PAGE电泳,显示在32 kDa处有一蛋白条带产生。将表达产物纯化后进行SDS-PAGE显示,在32 kDa同样有一蛋白条带产生。为了进一步验证表达的蛋白即目的蛋白,将表达产物进行了Western blot杂交,结果显示,与纯化后的电泳结果一致,在32 kDa处有单一的条带产生,说明表达纯化的蛋白即目的蛋白。
     ⑦将筛选的抗原阳性单链抗体进行了特性研究。单链抗体(GX95、GX44、GX13)特异性强、亲和力高。其与柑橘溃疡病菌近源种Xanthomonas. oryzae pv. oryzae (Xooc); Xanthomonas. campestris pv. campestri (Xcc); Xanthomonas. oryzae pv. oryzicola (Xoc);及从柑橘叶片上分离的10种腐生黄单孢菌及Bacillus subtilis; E. coli都没有交叉反应。Biacore分析其亲和力表明,单链抗体GX95、GX44和GX13的亲和常数分别为1.98×10~(10) M~(-1)、1.89×10~(10) M~(-1)、3.43×10~(10) M~(-1)。⑧对筛选的单链抗体进行了测序。用DNAplot软件分析单链抗体序列,结果表明:单链抗体GX44和GX13重链分别属于VH1基因家簇,GX95重链属于VH3基因家簇;GX44和GX13轻链属于Vk IV亚基因家簇,GX95轻链属于Vk III亚基因家簇。用Vector NTI软件对筛选的单链抗体的序列同源性进行了分析,表明GX44和GX13重链有89.67%的同源性,GX95和GX13具有92.53%的同源性。
Recombination monoclonal antibodies (RMA) are artificial constructions produced by recombining the antibody molecule or synthesizing the gene sequence with gene recombination technology and then transforming the antibody DNA into cells for expression. The RMAs keep the binding properties of classical antibody. Among the RMAs, the single chain variable fragments (ScFvs) have been widely applicated to medical researches because of its reduced immunogenicity, small molecule, high tissue penetration, low production cost. ScFvs can be made by phage display or ribosome display technology, and the former have some obvious advantages than the later, such as simple method for construction of library and selection of antibody, no panning pressure, and improved antibody affinity by introducing mutation.
     There have been few reports about recombination monoclonal antibodies against phytopathogen except several reports about selection of ScFvs for diagnosing research by phage display. There have been no reports about selection of ScFvs against phytopathogen by ribosome display. Citrus canker caused by the bacterial pathogen Xanthomonas axonopodis pv. citri (Xac), a gram-negative bacterium, is a severe bacterial disease of most commercial citrus species and cultivars around the world, as well as some citrus relatives. The pathogen is the target of quarantine efforts abroad and domestics, then the development of rapid and reliable procedures for diagnosis and control of this pathogen has been an important priority. Lippolysaccharide (LPS) is a major component of outer membrane of gram-negative bacteria, and is suspected to be an important molecule for adhesion to and infection of plants. The LPS consists of O-specific side chains, core polysaccharide and lipid A, in which the O-specific side chain determines species specificity.
     For the study presented here, the O-specific LPS of Xac was used as an antigen to pan specific ScFvs against Xac by ribosome display. The selected ScFvs can be further applied to development of diagnostic reagent of Xac and research on the interaction between Xac pathogen and citrus during the phase of initial attachment-infection process. The main results are as follows:
     ①The Xac cell suspensions were used to immune the BALB/c mice and the titer of immunized mouse was 2500-fold.
     ②The mRNA of mouse spleen cell was extracted for construction antibody library. The size of amplificated VH was 350 bp and that of VL was 650 bp. The VH and VL were ligated with the linker (Gly3Ser)4 and the assembled ScFvs were of expected 1.2 kb size. The ScFv DNA was cloned into PMD18-T, and nine clones were selected randomly for sequencing. The VH and Vk gene families of the ScFvs were designated based on Werner Muller’s database (DNAPLOT software). The heavy chains of those belonged to the VH、VH2 and VH3 and the light chains belonged to the VKⅠ, VKⅢand Vk IV subgroup, respectively. Each CDR of ScFvs was different and the amine acid sequences of the CDRs were diversity. It showed that the constructed library was diversity and could be used to selection of specific ScFvs.
     ③In each round of ribosome display, the VH/k-DNA library was used for in vitro transcription with T7 RNA polymerase and the mRNA transcripts was translated in rabbit reticulocyte lysate system to produce antibody–ribosome–mRNA (ARM) complexes. The ARM complexes were then added to the O-specific LPS-coated microtiter plates and incubated. After washing, the retained ARM complexes were dissociated and the released mRNA was recovered by RT-PCR. The progress of panning was monitored by examining the intensity of RT-PCR products on agarose gel. By the end of the first round, only a weak DNA band was visible. The quantity of RT-PCR products continually increased during the next rounds of panning. Based on the result of RT-PCR, enrichment of specific ScFvs was clearly confirmed.
     ④DNA outputs from the unselected and the third selected antibody library were ligated with express vector pCANTAB-5E and then cloned into E.coli TG1 for soluble ScFvs expression. After transformation, 120 clones from the two libraries were isolated randomly and soluble proteins of these clones were expressed. The periplasmic extracts from these clones were tested for production of antigen-specific ScFvs by indirect ELISA. The result showed that all the isolated clones from the unselected library had little binding activity to O-specific LPS, but about 30% of the clones from the third selected library had a good conjugation activity. It also indicated that the ScFvs against O-specific LPS were enriched by ribosome display. Approximately 180 clones from the third selected library were analyzed by ELISA and about 60 clones of those reacted positively with O-specific LPS. Among them, 3 clones showed high affinity by Biacore analysis.
     ⑤The selected antigen-positive ScFvs were transferred into HB2151 for high soluble expression. Briefly, 1ml overnight culture was added to 50 ml of freshly prepared 2×YT medium containing 100μg/ml ampicillin and 2% (w/v) glucose and cultured at 30℃with shaking at 250 r/min until they reached an absorbance of 0.6-0.8 at 600 nm. Then the cells were centrifuged and the supernatants were removed. The sediment cells were resuspended in 50 ml of freshly prepared 2×YT containing 100μg/ml ampicillin and 1 mM IPTG, and then incubated for 7 h at 30℃with shaking at 250 r/min. The cells were pelleted and resuspended in 0.5 ml ice-cold 1×TES buffer (0.2 M Tris–HCl [pH 8.0], 0.5 mM EDTA, 0.5 M sucrose) and 0.75 ml icecold 1/4×TES buffer. After incubation on ice for 30 min, the cells were pelleted by centrifugation at 10, 000 r/min for 10 min and the supernatant was retained as periplasmic extracts containing the soluble ScFvs.
     ⑥The TCA-concentrated periplamic extract and purified ScFvs were run on a denaturing polyacrylamide gel and about 32kDa protein band was produced. The TCA-concentrated periplamic extract on the denaturing polyacrylamide gel were transferred to PVDF membrane for western blot analysis. A band at 32kDa was apparent.
     ⑦The specificity of the three selected ScFvs (GX95, GX44 and GX13) was tested by indirect ELISA and Biacore analysis. The Xac and other bacteria (Xanthomonas. oryzae pv. oryzae, Xooc; Xanthomonas. campestris pv. campestri, Xcc; Xanthomonas. oryzae pv. oryzicola, Xoc; B. subtilis; E. coli and 10 saprophytic xanthomonads isolated from leaves of healthy citrus) were tested. The results showed that the three ScFvs had good activity with Xac, while no cross reaction with the other bacteria. The equilibrium constant (KA) determined by BIAcore analysis for GX13, GX44 and GX95 were 1.98×10~(10) M~(-1), 1.89×10~(10) M~(-1) and 3.43×10~(10) M~(-1), respectively.
     ⑧The three ScFv GX95, GX44 and GX13 were sequenced. Using the DNA sequences, the VH and Vk gene families of the ScFvs were designated based on Werner Muller’s database (DNAPLOT software). The heavy chain of ScFv GX44 and GX13 belonged to the VH1 gene family and that of GX95 belonged to the VH3 gene family. The light chain of GX44 and GX13 belonged to the Vk IV subgroup and that of GX95 belonged to the Vk III subgroup. Sequencing alignment using the Vector NTI software showed that the VH of GX44 and GX13 shared 89.67% homology and the Vk of GX95 and GX13 shared 92.53% homology.
引文
[1] Hudson PJ. Recombinant antibody fragments. Current Opinion in Biotechnology, 1998, 9: 395- 402.
    [2] Kabat EA, Wu TT. Identical V region amino acid sequences and segments of Sequences in antibodies of different specificities. Journal of Immunological Methods, 1991, 147: 1709-1719.
    [3] Chothia C, Lesk AM. Canonical structures for the hypervariable regions of immunoglobulins. Journal of Molecular Biology, 1987, 196: 901-917.
    [4] Wu TT, Johnson G and Kabat EA. Length distribution of CDR3 in antibodies. Proteins, 1993, 16: 1- 7.
    [5] Clackson T, Hoogenboom HR, Griffiths AD and Winter G. Making antibody fragments using phage display libraries. Nature, 1991, 352: 624-628.
    [6] Kipriyanov SM and Little MG. Generation of recombinant antibodies. Molecular Biotechnology, l999, 12: 173-201.
    [7] Chester KA, Begent RH, Robson L. Phage libraries for generation of clinically useful antibodies. Lancet, 1994, 343: 455-456.
    [8] Huston JS, Levnson D, Mudget-hunter M. Protein engineering of antibody binding site: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85 (12): 5879-5883.
    [9] Huston JS Mudgett-Hunter M, Tai MS. Protein engineering of single chain Fv analogs and fusion proteins. Methods in Enzymology, 1991, 203: 46-88.
    [10] Bird RE, Hardman KD, Jacobson JW. Single-chain antigen-binding proteins. Science, 1998, 242: 423.
    [11] Ward ES, Ggussow D, Ggrifths AD. Binding of a repertoire of single immunoglbulin variable domains secreted from Eschcerichia coli. Nature, 1989: 34(l): 544-546.
    [12] Coleher D, Bird R, Roselli M. In vivo tumor targeting of a recombinant single-chain antigen-binding protein. Journal of the National Cancer Institute, 1990, 82: 1191-1197.
    [13] Yokota T, Mlinic DE, Whitlow M. Repaid tumor penetration of a single-chain Fv and comparison with other immunogblolin forms. Cancer Research, 1992, 52: 3402-3408.
    [14] Bedzyk W, Weider K, Denzin L. Immunlogical and structural characterization of high affinity anti-fluorescein single-chain antibody. Journal of Biological Chemistry, 1990, 265: 18615-18620.
    [15] Luo D, Geng M, Noujaim T. An engineered bivalent single-chain antibody fragment that increases antigen binding activity. Biochemical Journal, 1997, 121(5): 111-114.
    [16] DeNardo SJ, DeNardo GL, Denardo DG. Antibody phage libraries for the next generation of tumor targeting radioimmuntherapeutics. Clinical Cancer Research, 1999, 5(suppl): 3213s-3218s.
    [17] Marks JD, Hoogenboom HR, Bonnert TP. Human antibodies form V-gene libraries displayed on phage. Journal of Molecular Biology, 1991, 222: 581-597.
    [18] Barbas CF, Kang AS, Lerner RA. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(16): 7978-7982.
    [19] Krebber A, Bomhauser S, Burmester J. Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system.. Journal of Immunological Methods, 1997, 201: 35-55.
    [20] DeNardo SJ, DeNardo GL, Denardo DG. Antibody phage libraries for the next generation of tumor targeting radio immuntherapeutics. Clinical Cancer Research, 1999, 5(suppl): 3213s-3218s.
    [21] Winthrop MD, DeNardo SJ, DeNardo GL. Development of a hyper immune anti-MUC-1 single chain antibody fragments phage display library for targeting breast cancer. Clinical Cancer Research, 1999, 5 (10 Suppl): 3088s-3094s.
    [22] Tang Y, Jiang N, Parakkh C. Selection of linkers for a catalytic single chain antibody using phage display technology. Journal of Biological Chemistry, 1996, 271: 15628-15687.
    [23] Turner DJ, Riter MA, George AJ. Importance of the linker in expression of single-chain Fv antibody fragments: optimization of peptide sequence using phage display technology. Journal of Immunological Methods, 1997, 205: 43-54.
    [24] Korman AJ, Knudsen PJ, Kaufman JF, Strominger JL. cDNA clones for the heavy chain of HLA2DR antigens after immunopurification of polysomes by monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79: 1844-1848.
    [25] Kim DM, Kigawa T, Choi CY, Yokoyama S. A highly efficient cell2 free protein synthesis system from E. coli. European Journal of Biochemistry, 1996, 239: 881-886.
    [26] Mattheakis LC, Bhatt RR, Dower WJ. An in vitro polysome display system for identifying ligands from very large peptide libraries. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91: 9022-9026.
    [27] He M, Taussig MJ. Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Research, 1997, 25: 5132-5134.
    [28] He M, Menges M, Groves MA, Corps E, Liu H, Bruggemann M, Taussig MJ. Selection of a human anti-progesterone antibody fragment from a transgenic mouse library by ARM ribosome display. Journal of Immunological Methods, 1999, 231:105-117.
    [29] Yau KY, Groves MA, Li S, Sheedy C, Lee H. Selection of hapten-specific single-domain antibodies from a non-immunized Iiama ribosome display library. Journal of Immunological Methods, 2003, 281: 161-175.
    [30] Lee MS, Kwon MH, Kim KH, Shin HJ, Park S, Kim HI. Selection of ScFvs specific for HBV DNA polymerase using ribosome display. Journal of Immunological Methods, 2004, 284: 147-157.
    [31] Barrick J, Takahashi T, Balakin A, Roberts R. Seliction of RNA-binding peptides using mRNA-peptide fusions. Methods, 2001, 23: 287-293.
    [32] Kurz M, Gu K, Lohse PA. Psoralen photo-crosslinked mRNA-puromycin conjugates: a novel template for the rapid and facile preparation of mRNA-protein fusions. Nucleic Acids Research, 2000, 28: E83
    [33] Tabuchi I, Soramoto S, Suzuki M, Nishigaki K, Nemoto N, Husimi Y. an efficient ligation method in the making of an in vitro virus for in vitro protein evolution. Biological procedures online, 2002, 28: 49-54.
    [34] Kurz M, Gu K, Al-Gawari A, Lohse PA. cDNA-protein fusions: covalent protein-gene conjugates for the in vitro selection of peptides and proteins. Chembiochem, 2001, 2: 666-672.
    [35] Tabuchi I, Saramoto S, Nemoto N, Husimi Y. An in vitro DNA virus for in vitro protein evolution. FEBS Letters, 2001, 508: 309-312.
    [36] Amstutz P, Forrer P, Zahnd C, Plückthum A. In vitro display technologies: novel developments and applications. Biochemisches Institut, 2001, 12: 400-405.
    [37] Daugherty PS, Olsen MJ, Iverson BL. Development of an optimixed expression system for the screening of antibody libraries display on the Escherichia coli surface. Protein Engineering, 1999, 12: 613.
    [38] Irving RA; Coia G, Roberts A, Nuttall SD, Hudson PJ. Ribosome display and affinity maturation: from antibodies to single V-domains and steps towards cancer therapeutics. Journal of Immunological Methods, 2001, 248: 31-45.
    [39] Hanes J, Pluckthun A. In vitro selection and evolution of functional protein by using ribosome display. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94: 4937-4942.
    [44] Bonelamp F, Dalboge H, Christensen T. Translation rates of individual codons are not correlated with tRNA abundances or with the frequencies of utilization in Escherichia coli. Journal of Bacteriology, 1989, 171: 5812-5816.
    [41] Schaffitzel C, Berger I, Postberg J. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with stylonychia lemnae macronuclei. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(15): 8572-8577.
    [42] Amstutz P, Pelletier JN, Guggisber A. In vitro selection for catalytic activity with ribosome display. Journal of the American Chemical Society, 2002, 124: 9396.
    [43] Ryabova LA, Desplancq D, Spirin AS. Functional antibody production using cell-free translation: effects of protein disulfide isomerase and chaperones. Nature Biotechnology, 1996, 15: 79-84.
    [44] Hanes J, Jermutus L, Schaffitzel C. Comparision of Escherichia coil and reticulocyte ribosome display systems. FEBS Letters, 1999, 450: 105-110.
    [45] Coia G, Pontes-Braz L, Nuttall SD, Hudson PJ, Irving RA. Panning and selection of proteins using ribosome display. Journal of Immunological Methods, 2001, 254: 191-197.
    [46] Jermutus L, Kolly R, Foldes-Papp Z,Hanes J, Rigler R,Pluckthun A. Ligand binding of a ribosome-displayed protein detected in solution at single molecule level by fluorescence correlation spectroscopy. European Biophysics Journal, 2002, 31: 179-184.
    [47] Jermutus L, Honegger A, Schwesinger F, Hanes J, Plückthun A. Tailoring in vitro evolution for protein affinity or stability. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 75-80.
    [48] Hanes J, Schaffitzel C, Knappik A. Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nature Biotechnology, 2000, 18: 1287.
    [49] Bieberich E, Kapitonov D, Tencomnao T. Protein-ribosome-mRNA display:affinity isolation of enzyme-ribosome-mRNA complexes and cDNA cloning in a singletube reaction. Analytical Biochemistry, 2001, 287: 294.
    [50] Matsuura T, Pluckthun A. Selection based on the folding properties of proteins with ribosome display. FEBS Letters, 2003, 539: 24-28.
    [51] Lamla T, Erdmann VA. Searching sequence space for high-affinity binding peptides using ribosome display. Journal of Molecular Biology, 2003, 329(2): 381.
    [52] Li M. Applications of display technology in protein analysis. Nature Biotechnology, 2000, 18: 1251-1256.
    [53] Francisco JA and Georgiou G. The expression of recombinant proteins on the external surface of Escherichia coil. Biotechnological applications. Annals of the New York Academy of Sciences, 1994, 745: 372-382.
    [54] Perez L, Vazquez JE, Ayala M. Production, purification and characterization of an (anti-carcinoembryonic antigen) recombinant single-chain Fv antibody fragment. Biotechnology and Applied Biochemistry, 1996, 24:79-82.
    [55] Zhou-G, Liu-KD, Sun-HC. Expression and purification of single-chain anti-HBx antibody in Escherichia coli. Journal of Cancer Research and Clinical Oncology, 1997: 123: 609-613.
    [56] PeZhou G, Liu KD, Sun HC, Expression and purification of single-chain anti-HBx antibody in Escherichia coli. Journal of Cancer Research and Clinical Oncology, 1997, 123: 609-613.
    [57] Kipriyanov SM, Moldenhaner G, Little M. High level production of soluble single chain antibodies in small-scale Escherichia colic cultures. Journal of Immunological Methods, 1997, 200: 69-77.
    [58] Thompson J, Pope T, Tung JS. Affinity maturation of a high-affinity human monoclonal antibody against the third hypervariable loop of human immunodeficiency virus: use of phage display to improve affinity and broaden strain reactivity. Journal of Molecular Biology, 1996, 256: 77-88.
    [59] Daugherty PS, Chen G, Olson MJ. Antibody affinity maturation using bacterial surface display. Protein Engineering, 1998, 11: 825-832.
    [60] Chowdhury PS and Pastan I. Improving antibody affinity by mimicking somatic hypermutation in vitro. Nature Biotechnology, 1999, 17: 568-572.
    [61] Sheets MD, Amersdorfer P, Finnem R. Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc Natl Acad Sci USA, 1998, 95: 6157-6162.
    [62] Hawkins R, Russell S and Winter G. Selection of phage antibodies by binding affinity. Mimicking affinity maturation. Journal of Molecular Biology, 1992, 226: 889-896.
    [63] Marks JD, Griffiths AD, Malmqvist M. By –passing immunization: building high affinity human antibodies by chain shuffling. Biotechnology, 1992, 10(7): 779-783.
    [64] Sblatero D and Bradbury A. A definitive set of oligonucleotide primers for amplifying human V regions. Immunotechnology, 1998, 3: 271-278.
    [65] de Kruif J, Boel E and Logtenberg T. Selection and application of human single chain Fv antibody fragments from a semi-synthetic phage antibody display library with designed CDR3 regions. Journal of Molecular Biology, 1995, 248: 97-105.
    [66] Soderlind E, Strandberg L, Jirholt P. Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nature Biotechnology, 2000, 18: 852-856.
    [67] Jager M and Pluckthun A. Domain interactions in antibody Fv and scFv fragments: effects on unfolding kinetics and equilibria. FEBS Letters, 1999, 462: 307-312.
    [68] Ewert S, Huber T, Honegger A and Pluckthun A. Biophysical Properties of Human antibody variable domains. Journal of Molecular Biology, 2003, 325: 531-553.
    [69] Adams GP. Improving the tumor specificity and retention of antibody-based molecules. In Vivo, 1998, 12: 121-134.
    [70] Nieba L, Honegger A, Krebber C and Pluckthun A. Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment. Protein Engineering, 1997, 10: 435-444.
    [71] Ohage E and Steipe B. Intrabody construction and expression. I. The critical role of VL domain stability. Journal of Molecular Biology, 1999, 291: 1119-1128.
    [72] Willuda J, Honegger A, Waibel R. High thermal stability is essential for tumor targeting of antibody fragments: engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment. Cancer Research, 1999, 59: 5758-576.
    [73] Civerolo EL, Fan F. Xanthomonas enzyme-linked immunosorbent assay campestris pv. citri. Plant Disease, 1982(66): detection and identification by 231-236.
    [74] 戴芳澜, 相望年, 郑儒永. 中国经济植物病原名录[M]. 北京: 科学出版社,1958, 79 -94.
    [75] Koizumi M. Citrus canker: the world situation [A]. Timmer LW. Citrus canker: an international perspective[C]. University of Florida Grainesville, Florida, USA. 1985, 2- 7.
    [76] Gottwald TR, McGuire RO, Garran S. Asiatic citrus canker: spatial and temporal spread in simulated new planting situations in Argentina. Phytopathology, 1988(78):739-745.
    [77] Gottwald TR, Timmer LW. The efficacy of windbreaks in reducing the spread of citrus canker caused by Xanthomonas campestris pv. citri. Trop Agric, 1995(72): 194-201.
    [78] Schubert TS, Miller JW. Bacterial citrus canker. Plant Pathology Circular, 20 (377): 1- 5.
    [79] Gotwald TR, Graham JH, Schubert TS. An epidemiological analysis of the spread of citrus canker in urban Miami, Florida, and synergistic interaction with the Asian citrus leafminer. Fruits, 1997(52): 371-378.
    [80] Gotwald TR, Graham JH, Schubert TS. Citrus canker in urban Miami: An analysis of spread and prognosis for the future. Citrus Industry, 1997(78): 72 -78.
    [81] 胡天其. 柑桔溃疡病发生与防治的研究综述. 世界农业,1988(7): 30 -32.
    [82] 李云锋,李祥. 柑桔溃疡病菌存活期的研究. 植物检疫,2002, 16 (2): 69 -72.
    [83] Hartung JS. Plasmid-based hybridisation probes for detection and identification of Xanthomonas campestris pv citrus canker citri. Plant Disease, 1992(76): 889-893.
    [84] Leite Jr RP. Prevention and control in the state of Parana. Fundacao IAPAR. Circular Instituto Agronomico do Parana, 1990, 61.
    [85] Graham JH, Mcguire RG, Miller JW. Survival of Xanthomonas campestris pv. citrus in citrus plant debris and soil in Florida and Argentina. Plant Disease, 1987, 71 (12):1094-1098.
    [86] Graham JH, Gottwald TR, Riley TD. Survival of Xanthomonas campestri pv. citri (Xcc) on various surfaces and chemical control of Asiatic citrus canker (ACC). (Abstc) In: Proceedings of the International Citrus Canker Research Workshop, Ft. Pierce FL, June 20-22, 2000, Online. Division of Plant Industry, Florida Department of Agriculture and Consumer Services.
    [87] Goto M, Ohta K, Okabe N. Studies on saprophytic survival of Xanthomonas citri (Hasse) Dowson: I. Detection of the bacterium from a grass (Zoysia japonica). Annuals of the Phytopathological Society. Japan, 1975(41): 9-14.
    [88] Pereira AL Watanabe K, Zagato AQ. Survival of Xanthomonas citri (Hasse) Dowson, the causal agent of “citrus canker” in the rhizosphere of guineagrass (Panicum maximum Jacq). Biologico, 1978(44): 135-138.
    [89] 吴文川, 朱淑惠,李秀珠, 等.柑桔溃疡病菌的变异. 植物保护会刊(台湾), 1986, 28 (4): 241- 252.
    [90] 刘建华,高日霞. 福建柑桔溃疡病菌分化的初步研究. 福建农学院学报,1987, 16(3): 205-213.
    [91] 王中康,庸显富,欧阳秩. 柑桔溃疡病菌菌系研究. 中国柑桔,1988, 17 (3): 14 -17.
    [92] Verniere C, Hartung JS, Pruvost OP, Civerolo EL, Alvarez AM, Maestri P, and Luiseti J. Characterization of phenotypically distinct strains of Xanthomonas axonopodis pv. citri from Southwest Asia. European journal of plant pathology, 1998(104): 477-487.
    [93] Khodakaramian G, Swings J. AFLP fingerprinting of the strains of Xanthomonas axonopodis inducing citrus canker disease in southern Iran. Journal of Phytopathology, 2002(150): 227- 231.
    [94] Cubero J, Graham JH. Genetic relationship among worldwide strains of Xanthomonas causing canker in citrus species and design of new primers for their identification by PCR. Applied Environmental Microbiology, 2002(68): 1257-1264.
    [95] Civerolo EL. Citrus bacterial canker disease: the bacterium Xanthomonas campestris pv. citri [A]. Timmer LW, ed. Citus canker: an international perspective[C]. University of Florida Grainesville, Florida, USA. 1985, 11-17.
    [96] Stall RE, Civerolo EL. Reserch relating to the recent outbreak of citrus canker in Florida. Annual Review of Phytopatholgy, 1991(29): 399-420.
    [97] Alvarez AM, Benedict AA, Mizumoto CY, Pollard LW, and Civerolo EL. Analysis of Xanthomonas campestris pv. citri and X. c. pv. citrumelo with monoclonal antibodies. Phytopathology, 1991, 81(8): 857-865.
    [98] Gabriel DW, Kingsley MT, Hunter JE. Reinstatement of Xanthomonas citri(ex Hasse) and X. phaseoli (ex Smith) to species and reclassification of all X. campestris pv. citri strains. International journal of systematic bacteriology, 1989(1): 14 -22.
    [99] Vauterin L, Swings J, Kersters K. Towands an improved taxonomy of Xanthomonas. International journal of systematic bacteriology, 1990(40): 312-316.
    [100] Young JM, Swings J, Kersters K.. Comment on the reinstatement of Xanthomonas citri (ex Hasse) Gabriel et al. 1989 and X. phaseoli (exSmith) Gabriel et al. 1989: Idication of the need for minimal standards for the genus Xanthomonas. International journal of systematic bacteriology. 1991(41): 172- 177.
    [101] Vauterin L, Hoste B, Kersters K.. Reclassification of Xanthomonas. International journal of systematic bacteriology, 1995(45): 472-489.
    [102] Vauterin L, Rademarker J, Swings J. Synopsis on the taxonomy of the genus Xanthmonas. Phytopathology, 2000(90): 677-682.
    [103] da Silva ACR, Ferro JA, Reinach FC. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 2002(417): 459-463.
    [104] 钱韦. 两种植物病原黄单胞菌基因组中同义密码子使用的分析. 植物病理学报, 2004, 34(2): 97-106.
    [105] 王中康, 唐显富, 欧阳秩. 柑桔溃疡病菌噬菌体 XCP1 检验技术研究. 中国农业科学, 1990, 23(2): 39-44.
    [106] Civerolo EL, F Fan. Xanthomonas campestris pv. citri detection and identification by enzyme-linked immunosorbent assay. Plant Disease, 1982, (66): 231-236.
    [107] 何万兴, 江式富, 宁红, 等. 用酶联免疫吸附分析技术检测柑桔溃疡病菌. 西南农业学报, 1993, 6 (增刊): 55-60.
    [108] 王中康, 舒正义, 罗怀海, 等. 应用 A 蛋白酶联法快速检测柑桔溃疡病的研究. 西南农业大学学报, 1992, 14(2): 142-146.
    [109] 王中康, 罗怀海, 舒正义, 等. 应用斑点免疫技术快速检测柑桔溃疡病菌. 西南农业大学学报, 1997, 19(6): 529-532.
    [110] 王公金, 严建民, 朱献玳, 等. 液相免疫放射分析快速鉴定柑桔溃疡病病原菌[J]. 核农学通报, 1992, 13(5): 235-237.
    [111] Hartung JS. Plasmid-based hybridization probes for detection and identification of Xanthomonas campestris pv. citri. Plant Disease. 1992, 76: 889-893.
    [112] Hartung JS, Oliver Pruvosr. Detection of Xanthomonas campestris pv. citri by hybridization and polymerase chain reaction assays. Biotchnology Advances, 1996, 14: 338.
    [113] Hartung JS, EL Civerolo. Genomic fingerprints of Xanthomonas campestris pv. citri strains from Asia, South America and Florida. Phytopathology, 1987, (77): 282-285.
    [114] Gabriel DW, Hunter J, Kingsley M. Clonal population structure of Xanthomonas campestris and genetic diversity among citrus canker strains. Molecular Plant-Microbe Interactions, 1988(1): 59-65.
    [115] Prurost OP, Hartung JS, Pubois EL. Plasmid DNA fingerprints distinguish pathotypes of Xanthomonas campestris pv. citri, the causal agent of citrus bacterial canker disease. Phytopathology, 1992, (82): 485-498.
    [116] Khodakaramian G, Swings J. AFLP fingerprinting of the strains of Xanthomonas axonopodis inducing citrus canker disease in southern Iran. Journal of Phytopathology, 2002, 150: 227-231.
    [117] Cubero J and Graham JH. Genetic relationship among worldwide strains of Xanthomonas causing canker in citrus species and design of new primers for their identification by PCR. Applied and Environmental Microbiology, 2002, 68:1257-1264.
    [118] Gottwald TR, Graham JH and Schubert TS. Citrus canker in urban Miami: An analysis of spread and prognosis for the future. Citrus Industry, 1997, 78:72-78.
    [119] Hartung JS, Pruvost OP, Villemot I and Alvarez A. Rapid and sensitive colorimetric detection of Xanthomonas axonopodis pv. citri by immunocapture and nested-polymerase chain reaction. Phytopathology, 1996, 86: 95-101.
    [120] Smith GP, Petrenko VA. Phage display. Chemistry Review, 1997, 97: 391-410.
    [121] Amstutz P, Forrer P, Zahnd C. In vitro display technologies: novel developments and applications. Biochemisches Insitut, 2001, 12: 400-405.
    [123] He M, Menges M, Groves MA, Corps E, Liu H, Bruggemann M, Taussig MJ. Selection of a human anti-progesterone antibody fragment from a transgenic mouse library by ARM ribosome display. Journal of Immunological Methods, 1999, 231: 105-117.
    [124] Baggio R, Burgstaller P, Hale SP, Putney AR, Lane M, Lipovsek D, Wright MC, Roberts RW. Identification of epitope-like consensus motifs using RNA display. Journal of Molecular Recognition, 2002, 15, 126-134.
    [125] Griep RA, Prins M, van Twisk C, Keller HJHG, Kerschbaumer RJ, Kormelink R, Goldbach RW and Schots A. Application of phage display in selecting tomato spotted wilt virus specific single-chain antibodies (scFvs) for sensitive diagnosis in ELISA. Phytopathology, 2000, 90: 183-190.
    [126] Wang SH, Zhang JB., Zhang ZP, Zhou YF, Yang RF, Chen J, Guo YC, You F, Zhang XE. Construction of single chain variable fragment (ScFv) and biscFv-alkaline phosphatase fusion protein for detection of bacillus anthracis. Analytical Chemistry, 2006, 78: 997-1004.
    [127] Chen YD, Chen TA. Expression of engineered antibodies in plants: a possible tool for spiroplasma and phytoplasma disease control. Phytopathology, 1998, 88: 1367–1371.
    [128] Malembic S, Saillard C, Bové JM and Garnier M. Effect of polyclonal, monoclonal, and recombinant (single-chain variable fragment) antibodies on in vitro morphology, growth, and metabolism of the phytopathogenic mollicute spiroplasma citri. Applied and Environmental Microbiology, 2002, 68: 2113–2119.
    [129] Le Gall F, Bové JM, Garnier M. Engineering of a single-chain variable fragment (scFv) antibody specific for the stolbur phytoplasma (Mollicute) and its expression in Escherichia coli and tobacco plants. Applied and Environmental Microbiology, 1998, 64: 4566–4572.
    [130] Hoogenboom HR, Winter G. By-passing of germline VH gene segments rearranged in vitro. Journal of Molecular Biology, 1992, 227: 381-388.
    [131] Wright M, Grim J, Deshane J. An intracellular antierbB-2 single chain antibody is specifically cytotoxic to human breast carcinoma cells overexpressong erbB-2. Gene Therapy, 1997, 4: 317-322.
    [132] Skrepnic N, Zieska AW, Robert E. Aggressibe administration of recombinant oncotoxin AR209 (anti erbB2) in athymic nude mice impant with orthotopic human non small cell lung tumors. European Journal of Cancer, 1998, 34: 1628-1633.
    [133] Dower WJ, Cwirla SE. In: Chang DC, Chassy BM, Saunders JA, Sowers AE_Eds. Guide to Electroporation and Electrofusion. Academic Press, San Diego, 1992p. 291.
    [134] Schier R, Marks JD. Efficient in vitro affinity maturation of phage antibodies using BIAcore guided selections. Hum Antibodies Hybridomas, 1996, 7(3), 97-105.
    [135] Low N, Holliger P, Winter G. Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. Journal of Molecular Biology, 1996, 260(3), 359-368.
    [136] Schier R, Bye J, Apell G, McCall A, Adams GP, Malmqvist M, Weiner LM, Marks JD. Isolation of high-affinity monomeric human anti-c-erbB-2 single chain Fv using affinity-driven selection. Journal of Molecular Biology, 1996, 255, 28-43.
    [137] Hanes J, Jermutus L, Weber-Bornhauser S, Bosshard HR, Plückthun A. Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 14130-35.
    [138] Goto Y, Hamaguchi K. The role of the intrachain disulfide bond in the conformation and stability of the constant fragment of the immunoglobulin light chain. Journal of Biochemistry, 1979, 86, 1433.
    [139] Glockshuber R, Schmidt T, Pluckthun A. The disulfide bonds in antibody variable domains: effects on stability, folding in vitro and functional expression in Escherichia coli. Biochemistry, 1992, 31, 1270.
    [140] Proba K, Worn A, Honegger A, Pluckthun A. Antibody scFv fragments without disulfide bonds made by molecular evolution. Journal of Molecular Biology, 1998, 275, 245.
    [141] Worn A, Pluckthun A. An intrinsically stable antibody scFv fragment can tolerate the loss of both disulfide bonds and fold correctly. FEBS Letters, 1998a, 427, 357.
    [142] Worn A, Pluckthun A. Mutual stabilization of VL and VH in single-chain antibody fragments, investigated with mutants engineered for stability. Biochemistry, 1998b, 37, 13120.
    [143] Patil PB, Sonti RV. Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice. BMC Microbiology, 2004, 4: 40.
    [144] van Doorn J, Ojanen-Reuhs T, Hollinger TC, Reuhs BL, Schots A, Boonekamp PM, Oudega B. Development and application of pathovar-specific monoclonal antibodies that recognize the lipopolysaccharide O antigen and the type IV fimbriae of Xanthomonas hyacinthi. Applied and Environmental Microbiology, 1999, 65: 4171-80.
    [145] Ojanen T, Helander IM, Haahtela K, Korhonen TK, Laakso T. Outer Membrane proteins and lipopolysaccharides in pathovars of Xanthomonas campestris. Applied and Environmental Microbiology, 1993, 59: 4143–51.
    [146] Lofas S, Malmqvist M, Ronnberg I. Bioanalysis with surface plasmon resonance. Sensor and Actuators, 1991, B5: 79-84.
    [147] Bartley TD, Hunt RW, Welcher AA. B61 is a ligand for ECK receptor protein-tyrosine kinases. Nature, 1994, 368: 558-560.
    [148] Stitt TN, Conn GM, Lai BJ. The anticoagulation factor protein S and its relative Gas6, are ligands for the Tyro3/Axl family of receptor tyrosine kinases. Cell, 1995, 80: 661-670.
    [149] Marengere LE, Songyang Z, Gish GD. SH2 domain specificity and activity modified by a single residue. Nature, 1994, 369: 502-505.
    [150] Seth A, Stern LJ, Ottenhoff THM. Binary and ternary complexes between T-cell receptor, class II MHC and superantigen in vitro. Nature, 1994, 369: 324-327
    [151] Chatellier J, Rauffer BN, Van Regenmortel MHV. Comparative interaction kinetics of two recombinant Fabs and of the corresponding antibodies directed to the coat protein of tobacoomosaic virus. Journal of Molecular Recognition, 1996, 9: 39-51.
    [152] Kolbinger F, Saldanha J, Hardman N. Humanization of a mouse anti-human IgE antibody: a potential therapeutic for IgE-mediated allergies. Protein Engineering, 1993, 6: 971-980.
    [153] Daiss JL, Scalice ER. Epitope mapping on BIAcore: theoretical and practical consideration. Methods: A Companion to Methods in Enzymology, 1994, 6: 143-156.
    [154] Ohlin M, Owman H, Mach M. Light chain shuffling of high affinity antibody results in a driftin epitope recognition. Molecular Immunology, 1996, 33: 47-56.
    [155] Barberis A, Pearlberg J, Simkovich N. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell, 1995, 81: 359-368.
    [156] Buckle M, Williams RM, Negroni BH. Real-time measurements of elongation by a reverse transcriptase using surface plasmon resonace. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 889-89.
    [157] Bates PJ, Dosanjh HS, Kumar S. Detection and kinetic studies of triplex formation oligodeoxynucleotides using real-time biomolecular interaction analysis. Nucleic Acids Research, 1995, 23: 3627-3632.
    [158] Ciolkowski M. DNA aptamer interaction with protein. Poster presented at Science innovation, 1993, 93' pBoston, MA.
    [159] Jung S, Honegger A, Pluckthun A. Selection for improved protein stability by phage display. Journal of Molecular Biology, 1999, 294: 163-801.
    [160] Hayhurst A. Improved expression characteristics of single-chain Fv fragments when fused downstream of the Escherichia coli maltose-binding protein or upstream of a single immunoglobulin-constant domain. Protein Expression and Purification, 2000, 18: 1-10.
    [161] Schmiedl A, Breitling F, Winter CH. Effects of unpaired cys-teines on yield, solubility and activity of different recombinant antibody constructs expressed in E1 coli. Journal of Immunological Methods, 2000, 242: 101-104.
    [162] Kipriyanov SM, Moldenhauer G, Little M. High level production of soluble single chain antibodies in small-scale Escherichia coli cultures. Journal of Immunological Methods, 1997, 200: 69-77.
    [163] Bothmann H, Pluckthun A. The periplasmic Escherichia coli pepti-dylprolyl cis, trans-isomerase FkpA.I. Increased functional expression of antibody fragments with and without cis-prolines. Journal of Biological Chemmistry, 2000, 275 (22): 17100-17105.
    [164] Yang J, Moyana T, MacKenzie S. One hundred seventy-fold increase in excretion of an FV fragment-tumor necrosis factor alpha fusion protein ( sFVPTNF-alpha) from Escherichia coli caused by the synergistic effects of glycine and triton X-100. Applied and Environmental Microbiology, 1998, 64: 2869-2874.
    [165] Chames P, Fieschi J, Baty D. Production of a soluble and active MBP-scFvfusion: favorable effect of the leaky tolR strain. FEBS Letters, 1997, 405: 224-228.
    [166] Fernandez LA, Sola I, Enjuanes L. Specific secretion of active single-chain Fv antibodies into the supernatants of Escherichia coli cultures by use of the hemolysin system. Applied and Environmental Microbiology, 2000, 66: 5024-5029.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700