黑带蛙(Rana nigrovittata)皮肤抗菌肽的分子多样性、结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量研究已经证实,两栖类动物皮肤是生物活性物质丰富的资源库。而抗菌肽(Antimicrobial peptides,AMPs)作为机体先天防御系统的重要组成部分,在两栖类皮肤分泌液中含量异常丰富。本研究中,我们以来源于中国云南西双版纳的一种蛙科动物黑带蛙(Rana,nigrovittata)为试验材料,研究其皮肤分泌液中抗菌肽的分子多样性并对其结构和功能进行研究。
     通过两步分离纯化:Sephadex G-50凝胶过滤层析和反相高压液相层析(RP-HPLC),我们从黑带蛙皮肤分泌物中初步分离到两种抗菌肽,与大多数蛙科来源的抗菌肽一样,它们C末端均有由二硫键形成的七肽环状结构,并因含有多个碱性氨基酸残基而使整个分子带正电荷。通过同源性比对并根据抗菌肽结构特点,将其分别命名为Nigroain-A1和Rugosin-RN1。为了进一步研究黑带蛙皮肤分泌液中抗菌肽的分子多样性,以对应编码蛙科抗菌肽前体信号肽区域从起始密码子开始的7个氨基酸残基的碱基序列为引物,从构建的单个黑带蛙皮肤cDNA文库中筛选抗菌肽的编码基因,我们共筛选到了199个编码抗菌肽的克隆。其中编码不同抗菌肽前体的cDNA序列共167条(Genebank登录号为EU136401-EU136567),这167条序列共编码45个新的抗菌肽。根据其分子结构特点将它们归于15个不同的抗菌肽家族,其中有21个抗菌肽分别属于Rugosin-RN、Gaegurin-6-RN、Temporin-RN和Brevinin-2-RN这4个已知的蛙科来源的抗菌肽家族,其余24个与已知的抗菌肽相似性较低,我们将它们归类到11个新的家族,分别命名为Nigroain-A,-B,-C,-D,-E,-F,-G,-H,-I,-J,-L。这些新型抗菌肽大致可分为两类,线性肽和含分子内二硫键的环状肽,且以环状肽居多,这与以前从蛙科动物分离到大量环状肽而线性肽较少的研究结果相一致。根据家族内及家族间抗菌肽序列及结构的分析结果,我们认为,黑带蛙皮肤抗菌肽的分子多样性可能是通过点突变、碱基的插入或删除、结构域的穿梭以及拼接等多种机制形成的。这15个家族抗菌肽的前体编码单一拷贝的成熟肽,其SPD区域(包括信号肽和前导肽,Signal and Propiece Domain,SPD)都非常保守,而MD区域(成熟肽区域,Maturepeptide,MD)却变化很大,说明这些抗菌肽相关基因形成了一个起源于共同祖先的多基因家族,这也是导致两栖类抗菌肽多样性产生的分子机制之一。
     对来自黑带蛙皮肤抗菌肽生物功能的分析表明,这些结构多样的抗菌肽,生物功能也表现出多样性。首先它们具有广泛的抗菌谱和高效的抗菌活性,对革兰氏阳性菌、革兰氏阴性菌包括两者耐药菌株和真菌具有很强的杀灭作用;还普遍具有促进肥大细胞脱粒、促或抗组胺释放功能;相当一部分抗菌肽具有对自由基的清除能力和对Fe~(3+)的还原力,表现出强烈的抗氧化活性;还发现同时具有丝氨酸蛋白酶抑制剂活性和凝集红细胞活性的抗菌肽;此外,有些抗菌肽还表现出溶血活性。特别是有些抗菌肽类似物已经失去抗菌活性,却表现出促进肥大细胞脱粒或抗组胺释放活性及抗氧化的功能。对这些抗菌肽一级结构的分析表明,氨基酸残基的个别突变对抗菌肽功能的影响非常明显,我们的试验结果显示可以改变抗菌肽抗菌谱的范围,对微生物的敏感程度;可以使溶血活性从强到弱;可以使抗氧化活性由无到有。可以说,单一的突变就可能很大程度上改变抗菌肽的生物活性。
     我们在黑带蛙皮肤发现一种同时具有抗菌活性,凝集兔血细胞和凝集细菌的功能,以及胰蛋白酶抑制剂活性的小分子多功能活性肽,Nigroain-A1。其仅对革兰氏阳性菌金黄色葡萄球菌(Staphylococcus aureus)具有抗菌活性,但能迅速引起革兰氏阳性、阴性菌及真菌的凝集,对兔红细胞的最小凝集浓度为15μg/ml,对胰蛋白酶的抑制常数为Ki=5.26×10~(-6)M;而且这种小分子活性肽在黑带蛙皮肤内含量丰富。这种多种活性集于一种小分子肽的现象推测主要是作为两栖类的一种集约型的防御机制。根据Nigroain-A1前体结构与抗菌肽前体序列的相似性以及三种生物活性物质都起到防御保护作用这一功能的相似性,我们推测这类抗菌肽和丝氨酸蛋白酶抑制剂以及凝集素可能来自同一祖先,长期的自然选择使它们共同的祖先基因发生分化或者先后进化出诸多不同的功能。Nigroain-A1这种小分子多肽作为多种生物活性的载体对研究基因形成机制、基因进化、生物活性物质构效关系及研制新型临床治疗药物具有重要意义。
Numerous studies have proved that the amphibian skin is a treasure abundant in bioactive substances. Antimicrobial peptides(AMPs) are an important component of the natural defence of most living organisms, and An impressive number of AMPs have been found in amphibian skin secretions. In this thesis, The molecular diversity, structures and functions of antimicrobial peptides from skin secretions of a ranid frog, Rana nigrovittata was studied.
     Two novel antimicrobial peptides which belong to two different antimicrobial families were isolated from the skin secretions of Rana nigrovittata by a two-step protocol including Sephadex G-50 and RP-HPLC, and they were named Nigroain-A1, Rugosin-RN1,respectively. As most AMPs from ranid frogs, the two peptides with antimicrobial activity share a conserved disulfide-bridged heptapeptide segment at the C-terminal, and are cationic because of several basic amino acid residues.
     By molecular cloning, 167 cDNA sequences (Genebank mumbers,EU136401-EU136567)of codeing different antimicrobial peptides precursors were obtained from a single individual skin of Rana nigrovittata. All these 167 cDNA sequences encode 45 novel antimicrobial peptides belonging to 15 divergent families, 21 of which belong to four of the known antimicrobial families previously identified in the skins of other species of Ranid frogs: Rugosin-RN,Gaegurin-6-RN,Temporin-RN and Brevinin-2-RN. The other 24 peptides show little structural similarity towards other known antimicrobial peptides and so are classified into 11 new families: Nigroain-A,-B, -C, -D, -E, -F, -G, -H, -I, -J, -L. The cDNA-encoding precursors of the 15 antimicrobial peptide families code for a single copy of the mature antimicrobial peptide and they share similar N-terminal signal and propiece peptide domain, followed by a markedly different C-terminal domain corresponding to the mature AMPs. All this novel antimicrobial peptides can be roughly placed into one of two groups: Linear peptides and Annular peptides contain a single intramolecular disulfide bond, and the latter is predominant, which is consistent with the known antimicrobial families previously identified in the skins of Ranid frogs. Our results suggest that point mutations, as well as insertion, deletion, and "shuffling" of oligonucleotide sequences can be responsible for the patterns of molecular diversification of antimicrobial peptides from skin of Rana nigrovittata. The remarkable similarity of preproregions of precursors that give rise to very different antimicrobial peptides suggests that the corresponding genes form a multigene family originating from a common ancestor,which is one of the reason of molecular diversity of amphibian AMPs.
     These structural diverse peptides exhibit multiple biological function. They have a broad spectrum of antimicrobial properties, exhibiting against Gram-positive and Gram-negative bacteria including their resistant strains, as well as fungi. Most of this novel peptides can induce And quite a few possess intensive antioxidant activities in terms of free radical scavenging activity and reducing power. we also found a muli-functional antimicrobial peptide with serine protease inhibitor and hemagglutination properties. Moreover, some of them are hemolytic peptides. Especially, some antimicrobial peptide-like peptides which have devoid of antimicrobial activity however can provoke mast cell degranulation or have anti-histamine release activity, as well as antioxidant activity. The individual mutation of amini acid residues has conspicuous influence on the antimicrobial, hemolytic and antioxidant properties.
     A muli-functional peptide from the skin of Rana nigrovittata, Nigroain-A1,which is abundant in the skin secretions of this ranid frog, only against Gram-positive bacterium {Staphylococcus aureus), but its ability to quickly agglutinate Gram-positive, Gram-negative bacteria and fungi was observed. The minimum agglutinative concentration of rabbit red cells is 15μg/ml. The inhibition constant to trypsin is 5.26×10~(-6) M. This multi-functional peptide may provide an effective defense against invading microbes and predators in the amphibian Rana nigrovittata. The precursor structural similarity of Nigroain-A1 with other antimicrobial peptides and the functional similarity of three bioactive compounds which are all direct defensive molecules against microorganisms or pests suggest that these three functional molecules might share a common ancestor. Nigroain-A1,as the multi-functional vector, play an important role in studying gene formation and evolution,structure-function relationship of bioactive substances and novel clinical drugs.
引文
1.Reddy KVR,Yedery RD,Aranha C.Antimicrobial peptides- premises and promises.International Journal of Antimicrobial Agents,2004,24:536-547.
    2.Delfino G,Brizzi R,Alvarez BB,Kracke-Berndorff R.Serous cutaneous glands in Phyllomedusa hypochondrialis(Anura,Hylidae):secretory patterns during ontogenesis.Tissue Cell,1998;30:30-40.
    3.Lacombe C,Cifuentes-Diaz C,Dunia I,Auber-Thomay M,Nicolas P,Amiche M.Peptide secretion in the cutaneous glands of South American tree frog Phyllomedusa bicolor:an ultrastructural study.Eur J Cell Biol,2000,79:631-41.
    4.Simmaco M,Mignogna G,Barra D.Antimicrobial peptides from amphibian skin:what do they tell us?In:Biopolymers,Peptide Science,1998,47:435-450.
    5.Barra D,Simmaco M.Amphibian skin:a promising resource for antimicrobial peptides.Trends Biochem,1995,13:205-209.
    6.Matutte B,Storey KB,Knoop FC,Conlon JM.Induction of synthesis of an antimicrobial peptide in the skin of the freeze-tolerant frog,Rana sylvatica,in response to environmental stimuli.FEBS Lett,2000,483:135-138.
    7.Mangoni ML,Miele R,Renda TG,Barra D,Simmaco M.The synthesis of antimicrobial peptides in the skin of Rana esculenta is stimulated by microorganisms.FASEB J,2001,15:1431-1432.
    8.Andrea CR.Antimicrobial peptides from amphibian skin:an expanding scenario.Current Opinion in Chemical Biology, 2002, 6:799-804.
    
    9. Conlon JM, Kolodziejek J, Nowotny N. Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim Biophys Acta, 2004,1696: 1-14.
    
    10. Simmaco M, Mignogna G, Barra D, Bossa F, Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding Esculentin and Brevinins and isolation of new active peptides.J Biol Chem,1994,269 :11956- 11961.
    
    11. Erspamer V, Melchiorri P. Active poly-peptides: From amphibian skin to gastrointestinal tract and brain of mammals. Trends Pharmacol Sci, 1980,1:391-395.
    
    12. Batista CVF, Scaloni A, Rigden DJ, et al. A novel heterodimeric antimicrobial peptide from the tree-frog Phyllomedusa distincta. FEBS Lett,2001, 494:85-89.
    
    13. Kamysz W, Okroj M,£ukasiak J.Novel properties of antimicrobial peptides.Acta Biochimica Polonica, 2003,50(2):461-469.
    
    14. Lai R, Ran Y. Active peptides and biological amines distributed in amphibian skin secretions.Exploraion of nature, 1999,18(67):71 -74.
    
    15. Erspamer V, Melchiorri P, Broccardo M, Erspamer GF, Falaschi P, Improota G, et al.The brain-gut-skin triangle: new peptides. Peptides, 1981, 2(Suppl.2):7-16.
    
    16. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature,2002,415:389-395.
    
    17. Mignogna G,Simmaco M,Kreil G,Barra D.Antibacterial and haemolytic peptides containing D-alloisoleucine from the skin of Bombina variegata. Embo J, 1993,12:4829-4832.
    
    18. Gibson BW, Tang D, Mandrell R, Kelly M, Spindel ER. Bombinin-like peptides with antimicrobial activity from skin secretions of the Asian toad, Bombina orientalis. J Biol Chem, 1991,266:23103-11.
    
    19. Mignogna G,Simmaco M,Barra D. In D-Amino Acids in Sequences of Secreted Peptides of Multicellular Organisms. Jolles P(Ed),Birkhauser Verl,Basel,1998:29-36.
    
    20. Shalev DE, Mor A, Kustanovich I. Structural consequences of carboxyamidation of dermaseptin S3.Biochemistry, 2002, 41:7312-7317.
    
    21. Sitaram N, Sai KP, Singh S, Sankaran K, Nagaraj R. Structure-function relationship studies on the frog skin antimicrobial peptide tigerinin 1: design of analogs with improved activity and their action on clinical bacterial Isolates.Antimicrob Agents Chemother,2002,46(7): 2279-2283.
    
    22. Maloy WL, Kari UP. Structure-activity studies on Magainins and other host defense peptides.Biopolymers, 1995, 37:105-122.
    
    23. Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta, 1999,1462:55-70.
    
    24. Bello J, Bello HR, Granados E. Conformation and aggregation of melittin: dependence on pH and concentration. Biochemistry,1982, 21:461-465.
    
    25. Basir YJ, Knoop FC , Dulka J, Conlon JM. Multiple antimicrobial peptides and peptides related to bradykinin and neuromedin N isolated from the skin secretions of the North American pickerel frog,Rana palustris.Biochim Biophys Acta,2000,1543:95-105.
    
    26. Halverson T, Basir YJ, Knoop FC, Conlon JM. Purification and characterization of antimicrobial peptides from the skin of the North American green frog Rana clamitans.Peptides, 2000,21:469-476.
    
    27. Park S, Park SH, Ann HC, Kim S, Kim SS, Lee BJ. Structural study of novel antimicrobial peptides, nigrocins, isolated from Rana nigromaculata. FEBS Lett, 2001,507:95-100.
    
    28. Sai KP, Jagannadham MV, Vairamani M, et al.Tigerinins: novel antimicrobial peptides from the Indian frog Rana tigerina. J Biol Chem, 2001,276:2701-2707.
    
    29. Goraya J, Knoop FC, Conlon JM. Ranatuerins: Antimicrobial Peptides Isolated from the skin of the American Bullfrog, Rana catesbeiana. Biochem Biophys Res Commun, 1998,250:589-592.
    
    30. Gough M, Hancock RE, Kelly NM. Antiendotoxic potential of cationic peptide antimicrobials. Infect Immun,l996,64:4922-4927.
    
    31. Li JX, Xu XQ, Xu CH, et al.Anti-infection Peptidomics of Amphibian Skin. Mol Cell Proteomics,2007, 6(5):882-894.
    
    32. Bulet P, Stocklin R, Menin L.Anti-microbial peptides:from invertebrates to vertebrates.Immunological Reviews ,2004, 198: 169-184.
    
    33. Lai R, Liu H, Hui Lee W, Zhang Y. An anionic antimicrobial peptide from toad Bombina maxima.Biochem Biophys Res Commun, 2002,295:796-799.
    
    34. Malkoski M, Dashper SG, O'Brien-Simpson NM, Talbo GH, Macris M, Cross KJ, Reynolds EC.Kappacin, a Novel Antibacterial Peptide from Bovine Milk.Antimicrob Agents Chemother, 2001,45:2309-2315.
    
    35. Lai R, Takeuchi H, Lomas LO, et al.A new type of antimicrobial protein with multiple histidines from the hard tick, Amblyomma hebraeum. FASEB J, 2004, 18:1447-1449.
    
    36. Zasloff M. Magainins,a class of antimicrobial peptides from Xenopus skin: isolation,characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA, 1987, 84(15): 5449-5453.
    
    37. Lai R, Zheng YT, Shen JH, Liu GJ, Liu H, Lee WH, Tang SZ, Zhang YAntimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima. Peptides, 2002,23:427-435.
    38.Kim JB,Iwamuro S,Knoop FC,Conlon JM.Antimicrobial peptides from the skin of the Japanese mountain frog,Rana ornativentris.J Pept Res,2001,58:349-356.
    39.Isaacson T,Soto A,Iwamuro S,Knoop FC,Conlon JM.Antimicrobial peptides with atypical structural features from the skin of the Japanese brown frog Rana japonica.Peptides,2002,23:419-425.
    40.Fredericks LP,Dankert JR.Antibacterial and Hemolytic Activity of the skin of the Terrestrial Salamander,Plethodon cinereus.Journal of Experimental Zoology,2000,287:340-345.
    41.赖仞,赵宇,杨东明.六种常见两栖类动物皮肤分泌物的生物活性比较.动物学研究,2002,23(2):113-119.
    42.Apponyi MA,Pukala TL,Brinkworth CS,et al.Host-defence peptides of Australian anurans:structure,mechanism of action and evolutionary significance.Peptides,2004,25:1035-1054.
    43.Hancock RE,Diamond G.The role of cationic antimicrobial peptides in innate host defences,Trends Microbiol,2000,8:402-410.
    44.Utsugi T,Schroit AJ,Connor J,Buccana CD,Fidler IJ.Elevated expression of phosphatidylserine in the outer leaflet of human tumor cells and recognition by activated human blood monocytes.Cancer Res,1991,51:3062-3066.
    45.Dobrzynska J,Szachowicz-Petelska B,Sulkowski S,Figaszewski Z.Changes in electric charge and phospholipids composition in human colorectal cancer cells.Mol Cell Biochem,2005,276:113-119.
    46.Yoon WH,Park HD,Lim K,Hwang BD.Effect of O-glycosylated mucin on invation and metastasis of HM7 human colon cancer cells.Biochem Biophys Res Commun,1996,222:694-699.
    47.Burdick MD,Harris A,Reid CJ,Iwamura T,Hollingsworth MA.Oligosaccharides expressed on MUC1 by pancreatic and colon tumor cell lines.J Biol Chem,1997,272:24198-24202.
    48.Zachowski A.Phospholipids in animal eukaryotic membranes:transverse asymmetry and movement.Biochem J,1993,294(Pt.1 ):1-14.
    49.Mai JC,Mi Zh,Kim SH,et al.A Proapoptotic Peptide for the Treatment of Solid Tumors.CancerResearch,2001(11):7709-7712.
    50.Kozlowska K,Nowak J,Kwiatkowski B,Cichorek M.ESR study of plasmatic membrane of the transplantable melanoma cells in relation to their biological properties.Exp Toxicol Pathol,1999,51:89-92.
    51.Sok M,Sentjurc M,Schara M.Membrane fluidity characteristics of human lung cancer.Cancer Lett,1999,139:215-220.
    52.Domagala W,Koss LG.Surface configuration of human tumor cells obtained by fine needle aspiration biopsy.Scan Electron Microsc,1980,1:101-108.
    53. Chaudhary J,Munshi M.Scanning electron microscopic analysis of breast aspirates. Cytopathology,1995,6:162-167.
    
    54. Papo N, Shai Y. Host defense peptides as new weapons in cancer treatment. Cell Mol Life Sci,2005,62:784-790.
    
    55. Rozek T,Wegener KL, Bowie JH,et al.The antibiotic and anticancer active aurein peptides from the Australian Bell Frogs Litoria aurea and Litoria raniformis.The solution structure of aurein 1.2. Eur J Biochem,2000,267:5330-5341.
    
    56. Doyle J, Brinkworth CS, Wegener KL,et al. nNOS inhibition,antimicrobial and anticancer activity of the amphibian skin peptide,citropin 1.1 and synthetic modifications.The solution structure of a modified citropin 1.1. Eur J Biochem,2003,270:1141-1153.
    
    57. Won HS,Seo MD, Jung SJ,et al.Structural determinants for the membrane interaction of novel bioactive undecapeptides derived from Gaegurin 5.J Med Chem,2006,49:4886-4895.
    
    58. Kim S, Kim SS, Bang YJ, Kim SJ, Lee BJ. In vitro activities of native and designed peptide antibiotics against drug sensitive and resistant tumor cell lines. Peptides ,2003,24:945-953.
    
    59. Cruciani RA, Barker JL, Zasloff M, Chen HC, Colamonici O. Antibiotic Magainins exert cytolytic activity against transformed cell lines through channel formation. Proc Natl Acad Sci USA,1991,88:3792-3796.
    
    60. Cruz-Chamoro L, Puertollano MA, Puertollano E,et al.In vitro biological activities of Magainin 1 alone or in combination with nisin. Peptides,2006 ,27:1201-1209.
    
    61.Soballe PW, Maloy WL, Myrga ML, Jacob LS, Herlyn M. Experimental local therapy of human melanoma with lytic Magainin peptides. Int J Cancer, 1995,60:280-284.
    
    62. Ohsaki Y, Gazdar AF, Chen HC, Johnson BE. Antitumor activity of Magainin analogues against human lung cancer cell lines. Cancer Res, 1992,52:3534-3538.
    
    63. Baker MA, Maloy WL, Zasloff M, Jacob LS. Anticancer efficacy of Magainin2 and analogue peptides. Cancer Res, 1993,53:3052-7.
    
    64. Park Y, Lee DG, Hahm KS. Antibiotic activity of Leu-Lys rich model peptides. Biotechnol Lett,2003,25:1305-1310.
    
    65. Matsuzaki K, Sugishita K, Harada M, Fujii N, Miyajima K. Interactions of an antimicrobial peptide,Magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim Biophys Acta ,1997,1327:119-130.
    
    66. Bessalle R, Kapitkovsky A, Gorea A, Shalit I, Fridkin M. All D-Magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett, 1990,274:151-155.
    
    67. Park JM, Jung JE, Lee BJ. Antimicrobial peptides from the skin of a Korean frog, Rana rugosa.Biochem Biophys Res Commun,1994,205:948-954.
    68.Oren Z,Shai Y.Mode of action of linear amphipathicα-helical antimicrobial peptides.Biopolymers,1998,47:451-463.
    69.Aboudy Y,Mendelson E,Shalit I,Bessalle R,Fridkin M.Activity of two synthetic amphiphilic peptides and Magainin-2 against herpes simplex virus types 1 and 2.Int J Pept Protein Res,1994,43(6):573-582.
    70.Vanesa C,Matanic A,Castilla V.Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus.International Journal of Antimicrobial Agents,2004,23:382-389.
    71.Belaid A,Aouni M,Khelifa R,et al.In vitro antiviral activity of dermaseptins against herpes simplex virus type 1.J Med Virol,2002,66(2):229-234.
    72.Lorin C,Saidi H,Belaid A,et al.The antimicrobial peptide dermaseptin S4 inhibits HIV-1infectivity in vitro,Virology,2005,334(2):264-275.
    73.Chinchar VG,Wang J,Murti G,et al.Inactivation of Frog Virus 3 and channel catfish by Esculentin-2P and ranatuerin-2P,two antimicrobial peptide isolated from frog skin.Virology,2001,288:351-357.
    74.Chinchar VG,Bryan L,Silphadaung U,et al.Inactivation of viruses infecting ectothermie animals by amphibian and piscine antimicrobial peptides,Virology,2004,323:268-275.
    75.Hoskin DW,Ramamoorthy A.Studies on anticancer activities of antimicrobial peptides,Biochimica et Biophysica Acta,2008,1778:357-375.
    76.Murakami T,Nakajima T,Koyanagi Y,et al.A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection,J Exp Med,1997,186:13 89-1393.
    77.Mistry N,Drobi P,et al.The anti-papillomavirus activity of human and bovine lactoferricin,Antivir Res,2007,75:258-265.
    78.Leite JR,Silva LP,Rodrigues MI,et al.Phylloseptins:a novel class of anti-bacterial and anti-protozoan peptides from the Phyllomedusa genus.Peptides,2005,26(4):565-573.
    79.Efron L,Dagan A,Gaidukov L,Mor A,Ginsburg H.Direct interaction of dermaseptin S4aminoheptanoyl derivative with intraery-throcytic malaria parasite leading to increased specific antiparasitic activity in culture.J Bio Chem,2002,277:24067-24072.
    80.Brand GD,Leite JR,Silva LP,et al.Dermaseptins from Phyllomedusa oreades and Phyllomedusa distincta.Anti-Trypanosoma cruzi activity without cytotoxicity to mammalian cells.J Biol Chem,2002,277(51):49332-49340.
    81.Agusti R,Couto AS,Alves MJM,Colli W,de Lederkremer RM.Lipids shed into the culture medium by trypomastigotes of Trypanosoma cruzi.Mem Inst Oswaldo Cruz,2000,95:97-102.
    82. Rodrigues CO, Catisti R, Uyemura SA, et al.The sterol composition of Trypanosoma cruzi changes after growth in different culture media and results in different sensitivity to digitonin-permeabilization.J Eukarvot Microbiol, 2001,48:588-594.
    
    83. Reddy KVR, Shahani SK, Meherji PK. Spermicidal activity of Magainins: in vitro and in vivo studies. Contraception, 1996,53(4): 205-210.
    
    84. Clara A, Manjramkar DD, Reddy KVR. Preclinical evaluation of Magainin-A as a contraceptive antimicrobial agent. Fertil Steril, 2004, 81: 5.
    
    85. Reddy KVR, Manjramkar DD. Evaluation of the antifertility effect of Magainin-A in rabbits. In vitro and in vivo studies. Fertil Steril ,2000,73:353-8.
    
    86. Zairi A, Belaid A, Gahbiche A, Hani K. Spermicidal activity of dermaseptins. Contraception, 2005,72(6): 447-453.
    
    87. Edelstein MC, Gretz JE, Bauer TJ, Fulgham DL, Alexander NJ, Archer DF. Studies on the in vitro spermicidal activity of synthetic Magainins. Fertil Steril, 1991, 55(3): 647-649.
    
    88. Gidalevitz D, Ishitsuka Y, Muresan AS, et al.Interaction of antimicrobial peptide protegrin with biomembranes. Proc NatlAcadSci USA, 2003,100 (11):6302-6307.
    
    89. Mystkowska ET, Niemierko A, Komar A, Sawicki W. Embryotoxicity of Magainin-2-amide and its enhancement by cyclodextrin, albumin, hydrogen peroxide and acidification. Hum Reprod, 2001,16:1457-1463.
    
    90. Sawicki W,Mystkowska ET.Contraceptive potential of peptide antibiotics. The Lancet, 1999,353:464-465.
    
    91. Lehrer RI. Editorial response: questions and answers about defensins. Clin Infect Dis, 1997, 25:1141-1142.
    
    92. Olson L, Soto AM, Knoop FC, Conlon JM. Pseudin22 : An antimicrobial peptide with low hemolytic activity from the skin of the paradoxical frog. Biochem Biophys Res Commun, 2001,288 :1001-1005.
    
    93. Gallo RL, Ono M, Povsic T, Page C, Eriksson E, Klagsbrun M, Bernfield M. Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds.Proc NatlAcadSci USA, 1994,91:11035-11039.
    
    94. Kim HS, et al. Pepsin-mediated processing of the cytoplasmic histone H_2A to strong antimicrobial peptide buforin I. J Immunol, 2000,165:3268-3274.
    
    95. Csordas A, Michl H. Isolation and structure of a haemolytic polypeptide from the defensive secretion of European Bombina species. Monatsh Chem, 1970, 101: 182-189.
    
    96. Lu Y, Li JX, Yu HN, et al. Two families of antimicrobial peptides with multiple functions from skin of rufous-spotted torrent frog, Amolops loloensis. Peptides,2006,27(12): 3085-3091.
    97. Simmaco M, Mignogna G, Barra D, Bossa F. Novel antimicrobial peptides from skin secretion of the European frog. FEBS Lett, 1993,324(2):159-161 .
    
    98. Herusimenka Y, Benincusa M, Mattiuzzo M,et alInteraction of antimicrobial peptides with bacterial polysaccharides from lung pathogens.Peptides,2005,26(7): 1127-1159.
    
    99. Chan DI, Prenner EJ, Vogel HJ.Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochimica et Biophysica Acta,2006,1758:1184-1202.
    
    100. Huang HW.Molecular mechanism of antimicrobial peptides: The origin of cooperativity. Biochimica et Biophysica Acta,2006 ,1758:1292-1302.
    
    101. Christensen B, Fink J, Merrifield RB, Mauzerall D. Channel-Forming Properties of Cecropins and Related Model Compounds Incorporated into Planar Lipid Membranes. Proc Natl Acad Sci USA, 1988, 85:5072-5076.
    
    102. Juwadi P,Vunnam S,Merrifield RB.Synthetic Melittin, Its Enantio, Retro, and Retroenantio Isomers,and Selected Chimeric Analogs: Their Antibacterial, Hemolytic, and Lipid Bilayer Action. J Am Chem Soc, 1996,118,(38): 8989-8997.
    
    103. Pouny Y, Rapaport D, Mor A, Nicolas P, and Shai Y.Interaction of antimicrobial dermaseptin and its fluorescently labeled analogs with phospholipid membranes. Biochemistry, 1992,31,(49):12416-12423.
    
    104. Wu M, Maier E, Benz R, Hancock RE. Mechanism of Interaction of Different Classes of Cationic Antimicrobial Peptides with Planar Bilayers and with the Cytoplasmic Membrane of Escherichia coli. Biochemistry, 1999, 38(22):7235-7242.
    
    105. Murphy CJ, Foster BA, Mannis MJ, Selsted ME, Reid TW. Defensins are mitogenic for epithelial cells and fibroblasts. .J Cell Physiol,1993,155:408-413.
    
    106. Matsuzaki K, MuraseO, Fujii N,Miyajima K. An Antimicrobial Peptide, Magainin 2, Induced Rapid Flip-Flop of Phospholipids Coupled with Pore Formation and Peptide Translocation . Biochemistry,1996,35:11361-11368.
    
    107. Yang L, Weiss TM, Lehrer RI, Huang HW. Crystallization of antimicrobial pores in membranes: Magainin and protegrin. Biophys J, 2000,79:2002-2009.
    
    108. Miteva M, Andersson M, Karshikoff A, Otting G. Molecular electroporation: a unifying concept for the description of membrane pore formation by antibacterial peptides, exemplified with NK-lysin.FEBSLett, 1999,462, (1-2):155-158.
    
    109. Pokorny A, Almeida PFF. Permeabilization of raft-containing lipid vesicles by delta-lysin: a mechanism for cell sensitivity to cytotoxic peptides. Biochemistry, 2005,44, (27):9538-9544.
    
    110. Pokorny A, Almeida PFF. Kinetics of dye efflux and lipid flip-flop induced by delta-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, alpha-helical peptides. Biochemistry, 2004,43,(27): 8846-8857.
    
    111. Ratledge C, Wilkinson SG. Microbial Lipids (Academic, London). 1988.
    
    112. Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Mcrobiol,2005,3:238-250.
    
    113. Tieleman DP. The molecular basis of electroporation. BMC Biochem,2004,5: 10.
    
    114. Sato H, Feix JB. Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic a-helical antimicrobial peptides. Biochimica et Biophysica Acta, 2006,1758 :1245-1256.
    
    115. Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW. Membrane pores induced by Magainin.Biochemistry, 1996,35:13723-13728.
    
    116. Shai YC. Molecular recognition between membrane-spanning peptides.Trends Biochem Sci, 1995,20:460-464.
    
    117. Hancock RE, Chappie DS. Peptide antibiotics. Antimicrob Agents Chemother, 1999,43:1317-23.
    
    118. Andreu D, Ubach J, Boman AB, et al. Shortened cecropin A-melittin hybrids. Significant size reduction retains potent antibiotic activity. FEBS Lett, 1992,296:190-194.
    
    119. Kragol G, Lovas S, Varadi G, et al.The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein olding. Biochemistry, 2001,40:3016-3026.
    
    120. Otvos L, O I, Rogers ME, Consolvo PJ, et al. Interaction between heat shock proteins and antimicrobial peptides. Biochemistry, 2000,39(46): 14150-14159.
    
    121. Sato H, Feix JB. Role of membranes in the activities of antimicrobial cationic.Peptides. FEMS Microbiology Letters, 2002,206 :143-149.
    
    122. Ponti D, Mangoni ML, Mignogna G, Simmaco M, Barra D. An amphibian antimicrobial peptide variant expressed in Nicotiana tabacum confers resistance to phytopathogens. Biochem J,2003,370:121-127.
    
    123. De Gray G, Rajasekaran K, Smith F, Sanford J, Daniell H. Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol,2001, 127:852-862.
    
    124. Osusky M, Zhou G, Osuska L, Hancock RE, Kay WW, Misra S. Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nature Biotechnol,2000, 18: 1162-1166.
    
    125. Hancock REW. Host defence (cationic) peptides. What is their future clinical potential? Drugs, 1999,57:469-473.
    126.Moore AJ,Devine DA,Bibby MC.Preliminary experimental anticancer activity of cecropins.Pept Res,1994,7:265-269.
    127.Marenah L,Flatt PR,Orr DF,et al.Brevinin-1 and multiple insulin-releasing peptides in the skin of the frog Rana palustris.J Endocrinol,2004,181:347-354.
    128.Basir YJ,Conlon JM.Peptidomic analysis of the skin secretions of the pickerel frog Rana palustris identifies six novel families of structurally-related peptides.Peptides,2003,24:379-383.
    129.费梁,叶昌媛,江建平,谢锋,黄永昭.中国两栖动物检索及图解.成都:四川科学技术出版社.2005.
    130.Westerhoff HV,Zasloff M,Rosner JL,et al.Functional synergism of the Magainins PGLa and Magainin-2 in Escherichia coli,tumor cells and liposomes.Eur J Biochem,1995,228:257-264.
    131.Tremouilhac P,Strandberg E,Wadhwani P,Ulrich AS.Synergistic transmembrane,alignment of the antimicrobial heterodimer PGLa/Magainin.J Biol Chem,2006,281:32089-32094.
    132.Giacometti A,Cirioni O,Riva A,et al.In vitro activity of aurein 1.2 alone and in combination with antibiotics against gram-positive nosocomial cocci.Antimicrob Agents Chemother,2007,51(4):1494-1496
    133.Chakrabarti A,GanaPathi TR,Mukherjee PK,et al.MSI-99,a Magainin analogue,imparts enhanced disease resistance in transgenic tobacco and banana.Planta,2003,216:587-596.
    134.Park SH,Kim HE,Kim CM,et al.Role of porline,cysteine and a disulphide bridge in the structure and activity of the anti-mieorbial Peptide Gaegurin 5.Biochme J,2002,368:171-182.
    135.Matsuzaki K,Harada M,Funakoshi S,Fuji N,Miyajima K.Physicochemical determinants for the interactions of Magainins 1 and 2 with acidic lipid bilayers.Biochem Biophys Acta,1991,1063:162-170.
    136.Williams RW,Starman R,Taylor KMP,Beeler T,Zasloff M,Covell D.Raman spectroscopy of synthetic antimicrobial frog peptides Magainin 2a and PGLa.Biochemistry,1990,29:4490-4496.
    1.费梁.中国两栖动物图鉴.郑州:河南科学技术出版社.1999.
    2.Bevins CL,Zasloff M.Peptides from frog skin.Annu Reu Biochem,1990,59:395-414.
    3.Clarles BT.The natural history of amphibian skin secretions.Their nomal function and potential medical applications.Biol Rev,1997,72:365-379.
    4.Daly JW.The chemistry of poisons in amphibian skin.Proc Natl Acad Sci USA,1995,92:9-13.
    5.Conlon JM,Kolodziejek J,Nowotny N.Antimicrobial peptides from ranid frogs:taxonomic and phylogenetic markers and a potential source of new therapeutic agents.Biochim Biophys Acta,2004,1696:1-14.
    6.Goraya J,Wang Y,Li Z,O'Flaherty M,Knoop FC,Platz JE,et al.Peptides with antimicrobial activity from four different,families isolated from the skins of the North American frogs,Rana luteiventris,Rana berlandieri and Rana pipiens.Euro J Biochem,2000,267:894-900.
    7.Basir YJ,Knoop FC,Dulka J,Conlon JM.Multiple antimicrobial peptides and peptides related to bradykinin and neuromedin N isolated from the skin secretions of the North American pickerel frog,Rana palustris.Biochim Biophys Acta,2000,1543:95-105.
    8.Wang X,Song Y,Li J,et al.A new family of antimicrobial peptides from skin secretions of Rana pleuraden.Peptides,2007,28:2069-2074.
    9.Duda TF,Vanhoye D,Nicolas P.Roles of Diversifying Selection and Coordinated Evolution in the Evolution of Amphibian Antimicrobial Peptides.Mol Biol Evol,2002,19(6):858-864.
    10.Simmaco M,De Biase D,Severini C,et al.Purification and characterization of bioactive peptides from skin extracts of Rana esculenta.Biochim Biophys Acta,1990,1033:318-323.
    11.Simmaco M,Mignogna G,Canofeni S,et al.Tempodns,antimicrobial peptides from the European red frog Rana temporaria.Eur J Biochem,1996,242:788-792.
    12.Li JX,Xu XQ,Xu CH,et al.Anti-infection Peptidomics of Amphibian Skin.Mol Cell Proteomics,2007,6(5):882-894.
    13.Zhou M,Chen T,Walker B,Shaw C.Lividins:Novel antimicrobial peptide homologs from the skin secretion of the Chinese Large Odorous frog,Rana(Odorrana) livida Identification by "shotgun"cDNA cloning and sequence analysis.Peptides,2006,27:2118-2123.
    14.Amiche M,Seon A,Pierre T,Nicolas P.The dermaseptin precursors:a protein family with a common preproregion and a variable C-terminal antimicrobial domain.FEBS Lett,1999,456:352-356.
    15.Nicolas P,Amiehe M.The dermaseptin family of antimicrobial peptide precursors.Curr Top Biochem Res,1999,1:243-248.
    16. Chen T, Zhou M, Chen W. Cloning from tissue surrogates: Antimicrobial peptide (Esculentin) cDNAs from the defensive skin secretions of Chinese ranid frogs. Genomics,,2006, 87 (5) :638-644.
    
    17. Tomasinsig L, Zanetti M. The cathelicidins-structure, function and evolution. Curr Protein Pept Sci,2005, 6: 23-34.
    
    18. Sai PS, Jagannadham VJ, Vairamani M, Raju NP, Devi AA, Nagaraj R, Sitaram N. Tigerinins: novel antimicrobial peptides from the Indian frog Rana tigerina. JBiol Chem,2001,276:2701-2707.
    
    19. Simmaco M, Mignogna G, Barra D, Bossa F. Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding Esculentin and Brevinins and isolation of new active peptides.J Biol Chem, 1994,269: 11956-11961.
    
    20. Park S, Park SH, Ahn HC, Kim S, Kim SS, Lee BJ, Lee BJ. Structural study of novel antimicrobial peptides, nigrocins, isolated from Rana nigromaculata. FEBS Lett, 2001, 507(1): 95-100.
    
    21. Isaacson T, Soto A, Iwamuro S, Knoop FC, Conlon J M. Antimicrobial peptides with atypical structural features from the skin of the Japanese brown frog Rana japonica. Peptides, 2002,23:419-425.
    
    22. Brand GD, Leite JR, Silva LP,et al. Dermaseptins from Phyllomedusa oreades and Phyllomedusa distincta. Anti-Trypanosoma cruzi activity without cytotoxicity to mammalian cells. J Biol Chem,2002, 277(51): 49332-49340.
    
    23. Lai R, Zheng YT, Shen JH, Liu GJ, Liu H, Lee WH, Tang SZ, Zhang Y. Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima. Peptides,2002,23(3): 427-35.
    
    24. Simmaco M,Barra D,Chiarini F,Noviello L,Melchiorri P,Kreil G,Richter K.A family of bombinin-related peptides from the skin of Bombina variegata. Eur J Biochem,1991, 199: 217-222.
    
    25. Morikawa N, Hagiwara K, Nakajima T. Brevinin-1 and -2, unique antimicrobial peptides from the skinof the frog, Rana brevipoda porsa. Biochem Biophys Res Commun,1992,189:184-189.
    
    26. Clark DP, Durell S,Maloy WL, Zasloff M.Ranalexin. A novel antimicrobial peptide from bull frog (Rana catesbeiana) skin, structurally related to the bacterial antibiotic, polymyxin. J Biol Chem, 1994,269:10849-10854.
    
    27. Park JM, June JE, Lee BJ. Antimicrobial peptides from the skin of a Korean frog, Rana rugosa.Biochem Biophys Res Commun, 1994,205:948-952.
    
    28. Park J M , Lee J Y, Moon H M , Lee BJ.Molecular cloning of cDNAs encoding precursors of frog skin antimicrobial peptides from Rana rugosa. Biochim Biophys Acta, 1995,1264:23-28.
    
    29. Goraya J, Knoop F C, Conlon JM. Ranatuerins:antimicrobial peptides isolated from the skin of the American bullfrog, Rana castesbetana. Biochem Biophys Res Commun, 1998,250:589-592.
    
    30. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002,415: 389-395.
    31. Rozek T, Wegener KL, Bowie JH, et al. The antibiotic and anticancer active aurein peptides from the Australian Bell Frogs Litoria aurea and Litoria raniformis. The solution structure of aurein 1.2. Eur J Bio chem, 2000,267:5330-41.
    
    32. Wabnitz PA, Bowie JH, Tyler MJ,Wallace JC, Smith BP. Differences in the skin peptides of the male and female Australian tree frog Litoria splendida—the discovery of the aquatic male sex pheromone splendipherin, together with Phe8 caerulein and a new antibiotic peptide caerin 1.10. Eur J Biochem, 2000,267:269-75.
    
    33. Wegener KL, Wabnitz PA, Carver JA, et al. Host defence peptides from the skin glands of the Australian Blue Mountains Tree Frog Litoria citropa. Solution structure of the antibacterial peptide citropin 1.1. Eur JBiochem, 1999, 265:627-37.
    
    34. Amiche M, Seon A,Wroblewski H,Nicolas P. Isolation of dermatoxin from frog skin, an antibacterial peptide encoded by a novel member of the dermaseptin gene family. Eur J Biochem, 2000,267:4583-4592.
    
    35. Mor A, Nicolas P. Isolation and structure of novel defensive peptides from frog skin. Eur J Biochem,1994, 219:145-154.
    
    36. Pierre TN, Seon A, Amiche M, Nicolas P. Phylloxin, a novel peptide antibiotic of the dermaseptin family of antimicrobial/opioid peptide precursors. Eur J Biochem, 2000,267:370-378.
    
    37. Charpentier S, Amiche M, Mester Y, et al. Structure,synthesis and molecular cloning of dermaseptins B, a family of skin peptide antibiotics. J Biol Chem, 1998,273:14690-14696.
    
    38. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation,characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA, 1987, 84(15): 5449-5453.
    
    39. Apponyi MA,Pukala TL, Brinkworth CS,et al. Host-defence peptides of Australian anurans:structure,mechanism of action and evolutionary significance. Peptides, 2004,25:1035-1054.
    
    40. Salmon AL, Cross LJ, Irvine AE, et al. Peptide leucine arginine, a potent immunomodulatory peptide isolated and structurally characterized from the skin of the Northern Leopard frog, Rana pipiens. JBiol Chem, 2001,276(13):10145 - 10152.
    
    41. Kim JB, Iwamuro S, Knoop FC, Conlon JM. Antimicrobial peptides from the skin of the Japanese mountain frog, Rana ornativentris. J Pept Res, 2001, 58:349-356.
    
    42. Goraya J, Knoop FC, Conlon JM. Ranatuerins:antimicrobial peptides isolated from the skin of the American bullfrog, Rana castesbetana. Biochem Biophys Res Commun, 1998,250:589-592.
    1.Casteels P,Tempst P.Apidaecin-type peptide antibiotic function throμgh a non-poreforming mechanism involving stereospecificity.Biochem Biophys Res Commun,1994,199:339-345.
    2.Boman HG.Peptide antibiotics and their role in innate immunity.Annu Rev Immunol,1995,13:61-92.
    3.Nissen-Meyer J,et al.Ribosomally synthesized antimicrobial peptides:their function,structure,biogenesis,and mechanism of action.Arch Microbiol,1997,167:67-77.
    4.Simmaco M,Mignogna G,Barra D.Antimicrobial peptides from amphibian skin:what do they tell us?In:Biopolymers,Peptide Science,1998,47:435-450.
    5.Gibson BW,Tang D,Mandrell R,Kelly M,Spindel ER.Bombinin-like peptides with antimicrobial activity from skin secretions of the Asian toad,Bombina orientalis.J Biol Chem,1991,266:23103-23111.
    6.Li JX,Xu XQ,Xu CH,Zhou WP,Zhang KY,Yu HN,Zhang YP,Zheng YT,Rees HH,Lai R,Yang DM,Wu J.Anti-infection Peptidomics of Amphibian Skin.Mol Cell Proteomics,2007,6(5):882-894.
    7.Lu Y,Li JX,Yu HN,Xu XQ,Liang JG,Tian YQ,Ma DY,Lin GQ,Huang GQ,Lai R.Two families of antimicrobial peptides with multiple functions from skin of rufous-spotted torrent frog,Amolops loloensis.Peptides,2006,27(12):3085-3091.
    8.Kim HS,et al.Pepsin-mediated processing of the cytoplasmic histone H2A to strong antimicrobial peptide buforin I.J Immunol,2000,165:3268-3274.
    9.Hancock R,Chapple D.Peptide antibiotics.AntimicrobAgents Chemother,1999,43:1317-1323.
    10.Rinaldi AC.Antimicrobial peptides from amphibian skin:an expanding scenario.Current Opinion in Chemical Biology,2002,6:799-804.
    11.张卓然。医学微生物实验学(第二版),北京:科学出版社,1998。
    12.Bignami GS.A rapid and sensitive hemolysis neutralization assay for palytoxin.Toxicon,1993,31:817-820.
    13.Mendes MA,Souza BMD,Marques MR,Palma MS.Structural and biological characterization of two novel peptides from the venom of the neotropical social wasp Agelaia pallipes palllipes.Toxicon,2004,44:67-74.
    14.Shore PA,Burkhalter,Cohn VA.A method for the fluorimetric assay of histamine in tissues.J Pharmacol ExpTher,1959,127:182-186.
    15.Brand-Williams W,Culivier ME,Berset C.Use of a free radical method to evaluate antioxidant activity.LWT-Food Science and Technology,1995,28(1):25-30.
    16.Re R,Pellegrini N,Proteggente A,et al.Antioxidant activity applying an improved ABTS radical cation decolorization assay.Free Radical Biology and Medicine,1999,26(9-10):1231-1237.
    17.Siddhurajua P,Mohanb PS,Beckera K.Studies on the antioxidant activity of Indian Laburnum (Cassia fistula L.):a preliminary assessment of crude extracts from stem bark,leaves,flowers and fruit pulp.Food Chemistry,2002,79:61-67.
    18.Kobayashi Y,Kobayashi K,Umehara K,et al.Purification,Characterization,and Sμgar Binding Specificity of an N-Glycolylneuraminic Acid-specific Lectin from the Mushroom Chlorophyllum molybdites.J Biol Chem,2004,279(51):53048-53055.
    19.Zhang Y,Wiser A,Xiong YL,Bon C.A novel plasminogen activator from snake venom.J Biol Chem,1995,270:10246-10255.
    20.Zasloff M.Antimicrobial peptides of multicellular organisms.Nature,2002,415:389-395.
    21.McCafferty DG,Cudic P,Yu MK,Behenna DC,Kruger R.Synergy and duality in peptide antibiotic mechanisms.Curr Opin Chem Biol,1999,3:672-680.
    22.Matsuzaki K,Mitani Y,Akada KY,Murase O,Yoneyama S,Zasloff M,Miyajima K.Mechanism of synergism between antimicrobial peptides,Magainin 2 and PGLa.Biochemistry,1998,37(43): 15144-15153.
    
    23. Tremouilhac P, Strandberg E, Wadhwani P, Ulrich AS. Synergistic transmembrane alignment of the antimicrobial heterodimer PGLa/Magainin. J Biol Chem,2006, 281: 32089-32094.
    
    24. Giacometti A, Cirioni O, Riva A, Kamysz W, Silvestri C, Nadolski P, Delia Vittoria A, Lukasiak J,Scalise G. In vitro activity of aurein 1.2 alone and in combination with antibiotics against gram-positive nosocomial cocci. Antimicrob Agents Chemother, 2007, 51(4): 1494-1496.
    
    25. Giacometti A, Cirioni O, Kamysz W, Silvestri C, Del Prete MS, Licci A, D'Amato G, Lukasiak J,Scalise G. In vitro activity of citropin 1.1 alone and in combination with clinically used antimicrobial agents against Rhodococcus equi. J Antimicrob Chemother, 2005, 56(2): 410-412.
    
    26. Dathe M,Wieprecht T. Biochim Biophys Acta Biomembranes(Special Issue),1999,1462:71-97.
    
    27. Ferry X, Brehin S, Kamel R, Landry Y. G protein-dependent activation of mast cell by peptides and basic secretagogues.Peptides, 2002,23:1507-1515.
    
    28. Mcphee JB, Hancock REW. Function and therapeutic potential of host defence peptides. J Peptide Sci ,2005,11:677-687.
    
    29. Marshall JS, Bienenstock J. The role of mast cells in inflammatory reactions of the airways, skin and intestine.Curr Opin Immunol, 1994,6:853-9.
    
    30. Hancock REW,Diamond G. The role of cationic antimicrobial peptides in innate host defences.Trends Microbiol, 2000,8:402-410.
    
    31. Malaviya R, Gao Z, Thankavel K, van der Merwe PA, Abraham SN. The mast cell tumor necrosis factor alpha response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidylinositol-anchored molecule CD48. PNAS ,1999,96:8110-8115.
    
    32. Lorenz D, Wiesner B, Zipper J, Winkler A, Krause E, Beyermann M, et al. Mechanism of peptide-induced mast cell degranulation Translocation and patch-clamp studies.J Gen Physiol,1998,112:577-591.
    
    33. Hancock REW. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis,2001,1:156-164.
    
    34. Chen T,Reid CN, Walker B, Zhou M, Shaw C. Kassinakinin S: A novel histamine-releasing heptadecapeptide from frog (Kassina senegalensis) skin secretion. Biochem Biophys Res Commun,2005,337:474-480.
    
    35. Yasuhara T, Ishikawa O, Nakajima T.The studies on the active peptide in the skin of Rana rugosa. II.The structure of ranatensin-R, the new ranatensin analogue, and granuliberin-R, the new mastcell degranulating peptide. Chem Pharm Bull (Tokyo) , 1979,27:492-498.
    
    36. Horikawa R, Parker DS, Herring PL, Pisano JJ. Pipinins: new mast cell degranulating peptides from Rana pipiens.Fed Proc, 1985,44:695.
    
    37. Salmon AL, Cross LJ, Irvine AE, et al. Peptide leucine arginine, a potent immunomodulatory peptide isolated and structurally characterized from the skin of the Northern Leopard frog, Rana pipiens.J Biol Chem, 2001,276(13):10145- 10152.
    
    38. Graham CJrvine AE, McClean S, Richter SC, Flatt PR, Shaw C. Peptide Tyrosine Arginine, a potent immunomodulatory peptide isolated and structurally characterized from the skin secretions of the dusky gopher frog Rana sevosa.Peptides, 2005,26: 737-743.
    
    39. Graham C,Richter SC,McClean S.O'Kane E,Flatt PR,Shaw CHistamine- releasing and antimicrobial peptides from the skin secretions of the Dusky Gopher frog, Rana sevosa.Peptides,2006,27:1313-1319.
    
    40. Mousli M, Bueb JL, Bronner C, Rouot B, Landry Y. G protein activation: a receptor-independent mode of action for cationic amphiphilic neuropeptides and skin secretion peptides. Trends Pharmacol Sci, 1990,11:358-362.
    
    41. Repke H, Bienert M. Structural requirements for mast cell triggering by substance P-like peptides. Agents Actions ,1988,23:207-210.
    
    42. Cocchiara R, Bongiovanni A, Albeggiani G, Azzolina A, Lampiasi N, Di Blasi F, Geraci D.Inhibitory effect of neuraminidase on SP-induced histamine release and TNF-alpha mRNA in rat mast cells: evidence of a receptor-independent mechanism. J Neuroimmunol,1997, 75 (1-2): 9-18.
    
    43. Suzuki N,Suetsuna K,Mashiko S,et al.Antioxidative Activity of Amino Acids and Sulfur-containing Compounds to Superoxide : Measurement by Quenching the Chemiluminescence of a Cypridina Luciferin Analogue. Biosci Biotech Biochem, 1992,56(3):409-411.
    
    44. Randazzo A. Haliclamide,a novel cyclic metabolite from the Vanuatu marine sponge Haliclona sp.Tetrahedron,2001,57(20):4443-4446.
    
    45. Niranjan R,Eresha M,Won KJ, et al. Purification of a radical scavenging Peptide from fermented mussel sauce and its antioxidant Properties.Food Research International,2005,38: 175-182.
    
    46. Hipkiss AR. Carnosine, a protective anti-ageing peptide. Int.J.Biochem.Cell Biol,1998, 30:863-868
    
    47. Duh PD, Du PC, Yen GC . Action of methanolic extract of mung bean hulls as inhibitors. of lipid peroxidation and non-lipid oxidative damage. FoodChem Toxicol, 1999, 37:1055-1061.
    
    48. Xing RE, Yu HH, Liu S, Zhang WW, Zhang QB, Li ZE, Li PCAntioxidant activity of differently regioselective chitosan sulfates in vitro. Bioorg Med Chem,2005,13:1387-1392.
    
    49. Meir S, Kanner J,Akiri B,Hadas SP.Determination and involvement of aqueous reducing compounds in oxidative defence systems of various senescing leaves. Journal of Agricultural and Food Chemistry,199543:1813-1815.
    50.Nitta K,Takayanagi G,Terasaki Y,Kawauchi H.Studies on three kinds of lectins from Xenopus laevis skin.Cellular and Molecular Life Sciences(CMLS),1984,40:712-713.
    51.Bols NC,Roberson MM,Haywood-Reid PL,Cerra RF,Barondes SH.Secretion of a Cytoplasmic Lectin from Xenopus Laevis Skin.J Cell Biol,1986,102:492-499.
    52.Marschal P,Herrmann J,Leffler H,et al.Sequence and Specificity of a Soluble Lactose-binding Lectin from Xenopus laevis Skin.J Biol Chem,1992,267(18):12942-12949.
    53.Sanchez RA,Daud A,Gallo A,et al.Antibacterial activity of lactose-binding lectins from Bufo arenarum skin.Biocell(Mendoza),2003,27(1):37-46.
    54.Sakakibara F,Kawauchi H,Takayanagi G,Ise H.Egg Lectin of Rana japonica and Its Receptor Glycoprotein of Ehrlich Tumor Cells.Crancer Research,1979,39:1347-1352.
    55.Roberson MM,Barondes SH.Lectin from Embryos and Oocytes of Xenopus laevis.J Biol Chem,1982,257,(13):7520-7524.
    56.Manjunath SS,Madaiah M.A lectin from the thigh muscle of Rana tigerina.Biochimica et Biophysica Acta(BBA),1989,991,3:465-469.
    57.Ozeki Y,Matsui T,Nitta K.Purification and characterization of β-galactoside binding lectin from frog (Rana catesbeiana) eggs.Biochem Biophys Res Commun,1991,178(1):407-413.
    58.Hiroki S,Nozomu N,Mitsuomi H,et al.Purification and cDNA cloning of Xenopus liver galectins and their expression.Glycobiology,2002,12(3):163-172.
    59.Elola M,Cabada M,Barisone G,Fink N.Immunohistochemical localization of a galectin from Bufo arenarum ovary.Zygote,1998,6:1-9.
    60.Barondes S.Soluble lectins:a new class of extracellular proteins.Science,1984,223:1259-1264.
    61.Wells V,Mallucci L.Identification of an autocrine negative growth factor:mouse betagalactoside-binding protein is a cytostatic factor and cell growth regulator.Cell,1991,64(1):91-97.
    62.Sanford GL,Harris-Hooker S.Stimulation of vascular cell proliferation by β-galactoside lectins.FASEB J,1990,4:2912-2918.
    63.Lee JK,et al.Cloning and expression of a Xenopus laevis oocyte lectin and characterization of its mRNA levels during early development.Glycobiol,1997,7:367-372.
    64.Dubin G.Proteinaceous cysteine protease inhibitors.Cell Mol Life Sci,2005,62(6):653-669.
    65.Laskowski M,Kato I.Protein inhibitors of proteinases.Annu RevBiochem,1980,49:593-626.
    66.Van Gent D,Sharp P,Morgan K,Kalsheker N.Serpins:structure,function and molecular evolution.Int J Biochem Cell Biol,2003,35:1536-1547.
    67.Lai R,Zhao Y,Yang D,et al.Comparative Study of the Biological Activities of the Skin Secretions from Six Common Chinese Amphibians.Zoological Research,2002,23(2):113-119.
    68.Mignogna G,Pascarella S,Wechselberger C,et al.BSTI,a trypsin inhibitor from skin secretions of Bombina bombina related to protease inhibitors of nematodes.Protein Sci,1996,5:357-362.
    69.Chen T,Shaw C.Identification and molecular cloning of novel trypsin inhibitor analogs from the dermal venom of the Oriental fire-bellied toad(Bombina orientalis) and the European yellow-bellied toad(Bombina variegata).Peptides,2003,24:873-580.
    70.Darby NJ,Smyth DG.Endopeptidases and prohormone processing.Biosci Rep,1990,7:907-917.
    71.Lai R,Liu H,Lee WH,ZhangY.Identification and cloning of a trypsin inhibitor from skin secretions of Chinese red-belly toad Bombinamaxima.Comp Biochem Physiol B Biochem Mol Biol,2002b,13:47-53.
    72.王镜岩,朱圣庚,徐长法主编。高等教育出版社,生物化学,第三版上册,2002。
    73.Bevins CL,Zasloff M.Peptides from frog skin.Annual Review of Biochemistry,1990,59:395-414.
    74.Lai R,Zheng YT,Shen JH,Liu GJ,Liu H,Le eWH,Tang SZ,Zhang Y.Antimicrobial peptides from the skin secretion of Chinese red belly toad Bombina maxima.Peptides,2002d,23:427-435.
    75.Zhang Y.Amphibian Skin Secretions and Bio-adaptive Significance-Implications from Bombina maxima Skin Secretion Proteome.Zoological Research,2006,(1):101-112.
    1.Dubin G.Proteinaceous cysteine protease inhibitors.Cell Mol Life Sci,2005,62(6):653-669.
    2.Laskowski M,Kato I.Protein inhibitors of proteinases.Annu Rev Biochem,1980,49:593-626.
    3.Van Gent D,Sharp P,Morgan K,Kalsheker N.Serpins:structure,function and molecular evolution.Int J Biochem Cell Biol,2003,35:1536-1547.
    4.Slaμghter D,Triplett E.Amphibian embryo protease inhibitor I.Isolation,purification and characterization.Cell Differentiation,1975,4(1):11-21.
    5.Mignogna G,Pascarella S,Wechselberger C,et al.BSTI,a trypsin inhibitor from skin secretions of Bombina bombina related to protease inhibitors of nematodes.Protein Sci,1996,5:357-362.
    6.Rosengren KJ,Daly NL,Scanlon MJ,Craik DJ.Solution structure of BSTI:a new trypsin inhibitor from skin secretions of Bombina bombina.Biochemistry,2001,40:4601-4609.
    7.Colon JM,Kim JB.A protease inhibitor of the Kunitz family from skin secretions of the tomato frog,Dyscophus guineti(Microhylidae).Biochem Biophys Res Commun,2000,279:961-964.
    8.Lai R,Liu H,Lee WH,Zhang Y.Identification and cloning of a trypsin inhibitor from skin secretions of Chinese red-belly toad Bombinamaxima.Comp Biochem Physiol B Biochem Mol Biol,2002b,13:47-53.
    9.Chen T,Shaw C.Identification and molecular cloning of novel trypsin inhibitor analogs from the dermal venom of the Oriental fire-bellied toad(Bombina orientalis) and the European yellow-bellied toad(Bombina variegata).Peptides,2003,24,873-580.
    10.Darby NJ,Smyth DG.Endopeptidases and prohormone processing.Biosci Rep,1990,7:907-917.
    11.Ali MF,Lips KR,Knoop FC,et al.Antimicrobial peptides and protease inhibitors in the skin secretions of the crawfish frog,Rana areolata.Biochimica et Biophysica Acta,2002,1601:55-63.
    12.Zhao Y,Jin Y,Lee WH,Zhang Y.Isolation and preliminary characterization of a 22-kDa protein with trypsin inhibitory activity from toad Bufo andrewsi skin.Toxicon,2005,46:277-281.
    13.Yu Z,Yang J,Shuang SW.Purification and characterization of an irreversible serine protease inhibitor from skin secretions of Bufo andrewsi.Toxicon,2005,46:635-640.
    14.Zhang YX,Lai R,Lee WH,Zhang Y.Frog albumin is expressed in skin and characterized as a novel potent trypsin inhibitor.Protein Sci,2005,14:2469-2477.
    15.Laskowski M,Kato I.Protein inhibitors of proteinases.Annu Rev Biochem,1980,49:593-626.
    16.Han Y,Yu H,Yang X,et al.A serine proteinase inhibitor from frog eggs with bacteriostatic activity.Comparative Biochemistry and Physiology,Part B,2008,149:58-62.
    17.Zou ZQ,Anisowicz A,Hendrix MJC,et al.Maspin,a serpin with tumor suppressing activity in human mammary epithelial cells.Science,1994,263:526-529.
    18.Jaulent AM,Leatherbarrow RJ.Design,synthesis and analysis of novel bieyclic and bifunctional protease inhibitors.Protein Engineering,Design & Selection,2004,17(9):681-687.
    19.Goldstein IJ,Hμghes CE,Monsigny M,Osawa T,Sharon N.What should be called a lectin? Nature,1980,285:66.
    20.Cooper DN,Barondes SH.God must love galectins;he made so many of them.Glycobiology,1999,9:979-984.
    21.Sharon N,Lis H.Lectins as cell recognition molecules.Science,1989,246:227-230.
    22.Barondes SH,Cooper DN,Gitt MA,Leffler H.Galectins.Structure and function of a large family of animal lectins.J Biol Chem,1994,269:20807-20810.
    23.Corifield AP,Schaurer R.Current aspects of glycoconjμgate biosynthesis.Biol Cellulaire,1979,36:213.
    24.Nangia-Makker P,Baccarini S,Raz A.Carbohydrate-recognition and angiogenesis.Cancer Metastasis Rev,2000,19:51-57.
    25.Sharon N,Lis H.History of lectins:from hemagglutinins to biological recognition molecules.Glycobiology,2004,14(11):53-62.
    26.Drickamer K.Ca~(2+)-dependent carbohydrate-recognition domains in animal proteins.Curr Opin Structural Biol,1993,3:393-400.
    27.Drickamer K,Taylor ME.Biology of animal leetins.Annual Review of Cell Biology,1993,9:237-264.
    28.Drickamer K.Two distinct classes of carbohydrate-recognition domains in animal lectins.J Biol Chem,1988,263:9557.
    29.Kasai K,Hirabayashi J.Galectins:a family of animal lectins that decipher glycocodes.J Bio chem (Tokyo),1996,119:1-30.
    30.Bode W,Huber R.Natural protein proteinase inhibitors and their interaction with proteinases.Eur J Biochem,1992,204:433-451.
    31.Roberson MM,Barondes SH.Lectin from embryos and oocytes of Xenopus laevis:purification and properties.J Biol Chem,1982,257:7520-7524.
    32.Roberson MM,Barondes SH.Xenopus laevis Leetin Is Localized at Several Sites in Xenopus Oocytes,Eggs,and Embryos.J Cel Biol,1983,97:1875-1881.
    33.Cabutti NEF,Caron M,Joubert R.Purification and some characteristics of a β-galactoside binding soluble lectin from amphibian ovary.Federation of European Biochemical Societies,1987,223(2):330-334.
    34.Nishihara T,Wyrick RE,Working PK,Chen YH,Hedriek JL.Isolation and Characterization of a Lectin from the Cortical Granules of Xenopus laevis Eggs. Biochemistry,1986,25:6013-6020.
    
    35. Hiroki S, Nozomu N, Mitsuomi H,et al. Purification and cDNA cloning of Xenopus liver galectins and their expression.Glycobiology, 2002, 12 (3): 163-172.
    
    36. Lee JK, Baum LG, Moremenl K, Piercel M.The X-lectins: A new family with homology to the Xenopus laevis oocyte lectin XL-35.Glycoconjμgate Journal, 2004,21:443-450.
    
    37. Roberson MM, Wolffe AP, Tata JR, Barondes SH. Galactoside-binding serum lectin of Xenopus laevis: estrogen dependent hepatocyte synthesis and relationship to oocyte lectin. J Biol Chem,1985,260:11027-11032.
    
    38. Nitta K, Takayanagi G, Terasaki Y, Kawauchi H. Studies on three kinds of lectins from Xenopus laevis skin. Cellular and Molecular Life Sciences (CMLS), 1984,40:712-713.
    
    39. Bols NC, Roberson MM, Haywood-Reid PL, Cerra RF, Barondes SH.Secretion of a Cytoplasmic Lectin from Xenopus Laevis Skin. J Cell Biol, 1986,102:492-499.
    
    40. Marschal P, Herrmann J, Leffler H,et al. Sequence and Specificity of a Soluble Lactose-binding Lectin fromXenopus laevis Skin. J Biol Chem, 1992,267(18): 12942-12949.
    
    41. Lee JK, et al.Cloning and expression of a Xenopus laevis oocyte lectin and characterization of its mRNA levels during early development.Glycobiol ,1997,7:367-72.
    
    42. Wyrick RE, Nishihara T, Hedrick JL. Agglutination of jelly coat and cortical granule components and the block to polyspermy in the amphibian Xenopus laevis.Proc Natl Acad Sci USA ,1974,71(5):2067-71.
    
    43. Roberson MM, Barondes SH. Xenopus laevis lectin is localized at several sites in Xenopus oocytes,eggs, and embryos, J Cell Biol, 1983,97:1875-81.
    
    44. Monk BC, Hedrick JL. The cortical reaction in Xenopus laevis eggs: Cortical granule lectin release as determined by radioimmunoassay.Zool Sci, 1986,3:459-466 .
    
    45. Bevins CL,Zasloff M. Peptides from frog skin. Annu Reu Biochem,1990,59:395-414.
    
    46. Evanson JE,Milos NC. A monoclonal antibody against neural crest-stage Xenopus laevis lectin perturbs craniofacial development of Xenopus. J Craniofac Genet Dev Biol, 1996,16:74-93.
    
    47. Milos NC,Meadows G,Evanson JE,et al. Expression of the endogenous galactoside-binding lectin of Xenopus laevis during cranial neural crest development: lectin localization is similar to that of members of the N-CAM and cadherin families of cell adhesion molecules. J Craniofac Genet Dev Biol, 1998,18:11-29.
    
    48. Barondes S. Soluble lectins: a new class of extracellular proteins. Science ,1984,223:1259-1264.
    
    49. Wells V.Mallucci L. Identification of an autocrine negative growth factor: mouse beta-galactoside-binding protein is a cytostatic factor and cell growth regulator. Cell, 1991,64 (1): 91-97.
    50.Sanford GL,Harris-Hooker S.Stimulation of vascular cell proliferation by β-galactoside lectins.FASEB J,1990,4:2912-2918.
    51.Elola M,Cabada M,Badsone G,Fink N.Immunohistochemical localization of a galectin from Bufo arenarum ovary.Zygote,1998,6:1-9.
    52.Ahmed H,Pohl J,Fink NE,Strobel F,Vasta GR.The Primary Structure and Carbohydrate Specificity of a β-Galactosyl-binding Lectin from Toad(Bufo arenarum Hensel) Ovary Reveal Closer Similarities to the Mammalian Galectin-1 than to the Galectin from the Clawed Frog Xenopus laevis,J Biol Chem,1996,271,(51):33083-33094.
    53.Sakakibara F,Kawauchi H,Takayanagi G,Ise H.Egg Lectin of Rana japonica and Its Receptor Glycoprotein of Ehrlich Tumor Cells.Cancer Research,1979,39:1347-1352.
    54.Kamiya Y,Oyama F,Oyama R.Amino Acid Sequence of a Lectin from Japanese Frog(Rana japonica) Eggs.J Biochem,1990,108(1):139-143.
    55.Ozeki Y,Matsui T,Nitta K.Purification and characterization of β-galactoside binding lectin from frog (Rana catesbeiana) eggs.Biochem Biophys Res Commun,1991,178(1):407-413.
    56.Manjunath SS,Madaiah M.A lectin from the thigh muscle of Rana tigerina.Biochimica et Biophysica Acta(BBA),1989,991,3:465-469.
    57.Sanchez RA,Daud A,Gallo A,et al.Antibacterial activity of lactose-binding lectins from Bufo arenarum skin.Biocell(Mendoza),2003,27(1):37-46.
    58.Rhodes LL,Haywood AJ,Fountain DW.FITC-conjμgated lectins as a tool for differentiating between toxic and non-toxic marine dinoflagellates.O-ceanographic Literature Review,1996,43(6):578-579.
    59.Pratima NM,Victor H,Yuichiro H,et al.Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin.Journal of the National Cancer Institute,2002,94(24):1854-1862.
    60.Sharon N,Lis H.Lectins:cell-agglutinating and sugar-specific proteins.Science,1972,177:949-959.
    61.Ratcliffe NA,Rowley AF,Fitzgerald SW,Rhode CP.Invertebrate immunity:basic concepts and recent advances.Int Rev Cytol,1985,97:183-350.
    62.Zhang Y,Wiser A,Xiong YL,Bon CA.novel plasminogen activator from snake venom,J Biol Chem,1995,270:10246-10255.
    63.Dixon BM.The determination of enzyme inhibitor constants.Biochem J,1953,55:170-171.
    64.Salmon AL,Cross LJM,Irvine AE,et aL Peptide Leucine Arginine,a Potent Immunomodulatory Peptide Isolated and Structurally Characterized from the Skin of the Northern Leopard Frog,Rana pipiens,J Biol Chem,2001,276(13):10145-10152.
    65. Mangoni ML, Papo N, Mignogna G, et al. Ranacyclins, a New Family of Short Cyclic Antimicrobial Peptides: Biological Function, Mode of Action, and Parameters Involved in Target Specificity.Biochemistry, 2003,42(47): 14023 -14035.
    
    66. Li J, Zhang Ch, Xu X, Wang J, Yu H, Lai R,Gong W. Trypsin inhibitory loop is an excellent lead structure to design serine protease inhibitors and antimicrobial peptides.FASEB J.2007,21:2466-2473.
    
    67. Hirabayashi J, Kusunoki T, Kasai K. Complete primary structure of a galactose-specific lectin from the venom of the rattlesnake Crotalus atrox. Homologies with Ca~(2(+))- dependent-type lectins. J Biol Chem, 1991,266:2320-2326.
    
    68. Ogilvie ML, Gartner K. Identification of lectins in snake venoms. J Herpetol (Amst.), 1984,18:285-290.
    
    69. Chrispeels MJ, Raikhel NV. Lectin genes and their role in plant defense. Plant Cell ,1991,3:1-10.
    
    70. Inamori K, Saito T, Iwaki D, Nagira T, Iwanaga S, Arisaka F, Kawabata S. A newly identified Horseshoe crab lectin with specificity for blood group A antigen recognizes specific O antigens of bacterial lipopolysaccharides. J Biol Chem, 1999,274,6: 3272-3278.
    
    71. Turner MW,Hamvas RM.Mannose-binding lectin:structure,function,genetics and disease associations.Rev Immunogenet,2000,2(3):305-322.
    
    72. Sato S, Hughes RC. Regulation of secretion and surface expression of Mac-2, a galactoside-binding protein of macrophages. J Biol Chem ,1994,269: 4424-4430.
    
    73. Levi G, Teichberg VI. Isolation and physicochemical characterization of electrolectin, a 6-D-galactoside binding lectin from the electric organ of Electophorus electricus. J Biol Chem,1981,256:5735-5740.
    
    74. Lobsanov YD, Gitt MA, Leffler H, Barondes SH, Rini JM. X-ray crystal structure of the human dimeric S-Lac lectin, L-14-II, in complex with lactose at 2.9 resolution. J Biol Chem ,1993,268:27034-27038.
    
    75. Lai R, Zhao Y, Yang D,et al.Comparative Study of the Biological Activities of the Skin Secretions from Six Common Chinese Amphibians. Zoological Research, 2002, 23 (2): 113-119.
    
    76. Schweitz H, Heurteaux C, Bois P, Moinier D, Romey G, Lazdunski M. Calcicludine, a venom peptide of the Kunitz-type protease inhibitor family, is a potent blocker of high-threshold Ca~(2+) channels with a high affinity for L-type channels in cerebellar granule neurons.Proc Natl Acad Sci USA, 1994,91:878-882.
    
    77. Dathe M, Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta, 1999, 1462(1-2):71-87.
    78.Bode W,Huber R.Natural protein proteinase inhibitors and their interaction with proteinases.Eur J Biochem,1992,204:433-451.
    79.Christeller JT.Evolutionary mechanisms acting on proteinase inhibitor variability.FEBS J,2005,272:5710-5722.
    80.Zhang Y,Wisner A,Xiong Y,Bon C.A novel plasminogen activator from snake venom.Purification,characterization,and molecular cloning.J Biol Chem,1995,270:10246-10255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700