生长抑素及其受体(sst_5)在大鼠视网膜无长突细胞上的表达以及对其突触前活动的调节
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生长抑素(somatostatin,SRIF)是中枢神经系统(central nervous system,CNS)中的一种神经活性肽,通过激活5种特异的受体亚型(sst_(1-5))行使其功能,可作为递质或调质起作用。在视网膜中,SRIF主要位于无长突细胞(amacrine cell,AC)上。已有文献表明,sst_(1-4)在视网膜中均有表达,但在视网膜中仅有较低水平的sst_5mRNA表达。在本工作中,我们研究了sst_5在大鼠视网膜AC上的表达。此外,由于缺少特异性受体拮抗剂(除sst_2外),有关不同SRIF受体亚型在神经元上生理功能的研究报道还很少。近年来,随着特异性sst_5拮抗剂的发现,为我们研究sst_5在视网膜中的功能提供了可能性。
     在本工作中,我们首次报道了生长抑素受体5亚型(sst_5)在大鼠视网膜AC上的表达,并进一步研究了SRIF对培养的大鼠视网膜GABA能AC突触前抑制性递质释放的调节。
     应用免疫细胞化学方法,我们首先研究了sst_5在大鼠视网膜AC上的表达。sst_5的免疫标记弥散地遍布整个内网状层,并在内网状层远端形成两条明显的荧光亮带。免疫双标实验显示,sst_5表达在GABA能AC上。进一步的双标实验显示,sst_5在酪氨酸羟化酶(tyrosine hydroxylase,TH)标记的多巴胺能AC和胆碱乙酰基转移酶(choline acetyl-transferase,CHAT)标记的胆碱能AC上均有表达。免疫阳性标记主要出现在这些细胞的细胞膜和胞体-突起连接部。在胆碱能AC的位于内网状层的突起上也能观察到很弱的sst_5标记。相反,在被Ca~(2+)结合蛋白parvalbumin(PV)标记的甘氨酸能AⅡ型AC上并没有sst_5的阳性标记。此外,SRIF与sst_5在多巴胺能和胆碱能AC上共表达。这些结果提示,sst_5在视网膜AC上可能作为自身受体和/或常规受体起作用。
     应用全细胞膜片钳记录技术,我们进一步研究了SRIF对培养的大鼠视网膜GABA能AC突触前活动的调节。结果发现,在培养GABA能AC上可记录到微小抑制性突触后电流(miniature inhibitory postsynaptic current,mIPSC),该电流可被GABA_A受体特异性拮抗剂bicuculline(10/μM)完全抑制,说明mIPSC是由突触后GABA_A受体介导的。在此基础上,我们观察到1μM SRIF明显压抑mIPSC的频率,该压抑作用可被sst_5和sst_2的特异拮抗剂部分阻断,说明SRIF是通过激活突触前sst_5和/或sst_2起作用。尽管SRIF略微压抑mIPSC的平均幅度,但并不改变mIPSC的动力学特性,如上升时间(rise time)和衰减时间(decay time)。提高胞外Ca~(2+)浓度增加mIPSC的频率,而在胞外高钙条件下,mIPSC频率同样可被1μM SRIF明显压抑。在去除胞外Ca~(2+)的情况下,mIPSC几乎被完全压抑,说明mIPSC对胞外Ca~(2+)有依赖性。进一步研究发现,200μM CdCl_2阻断绝大部分mIPSC,提示电压门控Ca~(2+)通道在其中起重要作用,因此,我们研究了L型Ca~(2+)通道阻断剂nimodipine的作用,发现10μM nimodipine明显压抑mIPSC,提示突触前L型Ca~(2+)通道与mIPSC密切相关。此外,5μM forskolin(腺苷酸环化酶激活物)增加mIPSC的频率,而PKA的特异性抑制剂Rp-cAMP(20μM)降低mIPSC的频率。在Rp-cAMP存在的情况下,SRIF对mIPSC不再有压抑作用。这些结果提示,SRIF激活特异性受体后可能抑制cAMP-PKA通路,继而限制胞外Ca~(2+)通过电压门控Ca~(2+)通道的内流,从而减少GABA能AC突触前GABA的释放。
     综上所述,本工作研究了sst_5在大鼠视网膜AC上的表达,并进一步显示sst_5和/或sst_2部分介导了SRIF对GABA能AC突触前GABA释放的压抑作用,进而探讨了这种压抑作用的可能机制。
Somatostatin(SRIF),a neuroactive peptide in the central nervous system(CNS), exerts its actions via five subtypes of specific receptors(sst_s) and can work as a neurotransmitter or neuromodulator.In the retina,SRIF is mainly localized to amacrine cells(ACs).Localization of sst_(1-4) in the retina has been immunocytochemically examined in a variety of species,but immunocytochemical data on the expression of sst_5 in the retina are scant.This could be partly because of the rather low sst_5 mRNA levels detected in retinas of several species.In addition, because of lack of specific antagonists(except for sst_2),there are still limited data on the functional roles of sst_s in neurons.The emergence of commercial available specific sst_5 antagonist makes the study of functions of sst_5 in the retina possible.
     In this work,the localization of sst_5 was studied immunocytochemically in rat retinal ACs.Labeling for sst_5 was diffusely distributed throughout the full thickness of the inner plexiform layer(IPL) and formed two distinct fluorescence bands in the distal part of the IPL.Double labeling experiments showed that sst_5 was expressed in GABAergic ACs.It was further shown that labeling for sst_5 was observed in both dopaminergic and cholinergic ACs,stained by tyrosine hydroxylase(TH) and choline acetyltransferase(ChAT),respectively.The immunostaining appeared mainly on the cell membranes and somatodendritic compartments of these ACs.For the cholinergic ACs,weak sst_5-immunoreactivity was also observed in the processes terminating in the IPL.In contrast,no sst_5-immunoreactivity was found in glycinergic AII ACs, stained by parvalbumin(PV).Furthermore.labeling for SRIF was co-localized with sst_5 in both dopaminergic and cholinergic ACs.These results suggest that sst_5 may serve as an autoreceptor or conventional receptor in retinal ACs.
     Using whole cell patch-clamp technique,we investigated presynaptic modulation by SRIF in cultured rat retinal GABAergic ACs.Miniature inhibitory postsynaptic currents(mIPSCs) were recorded in cultured rat GABAergic ACs and could be completely inhibited by the GABA_A receptor antagonist bicuculline,indicating that mIPSCs were mediated by postsynaptic GABA_A receptors.1μM SRIF reduced the frequency of mIPSCs,and the effect could be in part blocked by co-application of the sst_5 antagonist BIM 23056 and the sst_2 antagonist CYN-154806.SRIF of 1μM slightly reduced the mean amplitude of mIPSCs,but did not affect the mean rise time and decay time.In addition,the frequency of mIPSCs enhanced by elevating extracellular Ca~(2+) concentration([Ca~(2+)]_o) was also reduced by 1μM SRIF,and almost all mIPSC events disappeared after eliminating[Ca~(2+)]_o,revealing the[Ca~(2+)]_o dependance of mIPSCs.Similarly,200μM CdCl_2 blocked mIPSCs,suggesting that voltage-gated calcium channels(VGCCs) may play an important role in mIPSCs. Indeed,10μM nimodipine,a specific L-type calcium channel blocker,obviously suppressed mIPSCs,suggesting the involvement of L-type calcium channels. Furthermore,forskolin(5μM),an activator of adenylyl cyclase,enhanced the frequency of mIPSCs,while the PKA inhibitor Rp-cAMP reduced the frequency of mIPSCs.In the presence of Rp-cAMP SRIF had no effect on mIPSCs.These results suggest that SRIF inhibits the Ca~(2+) influx through VGCCs by activating specific receptors,and thus reduces the presynaptic release of GABA from rat retinal ACs via the cAMP-PKA pathway.
     In conclusion,in the present work,the expression and functions of sst_5 in the rat retinal ACs are systematically studied using immunocytochemical and whole cell patch-clamp techniques.Almost all GABAergic ACs express sst_5.SRIF may depress the presynaptic GABA release from GABAergic ACs via sst_5 and/or sst_2.
引文
[1] Dowling JE. The retina: an approachable part of the brain [M]. Cambridge, Mass: Belknap Press of Harvard University Press, 1987.
    [2] Wassle H, Boycott BB. Functional architecture of the mammalian retina [J]. Physiol Rev, 1991, 71 (2):447-80.
    [3] Zhang J, Jung CS, Slaughter MM. Serial inhibitory synapses in retina [J]. Vis Neurosci, 1997, 14 (3):553-63.
    [4] Watanabe S, Koizumi A, Matsunaga S, Stocker JW, Kaneko A. GABA-Mediated inhibition between amacrine cells in the goldfish retina [J]. J Neurophysiol, 2000, 84 (4): 1826-34.
    [5] Masland RH. The fundamental plan of the retina [J]. Nat Neurosci, 2001, 4 (9):877-86.
    [6] Strettoi E, Masland RH. The number of unidentified amacrine cells in the mammalian retina [J]. Proc Natl Acad Sci USA, 1996, 93 (25): 14906-11.
    [7] Marc RE, Liu W. Fundamental GABAergic amacrine cell circuitries in the retina: nested feedback, concatenated inhibition, and axosomatic synapses [J]. J Comp Neurol, 2000, 425 (4):560-82.
    [8] Dacey DM. The dopaminergic amacrine cell [J]. J Comp Neurol, 1990, 301(3):461-89.
    [9] Euler T, Detwiler PB, Denk W. Directionally selective calcium signals in dendrites of starburst amacrine cells [J]. Nature, 2002, 418 (6900):845-52.
    [10] Teranishi T, Negishi K, Kato S. Functional and morphological correlates of amacrine cells in carp retina [J]. Neuroscience, 1987, 20 (3):935-50.
    
    [11] MacNeil MA, Heussy JK, Dacheux RF, Raviola E, Masland RH. The shapes and numbers of amacrine cells: matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species [J]. J Comp Neurol, 1999, 413 (2):305-26.
    [12] Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone [J]. Science, 1973, 179 (68):77-9.
    [13] Epelbaum J. Somatostatin in the central nervous system: physiology and pathological modifications [J]. Prog Neurobiol, 1986, 27 (l):63-100.
    [14] Epelbaum J, Dournaud P, Fodor M, Viollet C. The neurobiology of somatostatin [J]. Crit Rev Neurobiol, 1994, 8 (l-2):25-44.
    [15] Iversen LL, Iversen SD, Bloom F, Douglas C, Brown M, Vale W. Calcium-dependent release of somatostatin and neurotensin from rat brain in vitro [J]. Nature, 1978, 273 (5658): 161-3.
    [16] Patel YC, Zingg HH, Dreifuss JJ. Calcium-dependent somatostatin secretion from rat neurohypophysis in vitro [J]. Nature, 1977, 267 (5614):852-3.
    [17] Thermos K. Functional mapping of somatostatin receptors in the retina: a review [J]. Vision Res, 2003, 43 (17): 1805-15.
    [18] Selmer 1, Schindler M, Allen JP, Humphrey PP, Emson PC. Advances in understanding neuronal somatostatin receptors [J]. Regul Pept, 2000, 90(1-3):1-18.
    [19] Patel YC. Somatostatin and its receptor family [J]. Front Neuroendocrinol, 1999,20 (3): 157-98.
    [20] Hathway GJ, Emson PC, Humphrey PP, Kendrick KM. Somatostatin potently stimulates in vivo striatal dopamine and gamma-aminobutyric acid release by a glutamate-dependent action [J]. J Neurochem, 1998, 70 (4): 1740-9.
    [21] Johnson J. Rickman DW, Brecha NC. Somatostatin and somatostatin subtype 2A expression in the mammalian retina [J]. Microsc Res Tech. 2000. 50
    [22] Casini G, Catalani E, Dal Monte M, Bagnoli P. Functional aspects of the somatostatinergic system in the retina and the potential therapeutic role of somatostatin in retinal disease [J]. Histol Histopathol, 2005, 20 (2):615-32.
    [23] Hoyer D, Bell GI, Berelowitz M, Epelbaum J, Feniuk W, Humphrey PP, O'Carroll AM, Patel YC, Schonbrunn A, Taylor JE, et al. Classification and nomenclature of somatostatin receptors [J]. Trends Pharmacol Sci, 1995, 16(3):86-8.
    [24] Patel YC, Greenwood MT, Panetta R, Demchyshyn L, Niznik H, Srikant CB. The somatostatin receptor family [J]. Life Sci, 1995, 57 (13): 1249-65.
    [25] Kumar U, Sasi R, Suresh S, Patel A, Thangaraju M, Metrakos P, Patel SC, Patel YC. Subtype-selective expression of the five somatostatin receptors (hSSTR1-5) in human pancreatic islet cells: a quantitative double-label immunohistochemical analysis [J]. Diabetes, 1999, 48 (1):77-85.
    [26] Olias G, Viollet C, Kusserow H, Epelbaum J, Meyerhof W. Regulation and function of somatostatin receptors [J]. J Neurochem, 2004, 89 (5): 1057-91.
    [27] Johnson J, Wong H, Walsh JH, Brecha NC. Expression of the somatostatin subtype 2A receptor in the rabbit retina [J]. J Comp Neurol, 1998, 393(l):93-101.
    [28] HeIboe L, Moller M. Immunohistochemical localization of somatostatin receptor subtypes sstl and sst2 in the rat retina [J]. Invest Ophthalmol Vis Sci, 1999, 40(10):2376-82.
    [29] Johnson J, Wu V, Wong H, Walsh JH, Brecha NC. Somatostatin receptor subtype 2A expression in the rat retina [J]. Neuroscience, 1999, 94 (3):675-83.
    [30] Akopian A. Johnson J, Gabriel R, Brecha N. Witkovsky P. Somatostatin modulates voltage-gated K(+) and Ca(2+) currents in rod and cone photoreceptors of the salamander retina [J]. J Neurosci, 2000, 20 (3):929-36.
    [31] Cristiani R, Fontanesi G, Casini G, Petrucci C, Viollet C, Bagnoli P. Expression of somatostatin subtype 1 receptor in the rabbit retina [J]. Invest Ophthalmol Vis Sci, 2000,41 (10):3191-9.
    [32] Fontanesi G, Gargini C, Bagnoli P. Postnatal development of somatostatin 2A (sst2A) receptors expression in the rabbit retina [J]. Brain Res Dev Brain Res, 2000, 123(l):67-80.
    
    [33] Petrucci C, Resta V, Fieni F, Bigiani A, Bagnoli P. Modulation of potassium current and calcium influx by somatostatin in rod bipolar cells isolated from the rabbit retina via sst2 receptors [J]. Naunyn Schmiedebergs Arch Pharmacol,2001, 363 (6):680-94.
    
    [34] Vasilaki A, Gardette R, Epelbaum J, Thermos K. NADPH-diaphorase colocalization with somatostatin receptor subtypes sst2A and sst2B in the retina [J]. Invest Ophthalmol Vis Sci, 2001, 42 (7): 1600-9.
    [35] Cristiani R, Petrucci C, Dal Monte M, Bagnoli P. Somatostatin (SRIF) and SRIF receptors in the mouse retina [J]. Brain Res, 2002, 936 (1-2): 1-14.
    [36] Vasilaki A, Mouratidou M, Schulz S, Thermos K. Somatostatin mediates nitric oxide production by activating sst(2) receptors in the rat retina [J]. Neuropharmacology, 2002, 43 (5):899-909.
    [37] Grigoryan EN, Vasilaki A, Mastrodimou N, Thermos K. Somatostatin receptor immunoreactivity in the eye of the adult newt (Pleurodeles waltlii Michan) [J]. Neurosci Lett, 2003, 337 (3): 143-6.
    [38] Mori M, Aihara M, Shimizu T. Differential expression of somatostatin receptors in the rat eye: SSTR4 is intensely expressed in the iris/ciliary body [J].Neurosci Lett, 1997, 223 (3): 185-8.
    [39] Klisovic DD. O'Dorisio MS. Katz SE. Sail JW. Balster D. O'Dorisio TM. Craig E. Lubow M. Somatostatin receptor gene expression in human ocular tissues: RT-PCR and immunohistochemical study [J]. Invest Ophthalmol Vis Sci, 2001,42 (10):2193-201.
    [40] Mastrodimou N, Thermos K. The somatostatin receptor (sstl) modulates the release of somatostatin in rat retina [J]. Neurosci Lett, 2004, 356 (1):13-6.
    [41] Thermos K, Bagnoli P, Epelbaum J, Hoyer D. The somatostatin sstl receptor: an autoreceptor for somatostatin in brain and retina? [J]. Pharmacol Ther, 2006,110(3):455-64.
    [42] Johnson J, Caravelli ML, Brecha NC. Somatostatin inhibits calcium influx into rat rod bipolar cell axonal terminals [J]. Vis Neurosci, 2001, 18 (1): 101 -8.
    [43] Dal Monte M, Petrucci C, Cozzi A, Allen JP, Bagnoli P. Somatostatin inhibits potassium-evoked glutamate release by activation of the sst(2) somatostatin receptor in the mouse retina [J]. Naunyn Schmiedebergs Arch Pharmacol,2003, 367 (2): 188-92.
    [44] Kouvidi E, Papadopoulou-Daifoti Z, Thermos K. Somatostatin modulates dopamine release in rat retina [J]. Neurosci Lett, 2006, 391 (3):82-6.
    [45] Rakovska A, Javitt D, Raichev P, Ang R, Balla A, Aspromonte J, Vizi S. Physiological release of striatal acetylcholine (in vivo): effect of somatostatin on dopaminergic-cholinergic interaction [J]. Brain Res Bull, 2003, 61 (5):529-36.
    [46] Chesselet MF, Reisine TD. Somatostatin regulates dopamine release in rat striatal slices and cat caudate nuclei [J]. J Neurosci, 1983, 3 (1):232-6.
    [47] Boehm S, Betz H. Somatostatin inhibits excitatory transmission at rat hippocampal synapses via presynaptic receptors [J]. J Neurosci, 1997, 17 (11):4066-75.
    [48] Tallent MK, Siggins GR. Somatostatin depresses excitatory but not inhibitory neurotransmission in rat CA1 hippocampus [J]. J Neurophysiol, 1997, 78(6):3008-18.
    [49] Grilli M, Raiteri L, Pittaluga A. Somatostatin inhibits glutamate release from mouse cerebrocortical nerve endings through presynaptic sst2 receptors linked to the adenylyl cyclase-protein kinase A pathway [J]. Neuropharmacology,2004, 46 (3):388-96.
    [50] Momiyama T, Zaborszky L. Somatostatin presynaptically inhibits both GABA and glutamate release onto rat basal forebrain cholinergic neurons [J]. J Neurophysiol, 2006, 96 (2):686-94.
    [51] Gray DB, Pilar GR, Ford MJ. Opiate and peptide inhibition of transmitter release in parasympathetic nerve terminals [J]. J Neurosci, 1989, 9 (5): 1683-92.
    [52] Araujo DM, Lapchak PA, Collier B, Quirion R. Evidence that somatostatin enhances endogenous acetylcholine release in the rat hippocampus [J]. J Neurochem, 1990, 55 (5): 1546-55.
    [53] Gray DB, Zelazny D, Manthay N, Pilar G. Endogenous modulation of ACh release by somatostatin and the differential roles of Ca2+ channels [J]. J Neurosci, 1990, 10 (8):2687-98.
    [54] Rakovska A, Kiss JP, Raichev P, Lazarova M, Kalfin R, Milenov K. Somatostatin stimulates striatal acetylcholine release by glutamatergic receptors: an in vivo microdialysis study [J]. Neurochem Int, 2002, 40 (3):269-75.
    [55] Leresche N, Asprodini E, Emri Z, Cope DW, Crunelli V. Somatostatin inhibits GABAergic transmission in the sensory thalamus via presynaptic receptors [J]. Neuroscience, 2000, 98 (3):513-22.
    [56] Frech MJ, Perez-Leon J, Wassle H, Backus KH. Characterization of the spontaneous synaptic activity of amacrine cells in the mouse retina [J]. J Neurophysiol, 2001, 86 (4): 1632-43.
    [57] Veruki ML, Gill SB, Hartveit E. Spontaneous IPSCs and glycine receptors with slow kinetics in wide-field amacrine cells in the mature rat retina [J]. J Physiol,2007,581 (Pt l):203-19.
    [58] Gleason E, Borges S, Wilson M. Control of transmitter release from retinal amacrine cells by Ca2+ influx and efflux [J]. Neuron, 1994, 13 (5): 1109-17.
    [59] Gleason E, Borges S, Wilson M. Synaptic transmission between pairs of retinal amacrine cells in culture [J]. J Neurosci, 1993, 13 (6):2359-70.
    [60] Cheng Z, Zhong YM, Yang XL. Expression of the dopamine transporter in rat and bullfrog retinas [J]. Neuroreport, 2006, 17 (8):773-7.
    [61] Yu YC, Cao LH, Yang XL. Modulation by brain natriuretic peptide of GABA receptors on rat retinal ON-type bipolar cells [J]. J Neurosci, 2006, 26(2):696-707.
    [62] Chen L, Yu YC, Zhao JW, Yang XL. Inwardly rectifying potassium channels in rat retinal ganglion cells [J]. Eur J Neurosci, 2004, 20 (4):956-64.
    [63] Tian M, Yang XL. C-type natriuretic peptide modulates glutamate receptors on cultured rat retinal amacrine cells [J]. Neuroscience, 2006, 139 (4):1211-20.
    [64] Koizumi A, Watanabe SI, Kaneko A. Persistent Na+ current and Ca2+ current boost graded depolarization of rat retinal amacrine cells in culture [J]. J Neurophysiol, 2001, 86 (2): 1006-16.
    [65] Helboe L, Moller M, Norregaard L, Schiodt M, Stidsen CE. Development of selective antibodies against the human somatostatin receptor subtypes sst1-sst5 [J]. Brain Res Mol Brain Res, 1997, 49 (1-2):82-8.
    [66] Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity [J]. Science, 2000, 288 (5463): 154-7.
    [67] Nguyen-Legros J, Versaux-Botteri C. Savy C. Dopaminergic and GABAergic retinal cell populations in mammals [J]. Microsc Res Tech, 1997, 36 (1):26-42.
    [68] Cueva JG, Haverkamp S, Reimer RJ, Edwards R, Wassle H, Brecha NC. Vesicular gamma-aminobutyric acid transporter expression in amacrine and horizontal cells [J]. J Comp Neurol, 2002, 445 (3):227-37.
    [69] Puthussery T, Fletcher EL. P2X2 receptors on ganglion and amacrine cells in cone pathways of the rat retina [J]. J Comp Neurol, 2006, 496 (5):595-609.
    [70] Versaux-Botteri C, Pochet R, Nguyen-Legros J. Immunohistochemical localization of GABA-containing neurons during postnatal development of the rat retina [J]. Invest Ophthalmol Vis Sci, 1989, 30 (4):652-9.
    [71] Kosaka T, Kosaka K, Hataguchi Y, Nagatsu I, Wu JY, Ottersen OP, Storm-Mathisen J, Hama K. Catecholaminergic neurons containing GABA-like and/or glutamic acid decarboxylase-like immunoreactivities in various brain regions of the rat [J]. Exp Brain Res, 1987, 66 (1): 191-210.
    [72] Kosaka T, Tauchi M, Dahl JL. Cholinergic neurons containing GABA-like and/or glutamic acid decarboxylase-like immunoreactivities in various brain regions of the rat [J]. Exp Brain Res, 1988, 70 (3):605-17.
    [73] Wulle I, Wagner HJ. GABA and tyrosine hydroxylase immunocytochemistry reveal different patterns of colocalization in retinal neurons of various vertebrates [J]. J Comp Neurol, 1990, 296 (l):173-8.
    [74] Contini M, Raviola E. GABAergic synapses made by a retinal dopaminergic neuron [J]. Proc Natl Acad Sci USA, 2003, 100 (3): 1358-63.
    [75] Voigt T. Cholinergic amacrine cells in the rat retina [J]. J Comp Neurol, 1986,248(1): 19-35.
    [76] Gabriel R, Witkovsky P. Cholinergic, but not the rod pathway-related glycinergic (All), amacrine cells contain calretinin in the rat retina [J]. Neurosci Lett, 1998. 247 (2-3): 179-82.
    [77] D'Angelo I, Oh SJ, Chun MH, Brecha NC. Localization of neuropeptide Yl receptor immunoreactivity in the rat retina and the synaptic connectivity of Y1 immunoreactive cells [J]. J Comp Neurol, 2002, 454 (4):373-82.
    [78] Tian M, Zhao JW, Yang XL, Xie JX. Voltage-gated K(+) channel subunits on cholinergic and dopaminergic amacrine cells [J]. Neuroreport, 2003, 14(14):1763-6.
    [79] Xu HP, Zhao JW, Yang XL. Cholinergic and dopaminergic amacrine cells differentially express calcium channel subunits in the rat retina [J]. Neuroscience, 2003, 118 (3):763-8.
    [80] Wassle H, Grunert U, Rohrenbeck J. Immunocytochemical staining of AII-amacrine cells in the rat retina with antibodies against parvalbumin [J]. J Comp Neurol, 1993, 332 (4):407-20.
    [81] Nunn C, Feuerbach D, Lin X, Peter R, Hoyer D. Pharmacological characterisation of the goldfish somatostatin sst5 receptor [J]. Eur J Pharmacol, 2002, 436 (3): 173-86.
    [82] Feuerbach D, Fehlmann D, Nunn C, Siehler S, Langenegger D, Bouhelal R, Seuwen K, Hoyer D. Cloning, expression and pharmacological characterisation of the mouse somatostatin sst(5) receptor [J]. Neuropharmacology, 2000, 39 (8):1451-62.
    [83] Wilkinson GF, Thurlow RJ, Sellers LA, Coote JE, Feniuk W, Humphrey PP. Potent antagonism by BIM-23056 at the human recombinant somatostatin sst5 receptor [J]. Br J Pharmacol, 1996, 118 (3):445-7.
    [84] Feniuk W, Jarvie E, Luo J, Humphrey PP. Selective somatostatin sst(2) receptor blockade with the novel cyclic octapeptide, CYN-154806 [J].Neuropharmacology, 2000, 39 (8): 1443-50.
    [85] Vigh J, Lasater EM. L-type calcium channels mediate transmitter release in isolated, wide-field retinal amacrine cells [J]. Vis Neurosci, 2004, 21(2): 129-34.
    [86] Boehm S, Huck S. A somatostatin receptor inhibits noradrenaline release from chick sympathetic neurons through pertussis toxin-sensitive mechanisms:comparison with the action of alpha 2-adrenoceptors [J]. Neuroscience, 1996,73 (2):595-604.
    [87] Weckbecker G, Lewis I, Albert R, Schmid HA, Hoyer D, Bruns C. Opportunities in somatostatin research: biological, chemical and therapeutic aspects [J]. Nat Rev Drug Discov, 2003, 2 (12):999-1017.
    [88] Cervia D, Casini G, Bagnoli P. Physiology and pathology of somatostatin in the mammalian retina: A current view [J]. Mol Cell Endocrinol, 2008, 286
    
    [89] Ding L, Perkel DJ, Farries MA. Presynaptic depression of glutamatergic synaptic transmission by D1-like dopamine receptor activation in the avian basal ganglia [J]. J Neurosci, 2003, 23 (14):6086-95.
    [90] Warrier A, Wilson M. Endocannabinoid signaling regulates spontaneous transmitter release from embryonic retinal amacrine cells [J]. Vis Neurosci, 2007, 24(1):25-35.
    [91] Sakaba T, Neher E. Preferential potentiation of fast-releasing synaptic vesicles by cAMP at the calyx of Held [J]. Proc Natl Acad Sci U S A, 2001, 98 (1 ):331 -6.
    [92] Sakaba T, Neher E. Direct modulation of synaptic vesicle priming by GABA(B) receptor activation at a glutamatergic synapse [J]. Nature, 2003, 424(6950):775-8.
    [93] Kaneko M, Takahashi T. Presynaptic mechanism underlying cAMP-dependent synaptic potentiation [J]. J Neurosci. 2004, 24 (22):5202-8.
    [94] Euler T. Wassle H. Immunocytochemical identification of cone bipolar cells in the rat retina [J]. J Comp Neurol, 1995,361 (3):461-78.
    [95] Rocheville M, Lange DC, Kumar U, Sasi R, Patel RC, Patel YC. Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers [J]. J Biol Chem, 2000, 275 (11):7862-9.
    [96] Patel RC, Kumar U, Lamb DC, Eid JS, Rocheville M, Grant M, Rani A, Hazlett T, Patel SC, Gratton E, Patel YC. Ligand binding to somatostatin receptors induces receptor-specific oligomer formation in live cells [J]. Proc Natl Acad Sci USA, 2002, 99 (5):3294-9.
    [97] Sun QQ, Huguenard JR, Prince DA. Somatostatin inhibits thalamic network oscillations in vitro: actions on the GABAergic neurons of the reticular nucleus [J]. J Neurosci, 2002, 22 (13):5374-86.
    [98] Vilchis C, Bargas J, Perez-Rosello T, Salgado H, Galarraga E. Somatostatin modulates Ca2+ currents in neostriatal neurons [J]. Neuroscience, 2002, 109(3):555-67.
    [99] Tallent M, Liapakis G, O'Carroll AM, Lolait SJ, Dichter M, Reisine T. Somatostatin receptor subtypes SSTR2 and SSTR5 couple negatively to an L-type Ca2+ current in the pituitary cell line AtT-20 [J]. Neuroscience, 1996,71 (4): 1073-81.
    [100] Wilkinson GF, Feniuk W, Humphrey PP. Characterization of human recombinant somatostatin sst5 receptors mediating activation of phosphoinositide metabolism [J]. Br J Pharmacol, 1997, 121 (l):91-6.
    [101] Turrigiano GG, Nelson SB. Homeostatic plasticity in the developing nervous system [J]. Nat Rev Neurosci, 2004, 5 (2):97-107.
    [102] Bouron A. Modulation of spontaneous quantal release of neurotransmitters in the hippocampus [J]. Prog Neurobiol, 2001, 63 (6):613-35.
    [103] Murphy TH. Blatter LA, Bhat RV. Fiore RS, Wier WG, Baraban JM. Differential regulation of calcium/calmodulin-dependent protein kinase II and p42 MAP kinase activity by synaptic transmission [J]. J Neurosci, 1994, 14 (3 Pt 1):1320-31.
    [104] Sutton MA, Ito HT, Cressy P, Kempf C, Woo JC, Schuman EM. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis [J]. Cell, 2006, 125 (4):785-99.
    [105] Sutton MA, Wall NR, Aakalu GN, Schuman EM. Regulation of dendritic protein synthesis by miniature synaptic events [J]. Science, 2004, 304 (5679): 1979-83.
    [106] Frerking M, Borges S, Wilson M. Are some minis multiquantal? [J]. J Neurophysiol, 1997, 78 (3): 1293-304.
    [107] Frerking M, Borges S, Wilson M. Variation in GABA mini amplitude is the consequence of variation in transmitter concentration [J]. Neuron, 1995, 15 (4):885-95.
    [108] Warrier A, Borges S, Dalcino D, Walters C, Wilson M. Calcium from internal stores triggers GABA release from retinal amacrine cells [J]. J Neurophysiol, 2005, 94 (6):4196-208.
    [109] Polo-Parada L, Pilar G. kappa- and mu-opioids reverse the somatostatin inhibition of Ca2+ currents in ciliary and dorsal root ganglion neurons [J]. J Neurosci, 1999, 19 (13):5213-27.
    [110] Viana F, Hille B. Modulation of high voltage-activated calcium channels by somatostatin in acutely isolated rat amygdaloid neurons [J]. J Neurosci, 1996.16(19):6000-11.
    [111] Ishibashi H, Akaike N. Somatostatin modulates high-voltage-activated Ca2+ channels in freshly dissociated rat hippocampal neurons [J]. J Neurophysiol, 1995. 74 (3): 1028-36.
    [112] Meriney SD, Gray DB, Pilar GR. Somatostatin-induced inhibition of neuronal Ca2+ current modulated by cGMP-dependent protein kinase [J]. Nature, 1994,369 (6478):336-9.
    [1]Brazeau P,Vale W,Burgus R,Ling N,Butcher M,Rivier J,Guillemin R.Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone[J].Science,1973,179(68):77-9.
    [2]Pradayrol L,Jornvall H,Mutt V,Ribet A.N-terminally extended somatostatin:the primary structure of somatostatin-28 [J]. FEBS Lett, 1980, 109 (1):55-8.
    [3] Patel YC, O'Neil W. Peptides derived from cleavage of prosomatostatin at carboxyl- and amino-terminal segments. Characterization of tissue and secreted forms in the rat [J]. J Biol Chem, 1988, 263 (2):745-51.
    [4] Goodman RH, Montminy MR, Low MJ, Habener JF. Biosynthesis of rat preprosomatostatin [J]. Adv Exp Med Biol, 1985, 188 31-47.
    [5] Reichlin S. Somatostatin [J]. N Engl J Med, 1983, 309 (24):1495-501.
    [6] de Lecea L, Criado JR, Prospero-Garcia O, Gautvik KM, Schweitzer P, Danielson PE, Dunlop CL, Siggins GR, Henriksen SJ, Sutcliffe JG. A cortical neuropeptide with neuronal depressant and sleep-modulating properties [J]. Nature, 1996,381 (6579):242-5.
    [7] de Lecea L, Ruiz-Lozano P, Danielson PE, Peelle-Kirley J, Foye PE, Frankel WN, Sutcliffe JG. Cloning, mRNA expression, and chromosomal mapping of mouse and human preprocortistatin [J]. Genomics, 1997, 42 (3):499-506.
    [8] de Lecea L. Cortistatin-Functions in the central nervous system [J]. Mol Cell Endocrinol, 2008, 286 (1-2):88-95.
    [9] de Lecea L, del Rio JA, Criado JR, Alcantara S, Morales M, Danielson PE, Henriksen SJ, Soriano E, Sutcliffe JG. Cortistatin is expressed in a distinct subset of cortical intemeurons [J]. J Neurosci, 1997, 17 (15):5868-80.
    [10] Olias G, Viollet C, Kusserow H, Epelbaum J, Meyerhof W. Regulation and function of somatostatin receptors [J]. J Neurochem, 2004, 89 (5): 1057-91.
    [11] Weckbecker G, Lewis 1, Albert R, Schmid HA, Hoyer D, Bruns C. Opportunities in somatostatin research: biological, chemical and therapeutic aspects [J]. Nat Rev Drug Discov, 2003, 2 (12):999-1017.
    [12] Selmer I. Schindler M. Allen JP. Humphrey PP. Emson PC. Advances in understanding neuronal somatostatin receptors [J]. Regul Pept, 2000. 90 (1-3): 1-18.
    
    [13] Patel YC. Somatostatin and its receptor family [J]. Front Neuroendocrinol, 1999,20 (3): 157-98.
    [14] Schindler M, Humphrey PP, Emson PC. Somatostatin receptors in the central nervous system [J]. Prog Neurobiol, 1996, 50 (l):9-47.
    [15] Patel YC, Greenwood MT, Panetta R, Demchyshyn L, Niznik H, Srikant CB. The somatostatin receptor family [J]. Life Sci, 1995, 57 (13): 1249-65.
    [16] Epelbaum J, Dournaud P, Fodor M, Viollet C. The neurobiology of somatostatin [J]. Crit Rev Neurobiol, 1994, 8 (l-2):25-44.
    [17] Epelbaum J. Somatostatin in the central nervous system: physiology and pathological modifications [J]. Prog Neurobiol, 1986, 27 (1):63-100.
    [18] Iversen LL, Iversen SD, Bloom F, Douglas C, Brown M, Vale W. Calcium-dependent release of somatostatin and neurotensin from rat brain in vitro [J]. Nature, 1978, 273 (5658):161-3.
    [19] Patel YC, Zingg HH, Dreifuss JJ. Calcium-dependent somatostatin secretion from rat neurohypophysis in vitro [J]. Nature, 1977, 267 (5614):852-3.
    [20] Thermos K. Functional mapping of somatostatin receptors in the retina: a review [J]. Vision Res, 2003, 43 (17): 1805-15.
    [21] Tulipano G, Schulz S. Novel insights in somatostatin receptor physiology [J]. Eur J Endocrinol, 2007, 156 Suppl 1 S3-11.
    [22] Hoyer D, Bell GI, Berelowitz M, Epelbaum J, Feniuk W, Humphrey PP, O'Carroll AM, Patel YC, Schonbrunn A, Taylor JE, et al. Classification and nomenclature of somatostatin receptors [J]. Trends Pharmacol Sci, 1995, 16(3):86-8.
    [23] Bowery NG Bettler B, Froestl W, Gallagher JR Marshall F, Raiteri M, Bonner TI. Enna SJ. International Union of Pharmacology. XXX1I1. Mammalian
    ?/gamma-aminobutyric acid(B) receptors: structure and function [J]. Pharmacol Rev, 2002, 54 (2):247-64.
    [24] Millan MJ, Lejeune F, Gobert A. Reciprocal autoreceptor and heteroreceptor control of serotonergic, dopaminergic and noradrenergic transmission in the frontal cortex: relevance to the actions of antidepressant agents [J]. J Psychopharmacol, 2000, 14 (2):114-38.
    [25] Malcangio M, Bowery NG. Peptide autoreceptors: does an autoreceptor for substance P exist? [J]. Trends Pharmacol Sci, 1999, 20 (10):405-7.
    [26] Thermos K, Bagnoli P, Epelbaum J, Hoyer D. The somatostatin sst1 receptor: an autoreceptor for somatostatin in brain and retina? [J]. Pharmacol Ther, 2006,110 (3):455-64.
    [27] Richardson SB, Twente S. Inhibition of rat hypothalamic somatostatin release by somatostatin: evidence for somatostatin ultrashort loop feedback [J]. Endocrinology, 1986, 118 (5):2076-82.
    [28] Peterfreund RA, Vale WW. Somatostatin analogs inhibit somatostatin secretion from cultured hypothalamus cells [J]. Neuroendocrinology, 1984, 39(5):397-402.
    [29] Helboe L, Stidsen CE, Moller M. Immunohistochemical and cytochemical localization of the somatostatin receptor subtype sstl in the somatostatinergic parvocellular neuronal system of the rat hypothalamus [J]. J Neurosci, 1998,18(13):4938-45.
    [30] Beaudet A, Greenspun D, Raelson J, Tannenbaum GS. Patterns of expression of SSTR1 and SSTR2 somatostatin receptor subtypes in the hypothalamus of the adult rat: relationship to neuroendocrine function [J]. Neuroscience, 1995, 65(2):551-61.
    [31] Schulz S, Handel M, Schreff M. Schmidt H. Hollt V. Localization of five somatostatin receptors in the rat central nervous system using subtype-specific antibodies [J]. J Physiol Paris, 2000, 94 (3-4):259-64.
    [32] Vincent SR, Johansson O. Striatal neurons containing both somatostatin- and avian pancreatic polypeptide (APP)-like immunoreactivities and NADPH-diaphorase activity: a light and electron microscopic study [J]. J Comp Neurol, 1983, 217 (3):264-70.
    [33] Vasilaki A, Papasava D, Hoyer D, Thermos K. The somatostatin receptor (sst1) modulates the release of somatostatin in the nucleus accumbens of the rat [J]. Neuropharmacology, 2004, 47 (4):612-8.
    [34] Dal Monte M, Petrucci C, Vasilaki A, Cervia D, Grouselle D, Epelbaum J, Kreienkamp HJ, Richter D, Hoyer D, Bagnoli P. Genetic deletion of somatostatin receptor 1 alters somatostatinergic transmission in the mouse retina [J]. Neuropharmacology, 2003, 45 (8): 1080-92.
    [35] Cristiani R, Fontanesi G, Casini G, Petrucci C, Viollet C, Bagnoli P. Expression of somatostatin subtype 1 receptor in the rabbit retina [J]. Invest Ophthalmol Vis Sci,2000,41 (10):3191-9.
    [36] Helboe L, Moller M. Immunohistochemical localization of somatostatin receptor subtypes sstl and sst2 in the rat retina [J]. Invest Ophthalmol Vis Sci, 1999, 40(10):2376-82.
    [37] Mastrodimou N, Thermos K. The somatostatin receptor (sstl) modulates the release of somatostatin in rat retina [J]. Neurosci Lett, 2004, 356 (1):13-6.
    [38] Ke JB, Zhong YM. Expression of somatostatin receptor subtype 5 in rat retinal amacrine cells [J]. Neuroscience, 2007, 144 (3): 1025-32.
    [39] Rakovska A. Javitt D, Raichev P, Ang R, Balla A, Aspromonte J, Vizi S. Physiological release of striatal acetylcholine (in vivo): effect of somatostatin on dopaminergic-cholinergic interaction [J]. Brain Res Bull. 2003, 61 (5):529-36. [40] Hathway GJ, Emson PC, Humphrey PP, Kendrick KM. Somatostatin potently stimulates in vivo striatal dopamine and gamma-aminobutyric acid release by a glutamate-dependent action [J]. J Neurochem, 1998, 70 (4):1740-9.
    [41] Chesselet MF, Reisine TD. Somatostatin regulates dopamine release in rat striatal slices and cat caudate nuclei [J]. J Neurosci, 1983, 3 (l):232-6.
    [42] Kouvidi E, Papadopoulou-Daifoti Z, Thermos K. Somatostatin modulates dopamine release in rat retina [J]. Neurosci Lett, 2006, 391 (3):82-6.
    [43] Hathway GJ, Humphrey PP, Kendrick KM. Evidence that somatostatin sst2 receptors mediate striatal dopamine release [J]. Br J Pharmacol, 1999, 128 (6): 1346-52.
    [44] Gray DB, Zelazny D, Manthay N, Pilar G. Endogenous modulation of ACh release by somatostatin and the differential roles of Ca2+ channels [J]. JNeurosci, 1990, 10 (8):2687-98.
    [45] Gray DB, Pilar GR, Ford MJ. Opiate and peptide inhibition of transmitter release in parasympathetic nerve terminals [J]. J Neurosci, 1989, 9 (5): 1683-92.
    [46] Katayama Y, Hirai K. Somatostatin presynaptically inhibits transmitter release in feline parasympathetic ganglia [J]. Brain Res, 1989, 487 (1):62-8.
    [47] Arneric SP, Reis DJ. Somatostatin and cholecystokinin octapeptide differentially modulate the release of [3H]acetylcholine from caudate nucleus but not cerebral cortex: role of dopamine receptor activation [J]. Brain Res, 1986, 374 (1):153-61.
    
    [48] Rakovska A, Kiss JP, Raichev P, Lazarova M, Kalfin R, Milenov K. Somatostatin stimulates striatal acetylcholine release by glutamatergic receptors: an in vivo microdialysis study [J]. Neurochem Int, 2002, 40 (3):269-75.
    
    [49] Araujo DM. Lapchak PA. Collier B, Quirion R. Evidence that somatostatin enhances endogenous acetylcholine release in the rat hippocampus [J]. J Neurochem, 1990, 55 (5): 1546-55.
    [50] Momiyama T, Zaborszky L. Somatostatin presynaptically inhibits both GABA and glutamate release onto rat basal forebrain cholinergic neurons [J]. J Neurophysiol, 2006, 96 (2):686-94.
    [51] Grilli M, Raiteri L, Pittaluga A. Somatostatin inhibits glutamate release from mouse cerebrocortical nerve endings through presynaptic sst2 receptors linked to the adenylyl cyclase-protein kinase A pathway [J]. Neuropharmacology,2004, 46 (3):388-96.
    [52] Dal Monte M, Petrucci C, Cozzi A, Allen JP, Bagnoli P. Somatostatin inhibits potassium-evoked glutamate release by activation of the sst(2) somatostatin receptor in the mouse retina [J]. Naunyn Schmiedebergs Arch Pharmacol, 2003, 367 (2): 188-92.
    [53] Tallent MK, Siggins GR. Somatostatin depresses excitatory but not inhibitory neurotransmission in rat CA1 hippocampus [J]. J Neurophysiol, 1997, 78 (6):3008-18.
    [54] Boehm S, Betz H. Somatostatin inhibits excitatory transmission at rat hippocampal synapses via presynaptic receptors [J]. J Neurosci, 1997, 17(11):4066-75.
    [55] Sun QQ, Huguenard JR, Prince DA. Somatostatin inhibits thalamic network oscillations in vitro: actions on the GABAergic neurons of the reticular nucleus [J]. J Neurosci, 2002, 22 (13):5374-86.
    [56] Petrucci C, Resta V, Fieni F, Bigiani A, Bagnoli P. Modulation of potassium current and calcium influx by somatostatin in rod bipolar cells isolated from the rabbit retina via sst2 receptors [J]. Naunyn Schmiedebergs Arch Pharmacol.2001, 363 (6):680-94.
    [57] Johnson J, Caravelli ML, Brecha NC. Somatostatin inhibits calcium influx into rat rod bipolar cell axonal terminals [J]. Vis Neurosci, 2001, 18 (1):101-8.
    [58] Leresche N, Asprodini E, Emri Z, Cope DW, Crunelli V. Somatostatin inhibits GABAergic transmission in the sensory thalamus via presynaptic receptors [J].Neuroscience, 2000, 98 (3):513-22.
    [59] Viana F, Hille B. Modulation of high voltage-activated calcium channels by somatostatin in acutely isolated rat amygdaloid neurons [J]. J Neurosci, 1996,16(19):6000-ll.
    [60] Boehm S, Huck S. A somatostatin receptor inhibits noradrenaline release from chick sympathetic neurons through pertussis toxin-sensitive mechanisms: comparison with the action of alpha 2-adrenoceptors [J]. Neuroscience, 1996, 73 (2):595-604.
    [61] Vasilaki A, Mouratidou M, Schulz S, Thermos K. Somatostatin mediates nitric oxide production by activating sst(2) receptors in the rat retina [J]. Neuropharmacology, 2002, 43 (5):899-909.
    [62] Vasilaki A, Gardette R, Epelbaum J, Thermos K. NADPH-diaphorase colocalization with somatostatin receptor subtypes sst2A and sst2B in the retina [J]. Invest Ophthalmol Vis Sci, 2001, 42 (7): 1600-9.
    [63] Vilchis C, Bargas J, Perez-Rosello T, Salgado H, Galarraga E. Somatostatin modulates Ca2+ currents in neostriatal neurons [J]. Neuroscience, 2002, 109 (3):555-67.
    [64] Polo-Parada L, Pilar G. kappa- and mu-opioids reverse the somatostatin inhibition of Ca2+ currents in ciliary and dorsal root ganglion neurons [J]. J Neurosci, 1999, 19 (13):5213-27.
    [65] Ishibashi H, Akaike N. Somatostatin modulates high-voltage-activated Ca2+ channels in freshly dissociated rat hippocampal neurons [J]. J Neurophysiol. 1995, 74 (3): 1028-36.
    [66] Meriney SD, Gray DB, Pilar GR. Somatostatin-induced inhibition of neuronal Ca2+ current modulated by cGMP-dependent protein kinase [J]. Nature, 1994,369 (6478):336-9.
    [67] Golard A, Role L, Siegelbaum SA. Substance P potentiates calcium channel modulation by somatostatin in chick sympathetic ganglia [J]. J Neurophysiol, 1994, 72 (6):2683-90.
    [68] Shapiro MS, Hille B. Substance P and somatostatin inhibit calcium channels in rat sympathetic neurons via different G protein pathways [J]. Neuron, 1993, 10(l):11-20.
    [69] Golard A, Siegelbaum SA. Kinetic basis for the voltage-dependent inhibition of N-type calcium current by somatostatin and norepinephrine in chick sympathetic neurons [J]. J Neurosci, 1993, 13 (9):3884-94.
    [70] Shen KZ, Surprenant A. Noradrenaline, somatostatin and opioids inhibit activity of single HVA/N-type calcium channels in excised neuronal membranes [J]. Pflugers Arch, 1991, 418 (6):614-6.
    [71] Dryer SE, Dourado MM, Wisgirda ME. Properties of Ca2+ currents in acutely dissociated neurons of the chick ciliary ganglion: inhibition by somatostatin-14 and somatostatin-28 [J]. Neuroscience, 1991, 44 (3):663-72.
    [72] Wang HL, Reisine T, Dichter M. Somatostatin-14 and somatostatin-28 inhibit calcium currents in rat neocortical neurons [J]. Neuroscience, 1990. 38(2):335-42.
    [73] Ikeda SR, Schofield GG. Somatostatin blocks a calcium current in rat sympathetic ganglion neurones [J]. J Physiol, 1989. 409:221-40.
    [74] Akopian A. Johnson J, Gabriel R, Brecha N, Witkovsky P. Somatostatin modulates voltage-gated K(+) and Ca(2+) currents in rod and cone photoreceptors of the salamander retina [J]. J Neurosci, 2000, 20 (3):929-36.
    [75] Inoue M, Nakajima S, Nakajima Y. Somatostatin induces an inward rectification in rat locus coeruleus neurones through a pertussis toxin-sensitive mechanism [J]. J Physiol, 1988, 407:177-98.
    [76] Takano K, Yasufuku-Takano J, Kozasa T, Nakajima S, Nakajima Y. Different G proteins mediate somatostatin-induced inward rectifier K+ currents in murine brain and endocrine cells [J]. J Physiol, 1997, 502 ( Pt 3):559-67.
    [77] Hicks GA, Feniuk W, Humphrey PP. Outward current produced by somatostatin (SRIF) in rat anterior cingulate pyramidal cells in vitro [J]. Br J Pharmacol,1998, 124(l):252-8.
    [78] Schweitzer P, Madamba SG, Siggins GR. Somatostatin increases a voltage-insensitive K+ conductance in rat CA1 hippocampal neurons [J]. J Neurophysiol, 1998, 79 (3): 1230-8.
    [79] Wang HL, Bogen C, Reisine T, Dichter M. Somatostatin-14 and somatostatin-28 induce opposite effects on potassium currents in rat neocortical neurons [J]. Proc Natl Acad Sci U S A, 1989, 86 (23):9616-20.
    [80] Yatani A, Birnbaumer L, Brown AM. Direct coupling of the somatostatin receptor to potassium channels by a G protein [J]. Metabolism, 1990, 39 (9 Suppl 2):91-5.
    [81] Cervia D, Casini G, Bagnoli P. Physiology and pathology of somatostatin in the mammalian retina: A current view [J]. Mol Cell Endocrinol, 2008, 286 (1-2):112-122.
    
    [82] Patel YC, Greenwood MT, Warszynska A, Panetta R, Srikant CB. All five cloned human somatostatin receptors (hSSTR1-5) are functionally coupled to adenylyl cyclase [J]. Biochem Biophys Res Commun, 1994. 198 (2):605-12.
    
    [83] Meyerhof W. The elucidation of somatostatin receptor functions: a current view [J]. Rev Physiol Biochem Pharmacol, 1998, 133:55-108.
    [84] Akbar M, Okajima F, Tomura H, Majid MA, Yamada Y, Seino S, Kondo Y. Phospholipase C activation and Ca2+ mobilization by cloned human somatostatin receptor subtypes 1-5, in transfected COS-7 cells [J]. FEBS Lett, 1994, 348 (2): 192-6.
    [85] Carruthers AM, Warner AJ, Michel AD, Feniuk W, Humphrey PP. Activation of adenylate cyclase by human recombinant sst5 receptors expressed in CHO-K1 cells and involvement of Galphas proteins [J]. Br J Pharmacol, 1999, 126 (5):1221-9.
    [86] Feigenspan A, Bormann J. Facilitation of GABAergic signaling in the retina by receptors stimulating adenylate cyclase [J]. Proc Natl Acad Sci USA, 1994,91 (23): 10893-7.
    [87] Firth SI, Boelen MK, Morgan IG. Enkephalin, neurotensin and somatostatin increase cAMP levels in the chicken retina [J]. Aust N Z J Ophthalmol, 1998,26 Suppl 1 :S65-7.
    [88] Colas B, Valencia AM, Prieto JC, Arilla E. Somatostatin binding and modulation of adenylate cyclase in ovine retina membranes [J]. Mol Cell Endocrinol, 1992,88 (1-3):111-7.
    [89] Pavan B, Fiorini S, Dal Monte M, Lunghi L, Biondi C, Bagnoli P, Cervia D. Somatostatin coupling to adenylyl cyclase activity in the mouse retina [J].Naunyn Schmiedebergs Arch Pharmacol, 2004, 370 (2):91-8.
    [90] Kaneko M, Takahashi T. Presynaptic mechanism underlying cAMP-dependent synaptic potentiation [J]. J Neurosci, 2004, 24 (22):5202-8.
    [91] Sakaba T. Neher E. Direct modulation of synaptic vesicle priming by GABA(B) receptor activation at a glutamatergic synapse [J]. Nature. 2003, 424 (6950):775-8.
    [92] Sakaba T, Neher E. Preferential potentiation of fast-releasing synaptic vesicles by cAMP at the calyx of Held [J]. Proc Natl Acad Sci U S A, 2001, 98 (1):331-6.
    [93] Warrier A, Wilson M. Endocannabinoid signaling regulates spontaneous transmitter release from embryonic retinal amacrine cells [J]. Vis Neurosci,2007,24(l):25-35.
    [94] Ding L, Perkel DJ, Fairies MA. Presynaptic depression of glutamatergic synaptic transmission by D1-like dopamine receptor activation in the avian basal ganglia [J]. J Neurosci, 2003, 23 (14):6086-95.
    [95] Thermos K. Novel signals mediating the functions of somatostatin: The emerging role of NO/cGMP [J]. Mol Cell Endocrinol, 2008, 286 (l-2):49-57.
    [96] Vasilaki A, Papadaki T, Notas G, Kolios G, Mastrodimou N, Hoyer D, Tsilimbaris M, Kouroumalis E, Pallikaris I, Thermos K. Effect of somatostatin on nitric oxide production in human retinal pigment epithelium cell cultures [J]. Invest Ophthalmol Vis Sci, 2004, 45 (5):1499-506.
    [97] Mastrodimou N, Kiagiadaki F, Hodjarova M, Karagianni E, Thermos K. Somatostatin receptors (sst2) regulate cGMP production in rat retina [J]. Regul Pept, 2006, 133(l-3):41-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700