Tiam1基因沉默对结肠癌淋巴管生成的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的
     侵袭转移是恶性肿瘤的基本特征,也是肿瘤患者死亡的主要原因之一。淋巴道是大部分肿瘤最常见的转移途径,有无淋巴结转移也是判断患者预后的重要指标。近年来随着淋巴管标记物的发现,在某些恶性肿瘤中已经证实有淋巴管生成,被称为淋巴管生成因子的VEGF-C、VEGF-D通过其受体VEGFR-3能够诱导淋巴管的生成。恶性肿瘤中的淋巴管生成因子不但能够促进肿瘤淋巴管的生成,而且增加淋巴道转移的几率。结肠癌(colon cancer)是临床最常见的恶性肿瘤之一,淋巴结转移是其发生侵袭转移的重要途径,同时也是影响患者预后的重要因素。因此了解结肠癌淋巴管生成的情况及其存在的内在机制对于结肠癌的临床治疗有相当重要的意义。
     T细胞淋巴瘤侵袭转移诱导因子1(Tiam1)是从小鼠T淋巴瘤细胞中分离出来的一个基因,是Ras相关的C3肉毒素底物1(Rac1)的特异性鸟苷酸转换因子(GEF),在细胞外信号刺激下可以激活Rac1,影响细胞的骨架重建、粘附运动、增殖分化和凋亡等。Tiam1与肿瘤的侵袭转移密切相关。但促进肿瘤侵袭转移的基因Tiam1是否与肿瘤淋巴管生成有关尚不清楚。因此,我们拟通过Tiam1基因沉默对结肠癌组织中淋巴管生成因子VEGF-C/D表达影响的研究,了解其是否对结肠癌的淋巴管生成、淋巴结转移产生影响,从而初步探讨结肠癌发生淋巴道转移的机制。
     研究方法
     首先,通过免疫组化的方法,检测结肠癌组织中Tiam1、Rac1和VEGF-C/D的表达情况,同时利用统计学方法,分析Tiam1表达同Rac1、VEGF-C/D、微淋巴管密度、淋巴结转移情况以及其他一些临床病理特征的相关性。
     其次,构建Tiam1 RNA干扰载体,体外培养结肠癌细胞,用RT-PCR和Western blot筛选高表达Tiam1的细胞并检测Tiam1基因沉默对结肠癌细胞Rac1、VEGF-C/D表达的影响。
     最后,将Tiam1 RNA干扰载体转染结肠癌细胞HCT116,筛选转染稳定表达的细胞。采用背部皮下种植的的方法造成裸鼠荷瘤模型。比较干扰组与对照组种植瘤在淋巴管生成、淋巴结转移方面的差异。
     结果
     在结肠癌组织切片免疫组化检测中,可观察到Tiam1和Rac1蛋白在癌细胞中呈高表达,而周围正常组织表达阴性。在50例标本中,Tiam1和Rac1的阳性率均为84%,二者表达具有一致性;有淋巴结转移的患者与无转移的患者之间,Tiam1/Rac1的阳性率差异显著(P<0.05)。VEGF-C/D也表达于癌细胞的细胞质,在肿瘤周围正常组织中则基本没有表达,二者中以VEGF-C表达多见。淋巴结转移患者的VEGF-C/D阳性率高于无淋巴结转移的患者的阳性率,差异有统计学意义。结肠癌组织中Tiam1也与VEGF-C和淋巴管密度有关。结肠癌组织中Tiam1、Rac1和VEGF-C/D的表达在患者的年龄、性别、分化程度等方面差异不显著(P>0.05)。
     在体外实验中,成功构建了Tiam1 RNA干扰载体,转染并筛选稳定表达的结肠癌细胞,经RT-PCR和Western blot方法证实Tiam1 RNAi质粒可明显抑制Tiam1的表达。当Tiam1基因沉默后,VEGF-C/D表达减弱,而且Rac1表达也减弱。由此推测Tiam1可以促进VEGF-C/D表达,而且可能通过Tiam1/Rac1信号途径起作用。
     在动物体内实验中,将Tiam1 RNA干扰载体转染HCT116细胞。干扰组裸鼠种植瘤与对照组种植瘤相比较,生长相同天数后,干扰组的淋巴管密度比对照组明显减少,并有统计学意义。
     结论
     本课题从临床观察、体外实验及动物体内实验三个层面探讨了Tiam1/Rac1信号通路在结肠癌淋巴管生成中的作用,认为(1)人结肠癌组织中不同程度表达Tiam1、Rac1及VEGF-C/D蛋白;Tiam1与Rac1表达密切相关,并且Tiam1和VEGF-C表达、淋巴管密度、淋巴结转移显著相关。(2)成功构建Tiam1 RNAi质粒,经酶切鉴定和测序证实干扰质粒序列完全正确。(3)成功将Tiam1 RNAi质粒转染结肠癌细胞,经绿色荧光、G418抗性筛选后获得稳定表达干扰质粒的细胞。经RT-PCR和Western blot方法证实Tiam1 RNAi质粒可明显抑制Tiam1的表达。(4)体外实验证实Tiam1基因沉默可抑制结肠癌细胞VEGF-C/D和Rac1的表达,推测Tiam1可能通过Rac1影响VEGF-C/D的表达。(5)动物实验证实Tiam1可通过肿瘤局部微环境中VEGF-C/D的表达,进而影响肿瘤淋巴管的生成。
Background and Objective
     Invasion and metastasis are the basic characteristic of malignant tumor and the main lethal cause. Lymphatic is the most common metastasis way of the majority cancers. Having lymphonode metastasis or not is an important index of prognostic. With the finding of the specific markers of lymphatic and lymphangiogenesis factors, tumor cells had been reported that they could induce lymphangiogenesis by autocrine or paracrine VEGF-C/D.
     Tiam1 was separated from the T lymphoma of mice in 1994. It was only in testicle and brain. Recently more and more studies reported that it was related to migration and metastasis in breast cancer, rhinopharynx cancer and other cancers. The mechanism is regarded that Tiam1 promote tumor cells migration and adherence through activation of Rac1.
     Colon cancer, a common malignant tumor in digestive system, its metastasis is mainly through lymphatic. Several researches have shown that Rac1, the backward position of Tiam1, could affect the angiogenesis in tumor, but Tiam1’s role in lymphangiogenesis is still unknown. In this study we detected Tiam1’s effect on VEGF-C/D in order to unveil its contribution in colon cancer lymphangiogenesis and lymphonode metastasis and its potential mechanism, which may laid a foundation for further understanding the mechanism of lymphatic metastasis route in colon cancer.
     Methods
     1. Colon cancer tissue immunohistochemistry assay
     Human colon cancer samples, obtained from southwest hospital surgery department, were sliced and detected Tiam1, Rac1, VEGF-C/D and lymphantic with immunohistochemical analysis. The results were analyzed statistically to investigate the correlations of Tiam1, VEGF-C/D, lymphonode metastasis, lymphatic vessel density and some other clinical pathology characteristics.
     2. Tiam1’s effect assay
     After Tiam1 silencing, the changes in mRNA and protein of VEGF-C/D was detected in conlon cancer cell line HCT116 by RT-PCR and Western blot. RNAi vector, carrying siRNA targeting Tiam1, was constructed, and transfected into HCT116 cell line. And the expression of VEGF-C/D in transfected cells and control group cells was compared to get some information about the mechanism that Tiam1 affects VEGF-C/D.
     3. Tiam’s effect on tumor lymphangiogenesis
     The plasmid of pGenesil-1.neo.EGFP/Tiam1-RNAi was constructed and transfected into HCT116 cell line, then transplanted into nude mouses. After harvested the transplanted neoplasm, the expression of Rac1, VEGF-C/D, LMVD and lymphonode metastasis in the transplantation tumor were dectected and compared with the control group.
     Results
     1. Colon cancer tissue immunohistochemistry assay
     Tiam1/Rac1 and VEGF-C/D were detected in cancer cells . Tiam1/Rac1 and VEGF- C/D were much higher in lymphonode metastasis group than that in non-metastasis group (P<0.05). Furthermore, the data statistics suggested that the expression of VEGF-C was consistent with the expression of Tiam1. Tiam1 and VEGF-C are closely correlated with lymphatic vessel density, but not with patient’s age, sexual, cellular differentiation.
     2. Tiam1’s effect assay
     Based on the RT-PCR and Western blot results, data demonstrated that the expression of VEGF-C/D had a positive relationship wiht Tiam1. After transfected the siRNA vector targeting Tiam1, the expression of VEGF-C/D was suppressed.
     3. Tiam’s effect on tumor lymphangiogenesis
     In the transplanted tumor, the lymphatic microvessel density in transfected group was significantly lower than that in the control group (P<0.05).
     Conclusion
     After studying the Tiam1’s effect on VEGF-C/D expression and its mechanism in colon cancer, we hypothesized (1) Tiam1/Rac1 and VEGF-C/D were expressed in conlon cancer tissue, and Tiam1 was significantly correlated with Rac1, VEGF-C, LMVD and metastasis. (2) The plasmid of Tiam1-RNAi was constructed successfully, and verified by enzyme incision and sequencing. (3) Based on the RT-PCR and Western blot results, the expression of Tiam1 was suppressed after transfected the plasmid of Tiam1-RNAi. (4) In vitro Tiam1 gene’s Silencing can reduce the expression of VEGF-C/D in colon cancer cells. Tiam1 maybe affect VEGF-C/D through the Rac1 signaling pathway. (5) Tiam1 can induce lymphangiogenesis in colon cancer and further affect the lymphatic metastasis by its effect on VEGF-C/D in local microenvironment.
引文
1. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis.Nature. 2001,410(6824):50-56.
    2. Karkkainen MJ, Makinen T, Alitalo K. Lymphatic endothelium: a new frontier of metastasis research. Nat Cell Biol. 2002,4(1):E2-E5.
    3. Maula SM, Luukkaa M, Grenman R, et al. Intratumoral lymphatics are essential for the metastatic spread and prognosis in squamous cell carcinomas of the head and neck region. Cancer Res. 2003,63(8):1920-1926.
    4. Munoz Guerra M F, Marazula E G, Martin Villa E, et al. Prognostic significance of intratumoral lymphangiogenesis in squamous cell carcinoma of the oral carity. Cancer. 2004,100(3):553-560.
    5. Kuroyama S, Kobayashi N, Ohbu M, et al. Enzyme carcinoma occurrence of lymphangiogenesis within the tumor. Hepatogastroenterology. 2005,52(64):1057-1061.
    6. Padera TP, Kadambi A, Tomaso E, et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science. 2002, 296(5574):1883-1886.
    7. M. Skobe, T. Hawighorst, D.G. Jackson et al. Induction of tumour lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 2001(7):192–198.
    8. Mtittila MM, Ruohola J K, Karpanen T, etal. VEGF-C induced lymphangiogenesis is associated with lymph node metastasis in orthotopic MCP-7 tumors. Int J Cancer. 2002,98(6):946-951.
    9. Stacker S A, Caesar C, Baldwin M E, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med. 2001,7(2):186-191.
    10. T. Makinen, T. Veikkola, S. Mustjoki et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGFC/D receptor VEGFR3. EMBO. 2001, 20(17):4762–4773.
    11. Trompezinski S, Berthier-Vergnes O, Denis A, et al. Comparative expression of vascular endothelial growth factor family members, VEGF-B, -C and -D, by normal human keratinocytes and fibroblasts. Exp Dermatol. 2004, 13(2): 98-105.
    12. Orlandini M, Oliviero S. In fibroblasts Vegf-D expression is induced by cell-cell contact mediated by cadherin-11. J Biol Chem. 2001, 276(9):6576-81.
    13. Onogawa S, Kitadai Y, Tanaka S, et al. Regulation of vascular endothelial growth factor VEGF-C and VEGF-D expression by the organ microenvironment in human colon carcinoma. Eur J Cancer. 2004, 40(10):1604-1609.
    14. Krishnan J, Kirkin V, Steffen A, et al. Differential in vivo and in vitro expression of vascular endothelial growth factor VEGF-C and VEGF-D in tumors and its relationship to lymphatic metastasis in immunocompetent rats. Cancer Res. 2003, 63(3):713-22.
    15. Habets GG, Scholtes EH, Zuydgeest D, et al. Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell. 1994, 77(4):537-549.
    16. Robbe K, Otto - Bruc A, Chardin P, et al. Dissociation of GDP dissociation inhibitor and membrane translocation are required for efficient activation of Rac by the Dbl homology - p leckstrin homology region of Tiam. J Biol Chem. 2003, 278 (7) : 4756-4762.
    17. Kawauchi T, Chihama K, Nabeshima Y, et al. The in vivo roles of STEF /Tiam1, Rac1 and JNK in cortical neuronal migration. EMBO J. 2003, 22 (16) : 4190-4201.
    18. Hou M, Tan L, Wang X, Zhu Y S, et al. Antisense Tiam1 down-regulates the invasiveness of 95D cells in vitro. Acta Biochim Biophys Sin (Shanghai). 2004 ,36(8):537-540.
    19. Wu M F, Xi L, Chen G, et al. Significance of expression of T lymphoma invasion/ metastasis gene in ovarian cancer cells. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2003,25(4):434-437.
    20. Minard ME, Herynk MH, Collard JG, et al.The guanine nucleotide exchange factor Tiam1 increases colon carcinoma growth at metastatic sites in an orthotopic nude mouse model. Oncogene. 2005,24(15):2568-2573.
    21. Minard ME, Kim LS, Price JE,et al.The role of the guanine nucleotide exchange factor Tiam1 in cellular migration, invasion, adhesion and tumor progression. Breast Cancer Res Treat. 2004, 84(1):21-32.
    22. Liu L, Wu D H, Ding Y Q. Tiam1 gene expression and its significance in colorectal carcinoma. World J Gastroenterol. 2005,11(5):705-707
    23. Wang H H, Huang G W, Lin L, et al. Correlation between expression of TIAM 1 gene and carcinomas of larynx. Chinese Journal of Clinical Laboratory Science. 2006,24(1) :49-51
    24. Xue Y, Bi F, Zhang X, et al. Role of Rac1 and Cdc42 in hypoxia induced p53 and von Hippel-Lindau suppression and HIF-1alpha activation. Int J Cancer. 2006, 118(12):2965-2972.
    25. Li Liu, Liang Zhao, Yanfei Zhang, et al. Proteomic analysis of Tiam1-mediated metastasis in colorectal cancer. Cell Biology International xx (2007) 1-10.
    26. 李焱,蒋勇,史立群等. HMGB1 和 VEGF-C/D 在结肠癌组织中的表达及与淋巴结转移之间的关系. 第三军医大学学报. 2006,28(11):1237-1239
    27. Jen-Liang Su, Jin-Yuan Shih, Men-Luh Yen, et al. Cyclooxygenase-2 Induces EP1- and HER-2/Neu-Dependent Vascular Endothelial Growth Factor-C Up-Regulation: A Novel Mechanism of Lymphangiogenesis in Lung Adenocarcinoma. Cancer Research. 2004, 64: 554–564.
    28. Timoshenko AV, Chakraborty C, Wagner GF, et al. COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer. Br J Cancer. 2006, 94(8):1154-1163.
    29. Soumaoro LT, Uetake H, Takagi Y, et al. Coexpression of VEGF-C and Cox-2 in human colorectal cancer and its association with lymph node metastasis. Dis Colon Rectum. 2006, 49(3):392-398.
    30. Taija M?kinen, Ralf H. Adams, John Bailey, et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev. 2005,19(3):397-410.
    31. Tanaka M, Ohashi R, Nakamura R,et al. Tiam1 mediates neurite outgrowth induced by ephrin-B1 and EphA2. The EMBO Journal .2004, 23:1075–1088.
    32. Malliri A, Collard JG. Role of Rho-family proteins in cell adhesion and cancer.CurrOpin Cell Biol. 2003,15(5):583-589.
    33. Mertens AE, Roovers RC, Collard JG. Regulation of TIAM1-Rac signaling. FEBS Lett. 2003,546(1):11-16
    34. Denicola G, Tuveson DA. VAV1: a new target in pancreatic cancer? Cancer Biol Ther. 2005;4(5):509–511.
    35. Perrot V, Vazquez-Prado J, Gutkind JS. Plexin B regulates Rho through the guanine nucleotide exchange factors leukemia-associated Rho GEF (LARG) and PDZ-RhoGEF. J Biol Chem. 2002;277(45):43115–43120.
    36. Bassermann F, Jahn T, Miething C, et al. Association of Bcr-Abl with the proto-oncogene Vav is implicated in activation of the Rac-1 pathway. J Biol Chem. 2002, 277(14):12437–12445.
    37. Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol. 2005, 6(2):167–180.
    38. Malliri A, vander Kammen RA, Clark K, et al. Mice deficient in the Rac activator Tiam 1 are resistant to Ras-induced skin tumours. Nature. 2002, 417(6891):867-871.
    39. Huang ZX, Sun Q, Ding YQ, et al. Mining microarray gene expression data of metastatic colorectal cancer by literature profiling. Di Yi Jun Yi Da Xue Xue Bao. 2003, 23(11):1195–1197.
    40. 莫立根,王会河,黄光武. Tiam1 基因表达与鼻咽癌浸润转. 临床耳鼻咽喉科杂志. 2005,19(17):785-787.
    41. Zhu jinming,Yu peiwu. Expression and clinical significance of Tiam1 in gastric cancer. Modern Oncology. 2005,13(3):320-323.
    42. Angelika HAHN, Holger BARTH, Michaela KRESS, et al. Role of Rac and Cdc42 in lysophosphatidic acid-mediated cyclo-oxygenase-2 gene expression. Biochem. J. 2002, 362: 33-40.
    43. Religa P, Cao R, Bjorndahl M, et al. Presence of bone marrow-derived circulating progenitor endothelial cells in the newly formed lymphatic vessels. Blood. 2005, 106(13): 4184-4190.
    44. Kerjaschki D. The crucial role of macrophages in lymphangiogenesis. J Clin Invest. 2005, 115(9): 2316-2319.
    45. 马亚军, 钱晓萍, 刘宝瑞. 肿瘤抗血管生成化疗的研究进展.中华肿瘤防治杂志. 2006,9:556-559.
    46. He Y, Kozaki K, Karpanen T, et al. Supperssion of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl. Cancer Inst. 2002, 90:693-700.
    47. Breiteneder-Geleff S, Soleiman A, Kowalski H, et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol. 1999, 154 (2): 385–394.
    48. Duff SE, Li C, Jeziorska M, et al. Vascular endothelial growth factors C and D andlymphangiogenesis in gastrointestinal tract malignancy. Br J Cancer. 2003,89: 426-430.
    49. Pepper MS. Lymphangiogenesis and tumor metastasis:more questions than answers. Lymphology. 2000, 33:144–147.
    50. Kajita T, Ohta Y, Kimura K, et al. The expression of vascular endothelial growth factor C and its receptors in non-small cell lung cancer. Br J Cancer. 2001, 85(2):255-260.
    51. He Y, Karpanen T, Alitalo, et al. Role of lymphangiogenic factors in tumor metastasis. Biochimicaet Biophysica Acta. 2004,1654(1): 3–12.
    52. Schietroma C, Cianfarani F, Lacal PM, et al. Vascular endothelial growth factor-C expression correlates with lymph node localization of human melanoma metastases. Cancer. 2003, 98(4):789-97.
    53. Mou Jiang-hong, Yan Xiao-chu, Li Zeng-peng et al. Characteristic and clinicopathologic significance of lymphangiogenesis in colorectal cancer. Chin J Pathol. 2005 ,34(6): 348-352.
    54. Yonemura Y, Fushida S, Bando E, et al. Lymphangiogenesis and the vascular endothelial growth factor receptor-3 in gastric cancer. Eur J cancer. 2001, 37(7):918-923.
    55. Karpanen, M. Egeblad, M.J. Karkkainen et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res. 2001, 61:1786–1790.
    56. Nakamura Y, Yasuoka H, Tsujimoto M, et al. Prognostic significance of vascular endothelial growth factor D in breast carcinoma with long-term follow-up. Clin Cancer Res, 2003, 9(2): 716-721.
    57. Yokoyama Y, Charnock-Jones DS, Licence D, et al. Vascular endothelial growth factor-D is an independent prognostic factor in epithelial ovarian carcinoma. Br J Cancer. 2003, 88(2): 237-244.
    58. Helen ET, Adrian LH, Shlomo M, et al. Wass. Angiogenesis in Endocrine Tumors. Endocr. Rev. 2003, 24: 600 - 632.
    59. Achen M. Localization of vascular endothelial growth factor-D in malignant melanoma suggests a role in tumour angiogenesis. J Pathol. 2001, 193(2): 147–154.
    60. Niki T, Iba S, Tokunou M, et al. Expression of vascular endothelial growth factors A,B, C, and D and their relationships to lymph node status in lung adenocarcinoma. ClinCancer Res. 2000, 6:2431–9.
    61. charoenrat P, Rhys-Evans P, Eccles SA. Expression of vascular endothelial growth factor family members in head and neck squamous cell carcinoma correlates with lymph node metastasis. Cancer. 2001, 92: 556–68.
    62. Duff SE, Li C, Jeziorska M, et al. Vascular endothelial growth factors C and D and lymphangiogenesis in gastrointestinal tract malignancy. British Journal of Cancer. 2003, 89:426- 430.
    63. Angeliki M, Saskia van E, Stephan H, et al. The Rac exchange factor Tiam1 is required for the establishment and maintenance of cadherin-based adhesions. J Bio Chem. 2004,279(29):30092-30098.
    64. Fire A, Xu AQ, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditiselegans. Nature.1998,391:806-811.
    65. Fire A. RNA-triggered gene silencing. TIG. 1999,15(9):358-363.
    66. Filipowicz W, Jaskiewicz L, Kolb FA, et al. Post-transcriptional gene silencing bysiRNAs and miRNAs. Curr Opin Struct Biol. 2005,15(3):331-341.
    67. R.Cao et al. PDGF-BB induces intratumoral lynphangiogenesis and promotes lymphatic metastasis. Cancer Cell.2004(6): 333-345.
    68. Cao Y. Direct role of PDGF-BB in lymphangiogenesis and lymphatic metastasis. Cell Cycle. 2005, 4(2): 228-230.
    69. Manzotti C, Audision R A, Pratesi C. Importance of orthotopie implantion for human tumors as model systems relevance to metastasis and invasion. Clin Exp Metastasis. 1993,11:5-14
    70. 姚明, 孔韩卫, 戚锦芳等. 人黑色素瘤 SCID 小鼠高转移模型的筛选和建立. 上海实验动物科学. 2001,21(4):195-199.
    1. Habets GG, Scholtes EH, Zuydgeest D, et al. Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell.1994,77(4):537-549.
    2. Michiels F, Stam JC, Hordijk PL, et al. Regulated membrane localization of Tiam1, mediated by the NH2-terminal pleckstrin homology domain, is required for Rac-dependent membrane ruffling and C-Jun NH2-terminal kinase activation. J Cell Biol.1997,137(2):387-398.
    3. Minard ME, Kim LS, Price JE, et al. The role of the Guanine nucleotide exchange factor tiam1 in cellular migration, invasion, adhesion and tumor progression. Breast cancer Res Treat. 2004, 84(1):21-32.
    4. Mertens AE, Roovers RC, Collard JG. Regulation of TIAM1-Rac signaling. FEBS Lett. 2003, 546(1):11-16
    5. Rac1 Biological overview http://sdb.bio.purdue.edu./cytoskel/rac1.htm
    6. Rac1 Regulation http://sdb.bio.purdue.edu./cytoskel/rac1.htm
    7. Gauthier-Rouviere C, Vignal E, Meriane M, et al. RhoG GTPase controls a pathway that independently activates Rac1 and Cdc42. Mol Biol Cell. 1998, 9(6):1379-1394.
    8. Takai Y, Sasaki T, Matozaki T. Small GTP-Binding Proteins. Physiol Rev. 2001, 81(1): 153-208.
    9. Haeusler LC, Blumenstein L, Stege P, et al. Comparative functional analysis of the Rac GTPases. FEBS Lett. 2003, 555(3):556–560.
    10. Reif K, Cantrell DA. Networking Rho family GTPases in lymphocytes. Immunity. 1998, 8(4):395-401.
    11. Anne J.Ridley. Rho proteins: linking signaling with membrane trafficking. Traffic. 2001, 2:303-310.
    12. Otsuki Y, Tanaka M, Kamo T. Guanine nucleotide exchange factor, Tiam1, directly binds to c-Myc and interferes with c-Myc mediated apoptosis in Rat-1 fibroblasts. J Biol Chem. 2003,278(7): 5132-5140.
    13. Denicola G, Tuveson D A. VAV1: a new target in pancreatic cancer? Cancer Biol Ther. 2005, 4(5):509–511.
    14. Perrot V, Vazquez-Prado J, Gutkind JS. Plexin B regulates Rho through the guanine nucleotide exchange factors leukemia-associated Rho GEF (LARG) and PDZ-RhoGEF. J Biol Chem. 2002, 277(45):43115–43120.
    15. Bassermann F, Jahn T, Miething C, et al. Association of Bcr-Abl with the proto-oncogene Vav is implicated in activation of the Rac-1 pathway. J Biol Chem. 2002; 277 (14) :12437–12445.
    16. Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol. 2005, 6(2):167–180.
    17. Malliri A, vander Kammen RA, Clark K, et al. Mice deficient in the Rac activator Tiam 1 are resistant to Ras-induced skin tumours. Nature. 2002, 417(6891):867-871.
    18. Minard ME, Herynk MH, Collard JG, et al. The guanine nucleotide exchange factor Tiam1 increases colon carcinoma growth at metastatic sites in an orthotopic nude mouse model.Oncogene. 2005;24(15): 2568–2573.
    19. Hou M, Tan L, Wang X, et al. Antisense Tiam1 downregulates the invasiveness of 95D cells in vitro. Acta Biochim Biophys Sin (Shanghai). 2004, 36(8):537–540.
    20. Huang ZX, Sun Q, Ding YQ, et al. Mining microarray gene expression data of metastatic colorectal cancer by literature profiling. Di Yi Jun Yi Da Xue Xue Bao. 2003, 23(11):1195–1197.
    21. Liu L, Wu DH, Ding YQ. Tiam1 gene expression and its significance in colorectal carcinoma. World J Gastroenterol. 2005,11(5):705–707.
    22. Guasch RM et al.Mol Cell Biol, 1998;18:4761
    23. Malliri A, Collard JG. Role of Rho-family proteins in cell adhesion and cancer. Curr Opin Cell Biol. 2003,15(5):583-589.
    24. Bourguignon LY, Zhu H, Shao L, et al. Ankyrin-Tiam1 interaction promotes Rac1 signaling and metastatic breast tumor cell invasion and migration. J Cell Biol. 2000,150(1):177-191.
    25. Hordijk PL, ten Klooster JP, van der Kammen RA, et al. Inhibition of invasion of epithelial cells by Tiam1-Rac signaling. Science. 1997,278(5342):1464-1466.
    26. Keely PI, Westwick JK, Whitehead IP, et al. Cdc42 and Rac1 induce intergrin-mediated cell motility and invasiveness through PI(3) K. Nature. 1997, 390(6660):632-636.
    27. Bourguignon LY, Zhu H, Shao L, et al. CD44 interaction with tiam1 promotes Rac1signaling and hyaluronic acid-mediated breast tumor or cell migration. J Biol Chem. 2000,275(3):1829-1838.
    28. Sander EE, van Delft S, ten Klooster JP, et al. Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinostol 3-kinase. J Cell Biol. 1998,143(5):1385-1398
    29. Otsuki Y, Tanaka M, Yoshii S, et al. Tumor metastasis suppressor nm23H1 regulates Rac1 GTPase by interaction with Tiam1. Proc Natl Acad Sci USA. 2001,98(8): 4385-4390.
    30. Palacios F, Schweitzer JK, Boshans RL, et al. ARF6-GTP recruits nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nat Cell Biol. 2002, 4(12):929-936.
    31. Supriatno Harada K, Kawaguchi S, et al. Effect of p27Kipl on the ability of invasion and metatasis of an oral cancer cell line. Oncol Rep. 2003,10(3):527-532.
    32. Servitja JM, Marinissen MJ, Sodhi A, et al. Rac1 function is required for Src-induced transformation.Evidence of a rote for Tiam1 and Vav2 in Rac activation by Src. J Biol Chem. 2003,278(36):34339-34346.
    33. Lambert JM, Lambert QT, Reuther GW, et al. Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nat Cell Biol. 2002,4(8):621-625.
    34. Buchanan FG, Elliot CM, Gibbs M, et al. Translocation of the Rac1 guanine nucleotide exchange factor Tiam1 induced by platelet-derived growth factor and lysophosphatidic acid. J Biol Chem. 2000,275(13):9742-9748.
    35. Fleming IN, Elliott CM, Buchanan FG, et al. Ca2+/calmodulin-dependent protein kinase II regulates Tiam1 by reversible protein phosphorylation. J Biol Chem. 1999,74(18): 12753-12758.
    36. Fleming IN, Elliott CM, Collard JG, et al. Lysophosphatidic acid induces threonine phosphorylation of Tiam1 in Swiss3T3 fibroblasts via activation of protein kinase C.J Biol Chem. 1997,272 (52):33105-33110.
    37. Fleming IN, Gray A, Downes CP. Regulation of the Rac1-specific exchange factor Tiam1 involves both phosphoinositide 3-kinase-dependent and independent components. Biochem J. 2000,351(Pt1):173-182.
    38. Sander EE, ten Klooster JP, van Delft S, et al. Rac down regulates Rho activity:reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol. 1999,147(5):1009-1022.
    39. Adam L, Vadlamudi RK, McCrea P, et al.Tiam1 over expression potentiates heregulin induced lymphoid enhancer factor-1/beta-catenin nuclear signaling in breast cancer cells by modulating the intercellular stability. J Biol Chem. 2001,276(30):28443-28450.
    40. Buchsbaum RJ, Connolly BA, Feig LA. Interaction of Rac exchange factors Tiam1 and Ras-GRF1 with a scaffold for the p38 mitogen activated protein kinase cascade. Mol Cell Biol. 2002,22(12):4073-4085.
    41. Buchsbaum RJ, Connolly BA, Feig LA. Regulation of p70 S6Kinase by Complex Formation between the Rac Guanine Nucleotide Exchange Factor(Rac-GEF) Tiam1 and the Scaffold Spinophilin.J Biol Chem. 2003, 278(21):18833-18841.
    42. Soga N , Namba N , McAllister S , Cornelius L , Teitelbaum SL , Dowdy S F , Kawamura J , Hruska K A. Rho family GTPases regulate VEGF-stimulated endothelial cell motility. Exp Cell Res. 2001, 269 (1) :73~87
    43. Abid MR, Tsai JC, Spokes KC, et al. Vascular endotheial growth factor induces manganese-superoxide dismutase expression in endothelial cells by a Rac1-regulated NADPH oxidase-dependent mechanism. FASEB J.2001,15:2548-2550.
    44. Hirota K, Semenza GL. Rac1 activity is required for the activation of hypoxia-inducible factor1. J Biol Chem. 2001,276:21166-21172.
    45. 薛妍, 毕锋, 刘文超等.缺氧状况下 Rho GTPases 的表达和活性变化及其与肿瘤血管生成关系的研究. 中华肿瘤杂志.2004,26(9):517-520.
    46. Hahn A, Barth H, Kress M, et al.Rol of Rac and Cdc42 in lysophophstidic acid-mediated cyclo-oxygenase-2 gene expression. Biochem J. 2002,15:33-40.
    47. R.Cao et al.PDGF-BB induces intratumoral lynphangiogenesis and promotes lymphatic metastasis. Cancer Cell. 2004(6):333-345
    48. Xue Y, Bi F, Zhang X, et al. Role of Rac1 and Cdc42 in hypoxia induced p53 and von Hippel-Lindau suppression and HIF1alpha activation. Int J Cancer. 2006,118(12): 2965-2972.
    49. Li Liu, Liang Zhao, Yanfei Zhang, et al. Proteomic analysis of Tiam1-mediated metastasis in colorectal cancer. Cell Biology International xx (2007) 1-10.
    50. 李焱, 蒋勇, 梁后杰等. HMGB1 和 VEGF-C/D 在结肠癌组织中的表达及与淋巴结转移之间的关系. 第三军医大学学报. 2006,28(11):1237-1239.
    51. Jen-Liang Su, Jin-Yuan Shih, Men-Luh Yen, et al. Cyclooxygenase-2 Induces EP1- and HER-2/Neu-Dependent Vascular Endothelial Growth Factor-C Up-Regulation: A Novel Mechanism of Lymphangiogenesis in Lung Adenocarcinoma. Cancer Research. 2004, 64: 554–564.
    52. Timoshenko AV, Chakraborty C, Wagner GF, Lala PK. COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer.Br J Cancer. 2006, 94(8):1154-63.
    53. Soumaoro LT, Uetake H, Takagi Y, et al. Coexpression of VEGF-C and Cox-2 in human colorectal cancer and its association with lymph node metastasis. Dis Colon Rectum. 2006, 49(3):392-8.
    54. Taija M?kinen, Ralf H. Adams, John Bailey, et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev. 2005,19(3):397-410.
    55. Tanaka M, Ohashi R, Nakamura R, et al. Tiam1 mediates neurite outgrowth induced by ephrin-B1 and EphA2. The EMBO Journal .2004, 23:1075–1088.
    1. Breiteneder-Geleff S, Matsui K, Soleiman A, et al. Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. Am J Pathol. 1997,151:1141-1152.
    2. Breiteneder-Geleff, S., Soleiman, A., Kowalski, H, et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am. J. Pathol. 1999,154, pp:385–394.
    3. Clarijs R, Ruiter D J, deWaal R M. Lymphangiogenesis inmalignant tumours: does it occur? J Patho. 2001, 193: 143-146.
    4. Schlingenmann RO, Dingian GM, Emeis JJ. Monoclonal antibody PAL-E specific for endothelium. Lab Invest. 1985, 28: 235-240.
    5. 周显礼, 李晓冬, 张卫东等.几种淋巴管特异性标记物在人癌组织中的表达.中国临床解剖学杂志. 2006,24(2):173-175.
    6. Nibbs RJ, Kriehuber E, Ponath PD, et al. The beta-chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. Am J Pathol. 2001, Mar;158(3):867-77.
    7. Groger M, Loewe R, Holnthoner W, et al. IL-3 induces expression of lymphatic markers Prox-1 and podoplanin in human endothelial cells. J Immunol. 2004,173(12):7161-9.
    8. Wigle, J. T, N. Harvey, et al.. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 2002, 21:1505.
    9. Schacht V, Ramirez MI, Hong YK, et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 2003, 22(14):3546-56.
    10. Taija M?kinen, Ralf H. Adams, John Bailey, et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev. 2005,19(3):397-410.
    11. Petrova, T. V., T. Makinen, T. P. Makela, J. et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. 2002, 21:4593.
    12. Hong, Y. K., N. Harvey, Y. H. Noh, V. et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev. Dyn. 2002, 225:351.
    13. Schoppmann SF, BirnerP, Studer P, et al. Lymphaticmicrovessel density and lymphovascular invasion assessed by anti-podoplanin immunostaining in human breast cancer. Anticancer Res. 2001, 21 (4A) : 2351-2355.
    14. Pepper MS. Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res. 2001, 7: 462-468.
    15. Skobe M, Hawighorst T, Jackson DG, et a.l Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med, 2001, 7: 192-198.
    16. Beasley NJ, Prevo R, Banerji S, et a.l Intratumoral lymphangiogenesis and lymph node metastasis in head and neck cancer. Cancer Res. 2002, 62:1315-1320.
    17. Schacht V, Dadras SS, Johnson LA, et al. Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol 2005, 3:913–921
    18. Stessels F, Van den Eynden G, Van der Auwera I, et al. Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br J Cancer. 2004,7:1429–36.
    19. Karpanen T, Egeblad M, Karkkainen MJ, et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res. 2001;5:1786–90.
    20. Mattila MM, Ruohola JK, Karpanen T, et al. VEGF-C induced lymphangiogenesis is associated with lymph node metastasis in orthotopic MCF-7 tumors. Int J Cancer. 2002;6:946–51.
    21. Choi WW, Lewis MM, Lawson D, et al. Angiogenic and lymphangiogenic microvessel density in breast carcinoma: correlation with clinicopathologic parameters and VEGF-family gene expression. Mod Pathol. 2005,1:143–52.
    22. Nakamura Y, Yasuoka H, Tsujimoto M, et al. Lymph vessel density correlates with nodal status, VEGF-C expression, and prognosis in breast cancer. Breast Cancer Res Treat . 2005, 2:125–132.
    23. Schoppmann SF, Bayer G, Aumayr K, et al. Prognostic value of lymphangiogenesis and lymphovascular invasion in invasive breast cancer. Ann Surg. 2004, 2:306–312.
    24. Vleugel MM, Bos R, van der GP, et al. Lack of lymphangiogenesis during breastcarcinogenesis. J Clin Pathol. 2004, 7:746–51.
    25. Williams CS, Leek RD, Robson AM, et al. Absence of lymphangiogenesis and intratumoural lymph vessels in human metastatic breast cancer. J Pathol. 2003, 2:195–206.
    26. Bono P, Wasenius VM, Heikkila P, et al. High LYVE-1-positive lymphatic vessel numbers are associated with poor outcome in breast cancer. Clin Cancer Res. 2004, 21:7144–7149.
    27. Sedivy R, Beck-Mannagetta J, Haverkampf C, et al. Expression of vascular endothelial growth factor-C correlates with the lymphatic microvessel density and the nodal status in oral squamous cell cancer. J Oral Pathol Med. 2003, 32(8):455-60.
    28. Adachi Y, Nakamura H, Kitamura Y, et al. Lymphatic vessel density in pulmonary adenocarcinoma immunohistochemically evaluated with anti-podoplanin or anti-D2-40 antibody is correlated with lymphatic invasion or lymph node metastases. Pathol Int. 2007 , 57(4):171-7.
    29. 王艳, 朱波, 叶明福等. Podoplanin 在非小细胞肺癌组织中的表达及其与肿瘤淋巴转移的关系.重庆医学. 2005,34(11):1664-1666.
    30. 牟江洪, 向德兵, 肖华亮. 大肠癌 VEGFR-3、podoplanin 和 CD34 阳性脉管的特点及其与转移的关系. 解放军医学杂志. 2006,31( 1):64-66.
    31. Toshiya Omachi, Yoshiko Kawai, Risuke Mizuno, et al. Immunohisto-chemical demonstration of proliferating lymphatic vessels in colorectal carcinoma and its clinicopathological significance. Cancer Letters. 2007,246: 167–172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700