应用基因打靶产生磷酸脂酶C-γ 1(PLC-γ 1)基因的定位突变导致小鼠在胚胎发生早期死亡
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在哺乳动物细胞中目前存在约10种不同的磷酸脂酶C(phospho-lipase C,PLC),它们共有三个家族:PLC-β,PLC-γ和PLC-δ。PLC参与第二信使的产生,即将磷酸脂酰肌醇二磷酸(phosphatidylinositol4,5-diphosphate,PIP2)分解为第二信使二酰基甘油(diacylglyceroI,DAG)和肌醇三磷酸(inositol 1,4,5-trisphosphate,IP3)。PLC-β(共有四种同功酶)的活性由G蛋白介导的受体调节;而目前对于PLC-δ的功能及活性调节机制尚不了解。在PLC家族中,只有PLC-γ含有SH2和SH3结构域(domain),而且可被生长因子酪氨酸受体所激活。这些生长因子包括表皮生长因子EGF(epidermal growth factor)和血小板生长因子PDGF(platelet-derived growth factor)。当受体与其配体结合并被激活后,PLC-γ1则与激活的受体偶联,继而在这些受体酪氨酸激酶的催化下,其酪氨酸残基被磷酸化了。由此活化的PLC-γ1从胞质转移到质膜上,并催化PIP2的降解。此外,PCL-γ1亦可因B或T细胞受体的激活而被激活,包括非受体的胞质酪氨酸激酶也可激活PLC-γ1的活性。
     PLC-γ有两种同功酶:PLC-γ1和PLC-γ2,它们具有非常相似的结构特征和很高的同源性。然而PLC-γ1和PLC-γ2却有着不同的表达形式和不同的染色体定位。有证据表明,PLC-γ1可能通过受体酪氨酸激酶参与细胞的增殖和分化调控;在某些人类肿瘤组织中已检测到PLC-γ1的过渡表达和扩增现象。然而,也有一些实验结果表明,激活PLC-γ1在某些特定的条件下未必能参与细胞的有丝分裂和分化调节。上述这些研究并未涉及到有关PLC-γ1与SH2和SH3结合蛋白的相互作用的非催化功能。为探讨PLC-γ1在生长和发育中的生物学功能,我们应用基因的同源重组原理,以基因打靶技术选择性地在体内破坏了PLC-γ1基因,而保留PLC-γ2基因的完整性。
In mammalian cells there are approximately ten phospholipase (PLC) enzymes, including PLC-β, PLC-γ and PLC-δ, which mediate the hydrolysis of phosphatidylinositol 4,5-diphosphate (PIP2) to the second messenger molecules inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Four PLC-β isozymes are regulated by G protein-mediated receptors, while, regulation of the four -δ isozymes is not understood. PLC-γ is the only PLC isoform which has SH2 and SH3 domains, and is activated by several growth factor tyrosine kinase receptors, for example epidermal growth factor (EGF) and platelet-derived growth factor (PDGF). Following the activation of receptor kinases by ligand binding, PLC-γ1 associates with activated receptors, and in turn is phosphorylated on tyrosine residues by these receptor tyrosine kinases. The activated PLC-γ1 then
    translocates to the membrane, and causes the hydrolysis of PIP2. PLC-γ1 activation also
    follows the activation of Rand T cell receptor and involves the activation of cytoplasmic
    tyrosine kinases, which are non-receptor tyrosine kinases.
    There are two PLC-γ isotypes, PLC-γ1 and PLC-γ2. They have a similar structural organization and high sequence homology, but different patterns of expression and chromosome location. There is evidence that PLC-γ1 may participate in cellular growth and differentiation mediated by receptor tyrosine kinases. Overexpression and amplification of PLC-γ1 has been detected in certain human cancers. However, some observations have indicated that activation of PLC-γ1 seems to be not obligatory for mitogenesis and differentiation under certain conditions. However, these studies do not rule out non-catalytic activities of PLC-γ1, such as the interaction with SH2 and SH3 binding proteins. In order to address the biological function of PLC-γ1 in growth and
引文
Anderson, D., Koch, C. A., Grey, L., Ellis, C., Moran, M. F., and Pawson, T. 1990. Binding of SH2 domains of phospholipase C-γ1, GAP, and src to activated growth, factor receptors. Science 250: 979-982
    Argeson, A. C., Druck, T., Veronese, M. L., Knopf, J. L., Buchbeng, A. M., Huebner, K, and Siracusa, L. D. 1995. Phospholipase C-γ2 (plcg2) and phospholipase C-γ1 (plcg1) map to distinct regions in the human and mouse genomes. Genomics 25: 29-35
    Aronheim, A., Engrlberg, D., Li, N., AI-Alawi, N., Schlessinger, J., and Karin, M. 1994. Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell. 78: 949-961
    Arteaga, G. L., Johnson, M. D., Todderud, G., Coffey, R. J., Carpenter, G., and Page, D. L. 1991. Elevated content of the tvrosine kinase substrate phospholipase C-γ1 in primary human breast carcinoma. Proc. Natl. Acad. Sci. USA. 88: 10435-10439
    Ausubel, F. M. et al., 1995. Current Protocols in Molecular Biology. Vol. 1, 2 and 3. John Wiley & Sons, Inc.
    Bar-Sagi D., Rotin, D., Batzer, A., Mandiyan, V., and Schlessinger, J. 1993. SH3 domains direct cellular localization of signaling molecules. Cell 74: 83-91
    Berridge, M. J. 1993. Inositol trisphosphate and calcium signalling. Nature 361: 315-325
    Bloomquist, B. T., Shortridge, DR., Schneuwly, S., Perdew, M., Montell, C., Steller, H., Rubin, G, and Pak, W. L. 1988. Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell 54: 723-733
    Bradley, A., Hasty, P., Davis, A. and Pamirez-Solis, R. 1992. Modifying the mouse: design and desire. Bio/Technology 10: 534-539
    Bradley, A., Evans, M, Kaufman, M. H., and Roberson, E. 1984. Formation of germline chimeras from embryo-derived teratocarcinoma cell lines. Nature 309: 255-256
    Bronson, S. K., and smithies, O. 1994. Altering mice by homologous recombination using embryonic stem cell. J. Biol. Chem. 269: 27155-27158
    Bristol, A, Hall, S. M., Kriz, R. W., Stahl, M. L., Fan, Y. S., Byers, M. G., Eddy, R. L., Shows, T. B., and Knopf, J. L. 1988. Phospholipase C-148: Chromosomal location and delectation mapping of functional domains. Cold Spring Harbor Symp. Quant. Biol. 53: 915-920
    Burgess, W. H., Dionne, C. A., Kaplow, J., Mudd, R., Friesel, R., Ziberstein, A., Schlessinger, J., and Jayne, M. 1990. Characterization and cDNA cloning of phospholipase C-γ1, a major substrate for heparin-binding growth factor 1 (acidic fibroblast growth factor)-activated tyrosine kinase. Mol. Cell. Biol. 10: 4770-4777
    Capeechi, M. R. 1989. Altering the genome by homologous recombination. Science 244: 1288-1292
    Carpenter, C. L., Auger, K. R., Chanudhuri, M., Yoakim, M., Schaffhausen, B., Shoelson, S., and Cantley, L. C. 1993. Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-KDa subunit. J. Biol. Chem. 268: 9478-9483
    Carpenter, G. 1992. Receptor tyrosine kinase substrates: src homology domains and signal transduction. FASEB J. 6: 3283-3289
    Carpenter, G. 1993. Intracellular signalling from the epidermal growth factor receptor. Forum 3: 616-634
    Carter, R. H., Park, D. J., Rhee, S. G., and Fearon, D. T. 1991. Tyrosine phosphorylation of??phospholipase C induced by membrane immunoglobulin in B lymphocytes. Proc. Natl. Acad. Sci. U. S. A. 88: 2745-2749
    Deng, C., and Carpecchi, M. R. 1992. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol. Cell BioL 12: 3365-337
    Diez-Martin, J. L., Graham, D.L., Petitt, R. M., and Dewald, G. W. 1991. Chromosome studies in 104 patients with polycythemia vera. Mayo. Clinic. Proc. 66: 287-299
    Di Fiore, P. P., Segatto, O., Lonardo, F., Fazioli, F., Pierce, J., and Aaronson, S. A. 1990. The carboxy-terminal domain of erbB-2 and epidermal growth factor receptor exert different regulatory effects on intrinsic receptor tyrosine kinase function and transforming activity. Mol. Cell Biol. 10: 2749-2756
    Doetschman, T., Gregg, R. G., Macda, N., Hooper, M. L., Melto, D. W., Thompson. S., and Smithies, O. 1987. Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330: 576-578
    Downing, J. R., Margolis, B. L., Zilberstein, A., Ashmun, R. A., Ullrich, A., Sherr, G. J., and Sohlessingen, J. 1989. Phospholipase C-γ1, a substrate for PDGF receptor kinase, is not phosphorylated on tyrosine during the mitogenic responses to CSF-1. EMBO J. 8: 3345-3350
    Emori, Y., Homma, Y., Sorimachi, H., Kawasaki, H., Nakanishi, O., Suzuki, K., and Takenawa, T. 1989. A second type of rat phosphoinositide-specific phospholipase C containing a src-related sequence not essential for phosphoinositide-hydrolyzing activity. J Biol. Chem. 264: 21885-21890
    Fawcett, D., Pasceri, P., Fraser, R., Cobert, M., Rossant, J., and Giguere, V. 1995. Postaxial polydactyly in forelimbs of CRABP-Ⅱ mutant mice. Development 121: 671-679
    Flick, J. S., and Thomer, J. 1993. Genetic and biochemical characterization of a phosphatidylinositol-specific phospholipase C in Saccharomyces cerevisiae. Mol. Cell. Biol. 13: 5861-5876
    Friedrich, G., and Soriano, P. 1991. Promoter traps in embryonic stem cells: A genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5: 1513-1523
    Fu, X. -Y., and Zhang, J. -J. 1993. Transcription factor p91 interacts with the epidermal growth factor receptor and mediates activation of the c-fos gene promoter. Cell 74: 1135-1145
    Goldschmidt-Clermont, P. J., Kim, J. W., Machesky, L. M., Rhee, S. G., and Pollard, T. D. 1991 Regulation of phospholipase C-γ1 by profilin and tyrosine phosphorylation. Science 251: 1231-1233
    (?) a subset of SH3 domains. Cell 75: 25-36
    Gossler, A., Joyner, A. L., Rossant, J., and Skames, W. C. 1989. Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science 244: 463-465
    Gossler, A., and Zachgo, J. 1993. Gene and enhancer trap screens in ES cell chimeras in Gene Targeting: A practicalApproach (ed. A. L. Joyner), pp. 181-227. IRL Press at Oxford University Press, England.
    Gossler, A., Joyner, A. L., Rossant, J., and Skarnes, W. C. 1989. Mouse embryonic stem cells and reporter gene constructs to detect developmentally regulated genes. Science 244: 463-465Gridley, T. 1991. Insertional versus targeted mutagenesis in mice. The New Biologist 3: 1025-1034
    Hasty, P., Rivera-Perez, J., Chang, C., and Bradley, A. 1991. Target frequency and integration pattern for insertion and preplacement vectors in embryonic stem cells. Mol. Cell, Biol. 11: 4509-4517
    Hasty, P., Ramirez-Solis, R, Krumlarf, R., and Bradley, A. 1991. Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature 350: 243-246
    Hasty, P., Rivera, P. J., Bradley, A. 1991. The length of homology required for gene targeting in embryonic stem cells. Mol. Cell Biol. 11: 5586-5591
    Hempel, W. M., and DeFranco, A. L. 1991. Expression of phospholipase C isozymes by murine B lymphocytes. J. Immunol. 146: 3713-3720
    Herskovits, J. S., et. al. 1993. Effects of mutant rat dynamin on endocytosis. J. Cell, Biol. 122: 565-578
    Hogan, B., Beddington, R., Costantini, F., and Lacy, E. 1994. Manipulating the Mouse Embryo: A Laboratory Manual (second edition). Cold Spring Harbor Laboratory Press.
    Homma, Y., Takenawa, T., Emori, Y., Sorimachi, H., and Suzuki, K. 1989. Tissue-and cell-type specific expression of mRNAs for four type of inositol phospholipid-specific phospholipase C. Biochem. Biophys. Res. Commun. 164; 406-412
    Jegalian, B. G., Miller, R. W., Wright, C. V. E., Blum, M., and De Robetis, E. M. 1992. A Hox-3.3-lacZ transgene expressed in developing limbs. Mechanisms of Development 39: 171-180
    Jones, G., and Carpenter, G. 1992. Regulation of phospholipase C isozymes. Progress in Growth Factor Research. 4: 97-106
    Joyner, A. L. 1993. Gene Targeting: A PracticalApproach. IRL Press at Oxford University Press, England.
    Joyner, A. L., Skames, W. C., and Rossant, J. 1989. Production of a mutation in mouse En-2 gene by homologous recombination in embryonic stem cells. Nature 338: 153-136
    Kashishian, A., and Cooper, J. A. 1993. Phosphorylation sites at the C-terminus of the platelet-derived growth factor receptor bind phospholipase C-γ1. Mole. Biol. Cell, 4: 49-57
    Kim, H. K., Kim, J. W., Zilberstein, A., Margolis, B., Kim, J. G., Schlessinger, J., and Rhee, S. G. 1991 PDGF stimulation of inositol phospholipid hydrolysis requires PLC-γ1 phosphorylation on tyrosine residues 783 and 1254. Cell 65: 435-441
    Kim, U-H., Fink, D., Kim, H-S., Park, D. J., Contreras, M. L., Furoff, G., and Rhee, S.G., 1991. Nerve growth factor stimulates phosphorylation ofphospholipase C-γ1 in PC12 cells. J. Biol. Chem. 266: 1359-1362
    Kim, U-H., Kim, H-S., and Rhee, S. G., 1989. Epidermal growth factor and platelet-derived growth factor promote translocation of phospholipase C-γ1 from cytosol to membrane. FEBS Lett. 270: 33-36
    Koch, C. A., Anderson, D., Moran, M. F., Ellis, C., and Pawson, T. 1991. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252: 668-674
    Kriz, R., Lin, L. L., Sultzman, L., Ellis, C., Heldin, C., Pawson, T., and Knopf, J. 1990. Proto-oncogenes in cell development. In: Ciba Foundation Symposium, Vol. 150: 112-127
    Lee, KY., Suh, P-G., Rhy, S. H., Choi, W. C., and Rhee, S. G. 1990. Phospholipase C??associated with particulate fractions of bovine brain. Proc. Natl. Acad. Sci. USA. 84: 5540-5544
    Lee, Y. H., Lee, H. J., Lee, S. J., Min, D. S., Baek, S. H., Kim, y. S., Ryu, S. H., and Suh, P. G. 1995. Down-regulation of phospholipase Cγ1 during differentiation of U937 cells. FEBS Lett. 358: 105-108
    Lev, S., Givol, D., and Yarden, Y. 1991. A specific combination of substrates is involved in signal transduction by the kit-encoded receptor. EMBO J. 10: 647-654
    Liao, F., Shin, H. S., and Rhee, S. G. 1992. Tyrosine phosphorylation of phospholipase C-γ1 induced by cross-linking of the high-affinity or low-affinity Fc receptor for IgG in U937 cells. Proc. Natl. Acad. Sci. U. S. A. 89: 3659-3663
    Margolis,B., Silvennoinen, O., Comoglio, F., Roonprapunt, C., Skoinik, E., Ullrich, A., and Sohlessingen, J. 1992. High-efficiency expression/cloning of epidermal growth factor-receptor-binding proteins with src homology 2 domains. Proc. Natl. Acad. Sci. USA 89: 8894-8898
    Margolis, B., Rhee, S. G., Felder, S., Mervic, M., Lyall, R., Levitzki, A, Ullrich, A., and Sohlessingen, J. 1989. EGF induces tyrosine phosphorylation of phospholipase C-Ⅱ: a potential mechanism of EGF receptor signaling. Cell 57: 1101-1107
    Marshall, C. J. 1995. Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal regulated kinase activation. Cell 80: 179-185
    McBride, K., Rhee, S. G., and Jaken, S. 1991. Immunocytochemical localization of phospholipase C-γ in rat embryo fibroblasts Proc. Natl. Acad. Sci. USA. 88: 7111-7115
    Meisengelder, J., Suh, P-G., Rhee, S. G., and Hunter, T. 1989. Phospholipase C-γ1 is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro. Cell 57: 1109-1122
    Melton, D. W. 1994. Gene targeting in the. mouse. BioEssays 16: 633-638
    Mitelman, F. 1991. "Catalog of Chromosome Aberrations in Cancer," 4th ed., Wiley-Liss, New York
    Mohammadi, M., Dionne, C. A., Li, W., Li, T., Honegge, A. M., Jaye, M., and Schlessinger, J. 1992. Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature 358: 681-684
    Mohammadi, M., Honegger, A. M., Rotin, D., Fischer, R., Bellot, F., Li, W., Dionne, C. A., Jaye, M., Rubinstein, M., and Schlessinger, J. 1991. A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (FIg) is a binding site for the SH2 domain of phospholipase C-γ1. Mol. Cell. Biol. 11: 5068-5078
    Morris, C. M., Honeybone, L. M., Hollings, P. W., and Fitzgerald, P. H. 1989. Localization of the SRC oncogene to chromosome band 20q11.2 and loss of this gene with deletion (20q) in two Leukemic patients. Blood 74: 1768-1773
    Muslin, A. J., Peters, K. G., and WiUiarns, L. T. 1994. Direct activation of phospholipase C-γ1 by fibroblast growth factor receptor is not required for mesoderm induction in Xenopus animal caps. Mol. Cell. Biol. 1994: 3006-3012
    Musacchio, A., Gibson, T., Rice, P., Thompson, J., and Saraste, M. 1993. The PH domain: a common piece in the structural patchwork of signaling proteins. TIBS 18: 343-348
    Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W., and Roder, J. C. 1993. Derivation??of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA. 90: 8424-8428
    Nelson, K. K., Knopf, J. L. and Siracusa, L. D., 1992. Localization of phospholipase C-γ1 to mouse chromosome 2. Mamm. Genome 3: 597-600
    Nishibe, S., Wahl, M. I., Hernandez-Sotomayor, S. M. T., Tonks, N. K, Rhee, S. G., and Carpenter, G. 1990. Increase of the catalytic activity of phospholipase C-γ1 by tyrosine phosphorylation. Science 250: 1253-1256
    Nishibe, S., Wahl, M. I., Wedegaertner, P. B., Kim, J. J., Rhee, S. G., and Carpenter, G. 1990. Selectivity of phospholipase C phosphorylation by epidermal growth factor receptor, the insulin receptor, and their cytoplasmic domains. Proc. Natl. Acad. Sci. USA. 87: 424-428
    Noh, D. Y., Lee, Y. H., Kim, S. s., Kim,Y.I., Ryu, S. H., Suh, P. G., and Park, J. G. 1994. Elevated content of phospholipase C-γ1 in colorectal cancer tissues. Cancer 73: 36-41
    Obermeier, A., Bradshaw, R. A., Seedorf, K., Choidas, A., Schlessinger, J., and Ullrich, A. 1994. Neuronal differentiation signals are controlled by nerve growth factor receptor/Trk binding sites for SHC and PLC-γ. EMBO. J 1994: 13: 1585-1590
    O'Gorman, S., Fox, D. T., and Wahl, G. M. 1991. Recombinase-mediatedgene activation and site-specific integration in mammalian cells. Science 251: 1351-1355
    Ohta, S., Matsuit, A., Nazawa, Y., and Kagawa, Y. 1988. Complete eDNA encoding a putative phospholipase c from transformed human lymphocytes. FEBS Lett. 242: 31-35
    Orban, P. C., Chui, D., and Marth, J. D. 1992. Tissue-and site-specific DNA recombination in transgenic mice. Proc. Natl. acad. Sci USA 89: 6861-6865
    Papaioannou, V., and Johnson, R. 1993. Production of chimeras and genetically defined offspring from targeted ES cells, in Gene Targeting: A practical Approach (ed. A. L. Joyner), pp. 107-146. IRL Press at Oxford University Press, England.
    Park, D. J., Min, H. K., and Rhee, S. G. 1991. IgE-induced tyrosine phosphorylation of phospholipase C-γ1 in rat basophilic leukemia cell. J. Biol. Chem. 266: 24237-24240
    Park, D. J., Rho, H. W., and Rhee, S. G. 1991. CD3 stimulation of phospholipase C-γ1 on serine and tyrosine residues in a human T-cell line. Proc. Natl. Acad. Sci. U. S. A. 88: 5453-5456
    Park, J. G., Lee, Y. H., Kim, S. S., Park, K. J., Noh, D. Y., Ryu, S. H., and Suh, P. G. 1994. Overexpression of phospholipase C-γ1 in familial adenomatous polyposis. Cancer Res. 54: 2240-2244
    Pawson, T., and Schlessinger, J. 1993. SH2 and SH3 Domains. J. Curt. Biol. 3: 434-442
    Ren, C. L., Morio, T., Shu, M. F., and Geha, R. S. 1994. Signal transduction via CD40 involves lyn kinase and phosphatidylinositol-3-kinase, and phosphorylation of phospholipase C-γ2. J. Exp. Med. 179: 673-680
    Peters, K. G., Marie, J., Wilson, E., Ives, H. E., Escobedo, J., Del Rosario, M., Mirda, D., and Williams, L. T. 1992. Point mutation-of an FGF receptor abolishes phosphatidylinositol turnover and Ca~(2+) flux but not mitogenesis. Nature 385: 678- 681
    Rhee, S. G. 1991. Inositol phospholipid-specific phospholipase C: interaction of the γ1 isoform with tyrosine kinase. TIBS 16: 297-301
    Rhee, S. G., and Choi, K. O. 1992. Regulation of inositol phospholipid specific??phospholipase C isozymes. J. Biol. Chem. 267: 12393-12396
    Ronnstrand, L., Mori, S., Arridsson, A. K., Eriksson, A., Wemstedt, C., Hellman, U., Claesson-Welsh, L., and Heldin, C. H. 1992. Identification of two C-terminal autophosphorylation sites in the PDGFβ-receptor: involvement in the interaction with phospholipase C-γ. EMBO J. 11: 3911-3919
    Ross, C. A., MacCumber, M. W., Glatt, C. E., and Snyder, S. H., 1989. Brain Phospholipase C isozymes: Differential mRNA localizations by in situ hybridization. Proc. Natl. Acad. Sci. USA. 86: 2923-2927
    Rossant, J. 1991. Gene disruption in mamds. Curr. Opinion Genet. DeveL 1: 236-240
    Rothschild, C. B. Akots, G., Fajans, S. S., and Bowden, D. W. 1992. A microsatellite polymorphism associated with the PLC (Phospholipase C) locus: Identification, mapping, and linkage to the MODY locus on chromosome 20. Genomics 13: 560-564
    Sadowski, H. B., Shuai, K., Damell, J. E., and Gilman, M. Z. 1993 A common nuclear signal transduction pathway activated by growth factor and cytokine receptor. Science 261: 1739-1744
    Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular Cloning: A laboratory manual (second edition). Cold Spring Harbor Laboratory Press.
    Schlessinger, J. 1994. SH2/SH3 signaling proteins. Curr. Opin. Genet. Dev. 4: 25-30
    Sibilia, M., and Wagner, E. F. 1995. Strain-dependent epithelial defects in mice lacking the EGF receptor. Science 269: 234-238
    Silvennoinen, O., Schindler, C., Schlessinger, J., and Levy, D. E. 1993. Ras-independent growth factor signaling by transcription factor tyrosine phosphorylation. Science. 261: 1736-1739
    Skarnes, W. C., Auerbach, B. A., and Joyner, A. L. 1992. A gene trap approach in mouse embryonic stem cells: The lac-Z reporter is activated by splicing, reflects endogenous gene expression, and is mutagenic in mice. Genes Dev. 6: 903-918
    Smicka, A. V., Hepler, J. R., Brown, K. O., and Stemweis, P. C. 1991. Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science 251: 804-807
    Smith, A. G., Heath, J. K., Donaldson, D. D., Wong, G. G., Moreau, J., Stahl, M., and Rogers, D. 1988. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336: 688-690
    Smith, M. R., Liu, Y. L., Kim, H., Rhee, S. G., and Hung, H. F. 1990. Inhibition of serum-and ras-stimulated DNA synthesis by antibodies to phospholipase C. Science 247: 1074-1077
    Smith, M. R., Ryu, S. H., Suh, P. G., Rhee, S. G., and Hung, H. F. 1989. S-phase induction and transformation of quiescent NIH 3T3 cells by microinjection of phospholipase C. Proc. Natl. Acad. Sci. USA. 86: 3659-3663
    Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A., and Kucherlapati, R. S. 1985. Insertion of DNA sequences into the human chromosomal/β-globin locus by homologous recombination. Nature 317: 230-234
    Soriano, P., Montgomery, C., Geske, R., and Bradley, A. 1991. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64: 693-702
    Sorkin, A., Helin, K., Waters    Soler, C., Beguinot, L., Sorkin, A., and Carpenter, G. 1993. Tyrosine phosphorylation of ras GTPase-activating protein does not require association with the epidermal growth factor receptor. J. Biol. Chem. 268: 22010-22019
    Soler, C., Beguinot, L., and Carpenter, G. 1994. Individual epidermal growth factor receptor autophosphorylation sites do not stringently def'me association motifs for severed SH2-containing proteins. J Bio. Biochem. 269: 12320-12324
    Spivak-Kroizman, T., Mohammadi, M., Hu, P., Yaye, M., Schlessinger, J., and Lax, I. 1994. Point mutation in the fibroblast growth factor receptor eliminates phosphatidylinositol hydrolysis without affecting neuronal differentiation of PC12 cells. J. Biol. Chem. 269: 14419-14423
    Taylor, S. J., Chae, H. Z., Rhee, S. G., and Exton, J. H. 1991 Activation of the β1 isozymes of phospholipase C by α subunits of the Gq class of G proteins. Nature (London) 350: 516-518
    teRiele, H., Maanday, E. R., and Berns, A.1992. Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl. Acad. Sci. USA 89: 5128-5132
    Thomas, K. R., Deng, C., and Carpecchi, M. R.1992. High-fidelity gene targeting in embryonic stem cell by using sequence replacement vectors. Mol. Cell Biol. 12: 2919-2923
    Threadgill, D. M., Dlugosz, A. A., Hansen, L. A., Tennenbaum, T., Lichti, U., Yee, D., LaMantia, C., Mourto, T., Herrup, K., Harris, R. C., Barnard, J. A., Yuspa, S. H., Coffey, R. J., and Magnuson, T. 1995. Targeted disruption of mouse EGF receptor: effects of genetic background on mutant phenotype. Science 169: 230-234
    Ting, A. T., Karnitz, L. M., Schoon, R. A., Abraham, R. T., and Leibson, P. J. 1992. Fc γ receptor activation induces the tyrosine phosphorylation of both phospholipase C (PLC)-γ2 in natural killer cells. J. Exp. Med. 176: 1751-1755
    Thomas, G. M., Geny, B., and Cockcroft, S. 1991. Identification of a novel cytosolic poly-phosphoinositide-specific phospholipase C (PLC-86) as the major G-protein-regulated enzyme. EMBO J. 10: 2507-2512
    Todderud, G., Wahl, M. I., Rhee, S. G., and Carpenter, G. 1990. Stimulation of phospholipase C-γ1 membrane association by epidermal growth factor. Science. 249: 296-298
    Tomas, K. R., and Capcchi, M. R. 1987. Site-directed mutagenesis by gene targeting in mouse embryo-derived, store cells. Cell 51: 503-512
    Thompson, S., Clarke, A. R., Pow, A. M., Hooper, M. L., and Melton, D. W. 1989. Germline transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 56: 313-321
    Touhara, K., Inglese, J., Pitcher, J. A., Shaw, G., and Lefkowitz, R. J. 1994. Binding of G protein β/γ-subunits to pleckstrin homology domains. J. Biol. Chem. 269: 10217-10220
    Tybulewicz, V. L. J., Crawford, C. E., Jackson, P. K., Bronson, R. T., and Mulligan, R. C. 1991. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65: 1153-1163
    Yao, L., Kawakami, Y., and kawakami, T. 1994. The pleckstrin homology domain of Bruton tyrosine kinase interacts with protein kinase C. Proc. Natl. Acad. Sci. USA
    L-??91:9175-9179
    Ullrich,A., and Schlessinger, J. 1990. Signal transduetion by receptors with tyrosine kinase activity. Cell 61:203-212
    Valius,M., Bazenet, C., and Kazlauskas,A.1993. tyrosine 1021 and 1009 are phosphorylation sites in the carboxy terminus of the platelet-derived growth factor receptor β subunit and are required for binding of phospholipase C-γ and a 64-kilodalton protein, respectively. Mole. Cell. Blot 13:133-143
    Valius,M., and Kazlauskas,A. 1993. Phospholipase C-γ1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor's mitogenic signal. Cell 73:321-334
    Van der Bliek, A.M., Redelmeier,T.E., Damke,H., Tisdale,E.J., Meyerowitz, E.M., and Schmid,S.L. 1993. Mutation in human dynamin block an intermediate stage in coated vesicle formation. J. Cell Biot 122:553-563
    Vega, Q.C., Cochet,C., Filhol,O., Chang, G.-P., Rhee,S.G., and GilI,G.N. 1992. A site of tyrosine phosphorylation in the C-terminus of the epidermal growth factor receptor is required to activate phospholipase C. Mol. Cell.Blol.12:128-135
    Vetter, M.L., Martin-Zanca, D., Parada, L., bishop,J.B., and Kaplan,D.R. 1991. Nerve growth factor rapidly stimulates phosphorylation of phospholipase C-γl by a kinase activity associated with the product of the trk protooncogene. Proc. Natl. Acad. Sci.USA 88:5650-5654
    Wahl,M.I., Jones, G.A., Nishibe,S., Rhee,S.G., and Carpenter, G. 1992 Growth factor stimulation of phospholipase C-γl activity: Comparative properties of control and activated enzymes. J.Biol. Chem. 267:10447-10456
    Wahl,M.I., Nishibe,S., Suh,P.G., Rhee,S.G., and Carpenter, G. 1989. Epidermal growth factor stimulates tyrosine phosphorylation of phospholipase C-Ⅱ independently of receptor internalization and extracellular calcium. Proc. Natl. Acad. Sci. USA 86:1568-1572
    Wahl,M.I., Olashaw,N.E., Nishibe,S., Suh,P.G., Rhee,S.G., Pledger, W.J., and Carpenter, G. 1989. Platelet-derived growth factor induces rapid and sustained tyrosine phosphorylation of PLC-γl in quiescent BALB/c3T3 cells. Mole. Cell. Biol.9:2934-2943
    Williams, R.L., Hilton,D.J., Pease,S., Wilson,T.A., Stewart, C-L., Gearing,D.P., Wagner, E.F., Metcalf, D., Nicola, N.A., and Gough,M.M. 1988. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336:684-687
    Wurst, W, and Joyner, A. 1993. Production of targeted Embryonic stem cell clones,in Gene Targeting: A practical Approach (ed. A.L.Joyner), pp.34-61. IRL Press at Oxford University Press, England.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700