柔嫩艾美耳球虫端粒DNA和TERT基因克隆及端粒酶活性测定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡球虫病(Coccidiosis)是由艾美耳球虫引起以肠道病变为主要特征的细胞内寄生虫病,呈世界性分布,严重危害养鸡业的发展。其中尤以柔嫩艾美耳球虫(Eimeria tenella,E.tenella)引起的危害最为严重。端粒(Telomere)是真核生物染色体末端能够防止染色体末端融合、降解和重组的特殊核蛋白复合体。端粒酶(Telomerase)是一种核糖核蛋白,能以自身携带的RNA为模板,不断合成新的端粒DNA序列添加到染色体末端以维持染色体端粒长度。目前,有关端粒和端粒酶的研究已经成为生命科学研究的热点之一。而寄生虫防治过程中存在的一个非常棘手的问题就是耐药虫体和虫株的不断出现,严重影响抗寄生虫药和驱虫药的效果。以寄生虫的端粒和端粒酶为切入点,进而分离端粒结合蛋白并针对该蛋白设计药物或疫苗无疑为寄生虫病的预防和治疗开辟了新思路。本研究以E.tenella为研究对象,应用单卵囊分离技术成功分离具有较强感染力的地方分离株。在此基础上,成功构建了富含端粒序列文库,进一步通过Southern杂交和酶切筛选阳性克隆,确定了E.tenella端粒DNA重复序列为5’-TTTAGGG-3’。采用CODEHOP方法根据已登录GenBank其他球虫目原虫端粒酶逆转录酶(TERT)基因序列设计简并引物PCR同时结合3’、5’-RACE技术,成功克隆E.tenella TERT 4688bp全长cDNA序列,其中包括4491bp的ORF编码1497个氨基酸,同时含有42bp 5’UTR和152bp 3’UTR以及多聚腺苷酸尾。利用生物信息学分析软件分析表明该基因包含TERT家族的主要特征性基序。最后采用改进TRAP法检测了E.tenella未孢子化卵囊、子孢子和裂殖子端粒酶活性,结果显示子孢子和裂殖子具有较高的端粒酶活性。本研究为进一步深入探索球虫端粒形成、端粒酶活性调控、基因表达和变异、细胞周期调节等机制并针对端粒结合蛋白设计特异抗球虫靶向药物预防和治疗球虫病奠定了基础。
Chicken coccidiosis is an important avian protozoan disease which seriously harm to the poutry industry worldwide. It was caused by various Eimeria spp. parasitized in intestinal mucosal epithelia, which are characterized with enteric pathological lesions. Among various Eimeria spp., E.tenella, which causes caecal coccidiosis, is highly pathogenic. Presently, the control of coccidiosis chiefly depends upon prophylactic chemotherapy with anticoccidial drugs. However, the emergence of drug resistance in coccidia is a great problem with most of the drugs, which, in due course, limits their use. Furthermore, drug or antibiotic-residue in the poultry product is potentially harmful to consumers. These limitations have necessitated the search for alternative Eimeria control measures. Telomere is a special nucleoprotein complex located at the ends of chromosomes that protects the termini from fusion, degradation, and recombination. Telomerase is a ribonucleoprotein complex responsible for extending the G-rich strand of telomere repeats composed of RNA and protein subunit. Telomere binding protein can adjust the length by adjusting the activity of telomerase. It has been becoming one of the spotlights of biological research to study on the telomeres and telomerase. The telomere and telomerase of parasites play a vital role in development, gene expression and variation, cell cycle regulation, gene recombination and life cycle composition and so on. E.tenella as the research target in this study, a powerful infectivity strain was isolated from Jilin province by single-oocyst isolation technique and its correlated bionomics was studied. On the basis of it, a libarary including telomeric DNA was constructed successfully. Then the probe was desiged according to orther parasites telomeric DNA and the positive clones which have telomeric DNA were screened from the constructed libarary, thus the E.tenella telomeric DNA was identified. At the same time, pairs of degenerate primer were designed on the basis of other coccidian protozoon TERT sequence and E.tenella TERT full-length cDNA cloned successfully and the composition of E.tenella TERT gene was analyed with protein and nucleic acid sequence analysis software also. At last, the telomerase activity in unsporulated oocyst, sporozoite and merozoite phase was detected using the designed primers according to the infomation of E.tenella telomeric DNA. Data presented in present study provide a biochemical and structural basis for future studies on E.tenella telomerase and will potentially lead to a better understanding of the mechanism of growth and aging in coccidian and in other apicomplexans. The detailed research contents and results as follows:
     1. Construction of E.tenella single-oocyst isolation strain
     The samples were collected from the serious clinic morbility case which was confirmed as E.tenella infection observation by light microscope. In order to get a single pure line strain to study the E.tenella telometic DNA and TERT sequence, a single-oocyst isolation strain was isolated by single-oocyst isolation technique. Oocyst is ellipsoid, size (21.3±3.2)×(18.9±2.1)μm with a smooth, brown wall, without a micropyle, sporocyst residuum and oocyst residuum,with a polar granule. The sporocysts are oblong ovoid with stieda body. The shortest sporulatic time is 19 h. The minimum prepatent period is 118 h. At the same time, the result of PCR identified that single-oocyst isolation strain was E.tenella. Then the pathogenicity of it was studied, the result of it indicated that the E.tenella has high pathogenic, including their relative weight gain rates can fall 55.2% and the lesion score can reach 3.52, the mortality to chickens can reach 50%, when chickens are inoculated with a dosage of 4.0×104 sporulated oocysts each bird.
     2. Identification of telomeric repetitive DNA sequences of E.tenalla
     The genomic DNA was extracted from fresh purified E.tenalla oocysts with chloridate and was digested with PstⅠa nd SmaⅠ, the same to pUC18 vector. The digested pruducts were extracted by phenol-chloroform then recoveried ethanol precipitation, the recoveried products was ligated with T4 DNA ligase, the ununited terminal was filled-in with Klenow fragment DNA polymerase I and the products was ligated with 0.1 U T4 DNA ligase at 4℃overnight. The positive clone which has telomeric DNA was screened by Southern blot and restriction enzyme disgestion to sequence. The results of sequencing indicated that 5’-TTTAGGG-3’was the E.tenalla telomeric DNA. In order to indentify the results, oligonucleotide probes (5’-TTTAGGG-3’)5 which was labeled with digoxin were hybridizated with E.tenalla genomic DNA and the E.tenalla genomic DNA which was digested with BAL31 and EcoRⅠin different time. The result of it indicated that the genomic DNA of E.tenalla could hybridizate with oligonucleotide probe and zone of hybridization could be seen clearly. With the time of BAL31 digestion delay, the zone of hybridization on the nylon membrane disappeared. The result showed that the telomeric repetitive DNA sequence of E.tenalla was 5’-TTTAGGG-3’.
     3. Cloning and analysis of E.tenella TERT sequence
     Degenerate primers were designed based on the sequences of the C.parvum, B.bovis, T.gondii TERT genes. The conserved regions were determined using the BlockMaker program, the degenerate oligonucleotide primers were derived from these conserved sequence blocks with online software CODEHOP. In order to isolate the E.tenella TERT sequence, initially two pairs of degenerate PCR primers were used to amplify a interior fragment of the E.tenella TERT inner sequence. On the basis of the sequence, both 3′and 5′-RACE were performed to isolate upstream and downstream sequences. Sequence analysis of the compiled DNA sequence demonstrated that the full length E.tenella TERT open reading frame encoding a protein of 1497 amino acids with a predicted molecular mass of 172 kDa. Pairwise alignment of full length E.tenella TERT with other previously characterized TERTs using the DNAMAN software revealed high sequence identitities with C.parvum. With conservation of previously identified motifs in the N-terminal region, C-terminal region and the central catalytic domain, motifs GQ, CP and QFP were found within the N-terminal of E.tenella TERT. Like other TERTs, E.tenella TERT contains the previously identified telomerase specific T motif within the central region of the protein followed by RT motifs 1, 2, A, B, C, D and E in the carboxyl terminal half.
     4. Detection of telomerase activity E.tenella in different development stages
     Fourteen days-old chickens are inoculated with a dosage of 1×105 sporulated oocysts each bird, E.tenella unsporulated oocysts, sporozoites and merozoite were collected. A pairs of primers were desiged according to E.tenella telomeric DNA sequence. The telomerase activity of E.tenella in different development stages were detected by the modified TRAP essay, the telomerase activity of sample which was digested with RNase and CHAPS were detected as negative control. High telomerase activity was detected in sporozoites and merozoites, while not detected in unsporulated oocyst phase.
引文
[1]Williams RB. A compartmentalised model for the estimation of the cost of coccidiosis to the world's chicken production industry[J]. International Journal for Parasitology, 1999,29(8):1209-1229.
    [2]谢明权,李国清.现代寄生虫学[M].广州:广东科技出版社, 2003.
    [3]Vermeulen AN. Progress in recombinant vaccine development against coccidiosis A review and prospects into the next millennium[J]. International Journal for Parasitology, 1998,28(7):1121-1130.
    [4]索勋,李国清.鸡球虫病学[M].北京:中国农业大学出版社, 1998.
    [5]Elizabeth U, Canning MA. Studies on Meiotic Division in Coccidial and Malarial Parasites[J]. Journal of Eukaryotic Microbiology, 1968,15(2):290-298.
    [6]Canning EU, Morgan,K. DNA synthesis,reduction and elimination during life cycles of the eimerian coccidian,E.tenella and the hemegregarine,Hepatozoon domerguei[J]. ExpParasitol 1975,38(217).
    [7]Cornelissen AW OJ, Van der Ploeg M. Cytochemical studies on nuclear DNA of four eucoccidian parasites, Isospora (Toxoplasma) gondii, Eimeria tenella, Sarcocystis cruzi and Plasmodium berghei[J]. Parasitology, 1984,88(1):13-25.
    [8]C. C. Wang RLS. Changes of Nucleic Acids and Proteins in the Oocysts of Eimeria tenella during Sporulation[J]. Journal of Eurkaryotic Microbiology, 1975,22(3):438-443.
    [9]Clarke LE, Messer LI, Greenwood NM, Wisher MH. Isolation of [lambda]amp3 genomic recombinants coding for antigens of Eimeria tenella[J]. Molecular and Biochemical Parasitology,1987,22(1):79-87.
    [10]Shirley MW KD, Pallister J, Prowse SJ. A molecular karyotype of Eimeria tenella as revealed by contour-clamped homogeneous electric field gel electrophoresis[J]. Mol Biochem Parasitol, 1990,38(2):169-173.
    [11]Shirley M. Eimeria spp. from the chicken: occurrence, identification and genetics[J]. Acta Vet Hung,1997,45(3):331-347.
    [12]Fernando MA, Pasternak JJ. Eimeria spp. of the domestic fowl: Resolution of chromosomes by field inversion gel electrophoresis[J]. Experimental Parasitology,1991,72(3):306-310.
    [13]Dunn PPJ, Stephens PJ, Shirley MW. Eimeria tenella: two species of extrachromosomal DNA revealed by pulsed-field gel electrophoresis[J]. Parasitology Research, 1998,84(4):272-275.
    [14]Cai X, Fuller AL, McDougald LR, et al. Apicoplast genome of the coccidian Eimeria tenella[J]. Gene, 2003,321:39-46.
    [15]Shirley MW. The genome of Eimeria spp., with special reference to Eimeria tenella--a coccidium from the chicken[J]. International Journal for Parasitology,2000,30(4):485-493.
    [16]Shirley MW, Ivens A, Gruber A, et al. The Eimeria genome projects: a sequence of events[J]. Trends in Parasitology, 2004,20(5):199-201.
    [17]Pasternak J, Winkfein RJ, Fernando MA. Ribosomal and translatable messenger RNA of Eimeria tenella[J]. Molecular and Biochemical Parasitology, 1981,3(3):133-142.
    [18]Files JGP, L.S.; Gabe, J.D. Identification and characterization of the gene for a major surface antigen of Eimeria tenella[J]. UCLA symposia on molecular and cellular biology,1987,42:713-723.
    [19]Borst P, Overdulve JP, Weijers PJ, et al. DNA circles with cruciforms from Isospora (Toxoplasma) gondii[J]. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1984,781(1-2):100-111.
    [20]Stucki U, Braun R, Roditi I. Eimeria tenella: Characterization of a 5S Ribosomal RNA Repeat Unit and Its Use as a Species-Specific Probe[J]. Experimental Parasitology,1993, 76(1):68-75.
    [21]Muller HJ. The remaking of chromosomes[J]. The Collecting Net, 1938,(8):182-195.
    [22]McClintock B. The stability of broken ends of chromosomes in Zea mays[J]. Genetics,1941,26(2):234-282.
    [23]Blackburn EH, Gall JG. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena[J]. Journal of Molecular Biology, 1978,120(1):33-53.
    [24]Blackburn EH. Structure and function of telomeres[J]. Nature, 1991,350(6319):569-573.
    [25]Podlevsky JD, Bley CJ, Omana RV, et al. The Telomerase Database[J]. NucleicAcids Research, 2007:gkm700.
    [26]Watson JD. Origin of concatemeric T7 DNA[J]. Nat New Biol, 1972,239(94):197-201.
    [27]Grieder C BE. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts[J]. cell, 1985,43:405-413.
    [28]Greider CW, Blackburn EH. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis[J]. Nature, 1989,337(6205):331-337.
    [29]Yu G, Bradley JD, Attardi LD, Blackburn EH. In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs[J]. Nature ,1990,344(6262):126-132.
    [30]Shippen-Lentz D, Blackburn EH. Functional evidence for an RNA template in telomerase[J]. science, 1990,247(4942):546-552.
    [31]Morin GB. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats[J]. Cell, 1989,59(3):521-529.
    [32]Feng J, Funk WD, Wang SS, et al. The RNA component of human telomerase[J]. science, 1995,269(5228):1236-1241.
    [33]Greider CW AC, Buchkovich K. Telomerase biochemistry and regulation in cellular immortalization[J]. Proc Am Assoc Cancer Res, 1995,36:672.
    [34]Harrington L, McPhail T, Mar V, et al. A Mammalian Telomerase-Associated Protein[J]. science,1997,275(5302):973-977.
    [35]Smith S, Giriat I, Schmitt A, de Lange T. Tankyrase, a Poly(ADP-Ribose) Polymerase at Human Telomeres[J]. science, 1998,282(5393):1484-1487.
    [36]Al-Anouti F QT, Ananvoranich S. Double-stranded RNA can mediate the suppression of uracil phosphoribosyltransferase expression in Toxoplasma gondii[J]. Biochemical and Biophysical Research Communications, 2003, 302(2):316-323.
    [37]Elisabetta Ullu CTTC. RNA interference in protozoan parasites[J]. Cellular microbiology, 2004, 6(6):509-519.
    [38]Moyzis RK, Buckingham JM, Cram LS, et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes[J]. PANS, 1988, 85(18):6622-6626.
    [39]McEachern MJ, Krauskopf A, Blackburn EH. Telomeres and their control[J].Annual Review of Genetics, 2000,34(1):331-358.
    [40]Rhyu MS. Telomeres, Telomerase, and Immortality[J]. J Natl Cancer Inst, 1995,87(12):884-894.
    [41]Thomas Vz. Telomeres and replicative senescence: is it only length that counts?[J]. Cancer letters,2001,168(2):111-116.
    [42]Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts[J]. Nature, 1990,345(6274):458-460.
    [43]Chong L. A human telomeric protein[J]. Science ,1995,270:1663-1667.
    [44]Broccoli D, Smogorzewska A, Chong L, et al. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2[J]. Nature Genetics, 1997,17(2):231-235.
    [45]van Steensel B, Smogorzewska A, de Lange T. TRF2 Protects Human Telomeres from End-to-End Fusions[J]. Cell, 1998, 92(3):401-413.
    [46]Karlseder J, Broccoli D, Dai Y, et al. p53- and ATM-Dependent Apoptosis Induced by Telomeres Lacking TRF2[J]. science, 1999,283(5406):1321-1325.
    [47]Shen M, Haggblom C, Vogt M, Hunter T, Lu KP. Characterization and cell cycle regulation of the related human telomeric proteins Pin2 and TRF1 suggest a role in mitosis[J]. PNAS,1997, 1997,94(25):13618-13623.
    [48]Kaminker PG, Kim S-H, Taylor RD, et al. TANK2, a New TRF1-associated Poly(ADP-ribose) Polymerase, Causes Rapid Induction of Cell Death upon Overexpression[J]. Journal of Biological Chemistry, 2001,276(38):35891-35899.
    [49]Kim S-h, Kaminker P, Campisi J. TIN2, a new regulator of telomere length in human cells[J]. Nat Genet, 1999,23(4):405-412.
    [50]Stahl JA, Leone A, Rosengard AM, et al. Identification of a Second Human nm23 Gene, nm23-H2[J]. Cancer Research, 1991,51(1):445-449.
    [51]de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres[J]. Genes & Development, 2005,19(18):2100-2110.
    [52]Chen J-L, Blasco MA, Greider CW. Secondary Structure of Vertebrate Telomerase RNA[J]. Cell, 2000,100(5):503-514.
    [53]Tesmer VM, Ford LP, Holt SE, et al. Two Inactive Fragments of the Integral RNA Cooperate To Assemble Active Telomerase with the Human Protein Catalytic Subunit (hTERT) In Vitro[J]. Mol Cell Biol, 1999,19(9):6207-6216.
    [54]Autexier C, Lue NF. The structure and function of telomerase reversetranscriptase[J]. Annu Rev Biochem, 2006,75:493-517.
    [55]Blackburn E. ABDGKKAKMMJPTW. The Telomere and Telomerase: How do they Interact? In: Derek J. Chadwick GC, editor[J]. Ciba Foundation Symposium 211-Telomeres and Telomerase, 2007, 2-19.
    [56]Mandal M, Kumar R. Bcl-2 Modulates Telomerase Activity[J]. Journal of Biological Chemistry, 1997,272(22):14183-14187.
    [57]Gunes C, Lichtsteiner S, Vasserot AP, et al. Expression of the hTERT Gene Is Regulated at the Level of Transcriptional Initiation and Repressed by Mad1[J]. Cancer Research, 2000, 60(8):2116-21.
    [58]Sangtaek Oh Y-HS, Jeongbin Yim,Tae Kook Kim. Identification of Mad as a repressor of the human telomerase (hTERT) gene[J]. Oncogene, 2000, 19(11):1485-1490.
    [59]Krogan NJ, Dover J, Khorrami S, et al. COMPASS, a Histone H3 (Lysine 4) Methyltransferase Required for Telomeric Silencing of Gene Expression[J]. The Journal of biological chemistry, 2002,277(13):10753-10755.
    [60]Kanaya T, Kyo S, Hamada K, et al. Adenoviral Expression of p53 Represses Telomerase Activity through Down-Regulation of Human Telomerase Reverse Transcriptase Transcription[J]. Clinical cancer research, 2000,6(4):1239-1247.
    [61]Mireille Kallassy NMODHYHN. Growth arrest of immortalized human keratinocytes and suppression of telomerase activity by p21WAF1 gene expression[J]. Molecular Carcinogenesis, 1998,21(1):26-36.
    [62]Klapper W, Krams M, Qian W, et al. Telomerase activity in B-cell non-Hodgkin lymphomas is regulated by hTERT transcription and correlated with telomere-binding protein expression but uncoupled from proliferation[J]. British Journal of Cancer, 2003,89(4):713-719.
    [63]Zhu X, Kumar R, Mandal M, et al. Cell cycle-dependent modulation of telomerase activity in tumor cells[J]. PANS, 1996,93(12):6091-6095.
    [64]Peitl P, Mello SS, Camparoto ML, et al. Chromosomal rearrangements involving telomeric DNA sequences in BAL31b/3T3 cells transfected with the Ha-ras oncogene[J]. Mutagenesis, 2002, 17(1):67-72.
    [65]Holt SE AD, Shay JW, Wright WE. Lack of cell cycle regulation of telomerase activity in human cells[J]. PANS, 1997,94(20):10687-10692.
    [66]De Mas P, Chassaing N, Chaix Y, et al. Molecular characterisation of a ringchromosome 22 in a patient with severe language delay: a contribution to the refinement of the subtelomeric 22q deletion syndrome[J]. British Medical Journal, 2002,39(4):e17-.
    [67]Kilian A, Bowtell DD, Abud HE, et al. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types[J]. Human Molecular Genetics, 1997,6(12):2011-2019.
    [68]Yokoyama Y, Wan X, Takahashi Y, et al. Alternatively spliced variant deleting exons 7 and 8 of the human telomerase reverse transcriptase gene is dominantly expressed in the uterus[J]. Molecular human reproduction, 2001,7(9):853-857.
    [69]Gary A. Ulaner J-FHTHVHOLCGARH. Regulation of telomerase by alternate splicing of human telomerase reverse transcriptase (hTERT) in normal and neoplastic ovary, endometrium and myometrium[J]. International Journal of Cancer, 2000,85(3):330-335.
    [70]Ulaner GA, Hu J-F, Vu TH, et al. Telomerase Activity in Human Development Is Regulated by Human Telomerase Reverse Transcriptase (hTERT) Transcription and by Alternate Splicing of hTERT Transcripts[J]. Cancer Research, 1998,58(18):4168-4172.
    [71]Shore D. Telomere length regulation: getting the measure of chromosome ends[J]. Biological chemistry Hoppe-Seyler, 1997,378(7):591-597.
    [72]Martinez J-L, Edstr?m J, Morcillo G, et al. Telomeres in Chironomus thummi are characterized by different subfamilies of complex DNA repeats[J]. Chromosoma 2001,110(3):221-227.
    [73]Li H, Zhao L, Yang Z, et al. Telomerase Is Controlled by Protein Kinase Calpha in Human Breast Cancer Cells[J]. Journal of Biological Chemistry, 1998,273(50):33436-33442.
    [74]Li H, Zhao L-L, Funder JW, et al. Protein Phosphatase 2A Inhibits Nuclear Telomerase Activity in Human Breast Cancer Cells[J]. Journal of Biological Chemistry, 1997,272(27):16729-16732.
    [75]Bodnar AG, Kim NW, Effros RB, et al. Mechanism of Telomerase Induction during T Cell Activation[J]. Experimental Cell Research, 1996, 228(1):58-64.
    [76]Darimont C, Avanti O, Tromvoukis Y, et al. SV40 T Antigen and Telomerase Are Required to Obtain Immortalized Human Adult Bone Cells without Loss of the Differentiated Phenotype[J]. Cell Growth and Differentiation, 2002,13(2):59-67.
    [77]Kharbanda S, Kumar V, Dhar S, et al. Regulation of the hTERT telomerase catalytic subunit by the c-Abl tyrosine kinase[J]. Current Biology, 2000,10(10):568-575.
    [78]Blackburn EH CP. Identification of a telomeric DNA sequence in trypanosoma brucei[J]. cell,1984,36(2):447-457.
    [79]M Ponzi TP, E Dore, C Frontali. Identification of a telomeric DNA sequence in Plasmodium berghe[J]. EMBO J, 1985,11(4):2991-2995.
    [80]Vernick KD MT. Sequence and structure of a Plasmodium falciparum telomere[J]. Molecular and biochemical parasitology, 1988,28(2):85-94.
    [81]Le Blancq SM, Kase RS, Van de Ploeg LHT. Analysis of a Giardia lamblia rRNA encoding telomere with [TAGGG]n[J]. Nucl Acids Res, 1991,19(20):5790-.
    [82]Müller F, Wicky C, Spicher A, et al. New telomere formation after developmentally regulated chromosomal breakage during the process of chromatin diminution in ascaris lumbricoides[J]. Cell, 1991, 67(4):815-822.
    [83]Sohanpal BK, Morzaria SP, Gobright EI, et al. Characterisation of the telomeres at opposite ends of a 3 Mb Theileria parva chromosome[J]. Nucl Acids Res, 1995,23(11):1942-1947.
    [84] Teixeira MT, Gilson E. Telomere maintenance, function and evolution: the yeast paradigm[J]. Chromosome Research, 2005,13(5):535-548.
    [85]Morrison HG, McArthur AG, Gillin FD, et al. Genomic Minimalism in the Early Diverging Intestinal Parasite Giardia lamblia[J]. science, 2007, 317(5846):1921-1926.
    [86]Teschke C, Solleder G, Moritz KB. The highly variable pentameric repeats of the AT-rich germline limited DNA in Parascaris univalens are the telomeric repeats of somatic chromosomes[J]. Nucl Acids Res, 1991, 19(10):2677-2684.
    [87]Cangiano G, Volpe AL. Repetitive DNA sequences located in the terminal portion of the Caenorhabditis elegans chromosomes[J]. Nucl Acids Res, 1993,21(5):1133-1139.
    [88]Cano MIN, Dungan JM, Agabian N, et al. Telomerase in kinetoplastid parasitic protozoa[J]. PNAS, 1999, 96(7):3616-3621.
    [89]Chakrabarti K, Pearson M, Grate L, et al. Structural RNAs of known and unknown function identified in malaria parasites by comparative genomics and RNA analysis[J]. RNA, 2007,13(11):1923-1939.
    [90]Malik HS, Burke WD, Eickbush TH. Putative telomerase catalytic subunits from Giardia lamblia and Caenorhabditis elegans[J]. Gene, 2000, 251(2):101-108.
    [91]Figueiredo LM, Rocha EPC, Mancio-Silva L, et al. The unusually large Plasmodium telomerase reverse-transcriptase localizes in a discrete compartment associated with the nucleolus[J]. Nucl Acids Res, 2005,33(3):1111-1122.
    [92]Giardini M, Lira C, Conte F, et al. The putative telomerase reverse transcriptase component of Leishmania amazonensis: gene cloning and characterization[J]. Parasitology Research, 2006,98(5):447-454.
    [93]Xu P, Widmer G, Wang Y, et al. The genome of Cryptosporidium hominis[J]. Nature, 2004, 431(7012):1107-1112.
    [94]Hall N, Karras M, Raine JD, et al. A Comprehensive Survey of the Plasmodium Life Cycle by Genomic, Transcriptomic, and Proteomic Analyses[J]. science, 2005, 307(5706):82-86.
    [95]Pain A, Renauld H, Berriman M, et al. Genome of the Host-Cell Transforming Parasite Theileria annulata Compared with T[J]. parva. science, 2005,309(5731):131-133.
    [96]Khan A, Ulrike B, Kelly KA, et al. Common inheritance of chromosome Ia associated with clonal expansion of Toxoplasma gondii[J]. Genome Research, 2006, 16(9):1119-1125.
    [97]El-Sayed NM, Myler PJ, Bartholomeu DC, et al. The Genome Sequence of Trypanosoma cruzi, Etiologic Agent of Chagas Disease[J]. science , 2005, 309(5733):409-415.
    [98]Dreesen O, Li B, Cross GAM. Telomere structure and shortening in telomerase-deficient Trypanosoma brucei[J]. Nucl Acids Res, 2005, 33(14):4536-4543.
    [99]Meier B, Clejan I, Liu Y, et al. trt-1 is the Caenorhabditis elegans catalytic subunit of telomerase[J]. PLoS Genet, 2006,2(2):e18.
    [100]Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer[J]. science, 1994, 266(5193):2011-2015.
    [101]Bottius E, Bakhsis N, Scherf A. Plasmodium falciparum Telomerase: De Novo Telomere Addition to Telomeric and Nontelomeric Sequences and Role in Chromosome Healing[J]. Mol Cell Biol, 1998, 18(2):919-925.
    [102]Sriwilaijareon N, Petmitr S, Mutirangura A, et al. Stage specificity of Plasmodium falciparum telomerase and its inhibition by berberine[J]. Parasitology International, 2002, 51(1):99-103.
    [103]Magnenat L, Tobler H, Muller F. Developmentally Regulated Telomerase Activity Is Correlated with Chromosomal Healing during Chromatin Diminution in Ascaris suum[J]. Molecular and cellular biology, 1999, 19(5):3457-3465.
    [104]Munoz DP, Collins K. Biochemical properties of Trypanosoma cruzi telomerase[J]. Nucl Acids Res , 2004;32(17):5214-5222.
    [105]张志敏,于三科,林青,等.两种方法提取柔嫩艾美耳球虫孢子化卵囊基因组DNA的对比试验[J].西北农林科技大学学报(自然科学版), 2005,33(5):9-11.
    [106]Schnitzler BE TP, Mattsson JG, Tomley FM, et al. Development of a diagnostic PCR assay for the detection and discrimination of four pathogenic .Eimeria species of the chicken[J]. Avian Pathology, 1998,27(5):490-497.
    [107]Johnson J RW. Anticoccidial drugs: lesion scoring techniques in battery and floor-pen experiments with chickens[J]. Exp Parasitol, 1970,28(1):30-36.
    [108]Dalloul RA, Lillehoj HS. Poultry coccidiosis: recent advancements in control measures and vaccine development[J]. Expert Review of Vaccines, 2006, 5(1):143-163.
    [109]Remmler O MJK. A method to facilitate isolation of single coccidial oocysts[J]. The Journal of Parasitology, 1964, 50(2):294.
    [110]黄金松,许康德.鸡球虫单卵囊简易琼脂切割器的制作[J].中国兽医杂志,1984,(5):54.
    [111]林维庆,陈淑玉,林辉环,等.鸡球虫的单卵囊分离和感染法及其在种的鉴定上的应用[J].华南农学院学报, 1980,1(4):72-82.
    [112]林青,于三科,陈秀荔,等.鸡柔嫩艾美耳球虫单卵囊分离技术的构建及致病性研究[J].西北农林科技大学学报(自然科学版), 2002,30(3):35-37.
    [113]段嘉树,陈希,王时伟,等.针头及透明塑料纸球虫单卵囊分离感染法[J].动物医学进展, 2005,26(5):118.
    [114]陶建平,符敖齐.单卵囊感染的雏鸡日龄及某些生物学特性的研究[J].江苏农学院学报,1997,29(6):248-249.
    [115]周克夫,章军,李雪松.柔嫩艾美尔球虫厦门株(Eimeria tenella)生物学研究[J].厦门大学学报自然科学版, 2005, 44(4):572-575.
    [116]安健,汪明,王黎霞.鸡柔嫩艾美耳球虫单卵囊分离技术的建立[J].北京农学院学报, 2004, 19(1):5-6.
    [117]李赟,古少鹏,王敏霞,等.感染鸡日龄对球虫单卵囊分离的影响[J].中国畜牧兽医, 2007,34(5):96-98.
    [118]Williams RB. Quantification of the crowding effect during infections with the seven Eimeria species of the domesticated fowl: its importance for experimental designs and the production of oocyst stocks[J]. International Journal for Parasitology, 2001, 31(10):1056-1069.
    [119]Chiurillo MA, Cano I, Da Silveira JF, et al. Organization of telomeric and sub-telomeric regions of chromosomes from the protozoan parasite Trypanosoma cruzi[J]. Molecular and Biochemical Parasitology,1999, 100(2):173-183.
    [120]蒋建林,蒋金书.柔嫩艾美耳球虫各阶段纯化的改进[J].中国农业大学学报, 1996, 1(5):99-102.
    [121]张玉麟,阎隆飞.分子生物学[M].第二版.北京:中国农业大学出版社; 2002.
    [122]Bankier AT, Spriggs HF, Fartmann B, et al. Integrated Mapping, Chromosomal Sequencing and Sequence Analysis of Cryptosporidium parvum[J]. Genome research, 2003, 13(8):1787-1799.
    [123]Rose TM, Schultz ER, Henikoff JG, et al. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences[J]. Nucl Acids Res, 1998, 26(7):1628-1635.
    [124]Rose T, Henikoff J, Henikoff S. CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design[J]. Nucl Acids Res, 2003, 31(13):3763-3766.
    [125]安健,汪明,韩春来,等.柔嫩艾美球虫裂殖子的分离纯化[J].中国兽医科技, 2003,33(12):54-57.
    [126]吴东林,张玉静,李鹏,等.端粒酶活性检测方法的改进及dNTP浓度对端粒酶活性的影响[J].中国兽医学报, 2002, 22(6):585-586.
    [127]Shawn E. Holt JWS. Role of telomerase in cellular proliferation and cancer[J]. Journal of cellular physiology, 1999, 180(1):10-18.
    [128]Kim NW, Wu F. Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP)[J]. Nucl Acids Res,1997, 25(13):2595-2597.
    [129]Krupp G, Kuhne K, Tamm S, et al. Molecular basis of artifacts in the detection of telomerase activity and a modified primer for a more robust 'TRAP' assay[J]. Nucl Acids Res, 1997, 25(4):919-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700