光学乐谱识别技术研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纸质乐谱向数字化乐谱的转换,是人类音乐活动与计算机音乐处理之间进行信息交流的必经之路。光学乐谱识别是将纸质乐谱扫描输入计算机后,对乐谱图像加以处理、识别、分析,最终获得乐谱的计算机数字表达的过程。光学乐谱识别技术突破了纯手工的乐谱数字化瓶颈,为乐谱数字化提供了一条智能、高效、快捷的新途径,具有重要的理论研究意义和应用价值。
     本文以印刷体多声部五线谱为研究对象,从谱线定位与删除、音符识别、乐谱专用符号识别、乐谱重建与语义解释四个方面,对乐谱识别的关键技术进行了系统深入地研究,在多个环节上提出了行之有效的新思路和新方法。
     谱线定位与删除是乐谱识别的首要环节。在谱线定位方面,本文提出了基于交叉相关性的乐谱图像变形校正与谱线定位算法,其本质是利用“化整为零、相关计算”的思想,对基于水平投影的谱线定位方法的一种改进。该算法在保持了投影方法计算简单、抗噪声能力强的原有优势的同时,弥补了其对变形敏感的不足,有效解决了现有统计和结构两类谱线定位方法存在的抗变形和抗噪声之间的矛盾。
     在谱线删除方面,本文针对谱线删除过程中存在的“过删除”问题,提出了基于图段拓扑关系的谱线删除算法。与现有谱线删除方法相比,该算法在提高删除单元表达层次的同时,强调对删除单元周边环境特征的分析和判断,能够更全面、清晰地观察到谱线与非谱线像素的区别,从而明显减少谱线“过删除”现象的发生,保证了乐谱图形符号在谱线删除之后的完整性。
     音符识别是乐谱识别的核心与关键。本文根据音符的多样性和多态性特点,确定了基于结构的音符识别方案,将其识别过程划分为基元抽取和结构分析两个阶段。
     在音符基元抽取方面,提出了基于垂直游程编码的粗提取、基于水平游程编码的精检测的符干抽取方法,克服了现有方法对复杂音符适应性差、抽取结果不完整等缺陷;设计了一种先分割、后特征检测的实心符头抽取方法,该方法利用音符先验知识和已有的谱线、符干识别结果对符头进行切割,解决了粘连符头的切分难题;提出一种基于块状体分割和特征检测的尾桥抽取方法,避开了传统的直线抽取方法所无法处理的尾桥粘连问题。
     在音符结构分析方面,提出了一种基于作用场的音符结构分析方法。该方法将物理学中的作用场概念引入到音符基元的关系表达,实现了知识性、鲁棒性和精确性三者的统一。在此基础上,定义了六个音符子结构,建立了关键结构优先定位的音符结构分析模型,实现了音符基元数据向音符对象的重建。该模型体现了人工识谱时突出重点特征、从整体到细节的思维习惯,不仅减少了分析的复杂度,而且具有较强的基元冗余排错能力。
     对于音符除外的其它乐谱符号即乐谱专用符号。提出了一种基于几何、中心矩和穿刺三类特征的神经网络识别方法。上述三类特征能够很好地兼顾统计特征的抗噪性和结构特征对细微差别的分类能力,体现了各类乐谱专用符号的实际特点,并采用具有强大非线性分类能力的BP神经网络作为符号分类器,取得了良好的识别效果。
     最后,本文通过建立“乐谱结构树”,实现了由散乱图形符号数据到乐谱数据的有机组织和重建。讨论了音乐事件序列的生成方法,实现了乐谱语义解释及其语义内容的标准MIDI格式文件输出。
     作为本文的主要研究成果之一,开发研制了一个完整的乐谱智能识别原型系统IOMRS。应用本文提出的图形与语义相结合的识别评价体系,对IOMRS系统和商品化乐谱识别系统进行了性能评测和比较。测试结果表明,IOMRS的整体识别性能已达到目前优秀商品化乐谱识别系统的水平,并且在音符识别、不同数据环境下的适应性和执行速度三方面表现出明显的优势。
The conversion of music scores in paper form into the digital ones is the necessary accessonly by which could have information been exchanged between the human music activities andthe computer music processing. Optical music recognition (OMR) is the process of analyzing thescanned image of a music score, and recognizing the music objects in the score, finally achievinga versatile machine-readable format. It is the OMR that breaks through the bottleneck of thepurely handcraft activates in the traditional music notation digitalization, and provides a smart,high effectiveness and efficiency method for the music digitalization. Therefore, OMR meansgreat value in both theoretical research and the applications.
     This paper takes multi-voice score as the research object, and performs a thorough researchon OMR from four aspects, including location and removal of staff lines, recognition of musicnotes, recognition of specific music symbols, reconstruction and semantic interpretation of themusic score. New practical theories and effective approaches are presented to the several keypoints as follows.
     The location and removal of staff lines is the first step in the OMR process. The paperinvestigates an integral method for image distortion correction and staff lines location. Theessential of this method is to improve the existing horizontal projection method by the idea of"breaking up whole into parts and correlation computing". The new method not only keeps themerits of the projection method such as simple and stable, but also is not sensitive to the distortionof the images. It resolves the conflict between the distortion resistance capability and noiseresistance capability, which exists in both statistical and structural strategies for locating stafflines.
     In the staff lines removal aspect, for resolving the issue of "over-removal", this paperproposes a new removal algorithm based on analyzing topological relationship among the imagesegments. Comparing with the current staff lines removal methods, the new algorithm places moreemphasis on association relations among environmental features of the segments to be removed,and thus identifies the differences between the staff line segments and non-staff line segmentsmore clearly and completely. As a result, staff lines can be removed without damaging symbolsaround staff lines.
     Recognition of music notes is the core and key in OMR. Considering the variety andpolymorphism characteristic of the music notes, a structure-based recognition strategy is chosen,in which there are two procedures: primitive extraction and structure analysis.
     In the procedure of primitive extraction, three methods are proposed respectively for threeshapes of note primitive: first, stem extraction is accomplished by searching stem candidatesroughly from vertical run length units plus checking the candidates strictly in terms of horizontal run length properties, and this method can overcome the weaknesses of the current method such asthe fragmentary results and poor adaptability to the complex notes; second, a "segmentation withfeature testing" method for extracting black note heads is designed, which employs the priorknowledge of notes and the information of recognized staff lines and stems to separate the noteheads that touch; third, a extraction method for beams similar to treating the black note heads isproposed, and this method can avoid the troublesome touching issue in the former line detectionmethod for extracting beams.
     In the procedure of structure analysis, an innovative approach is discussed for the structureanalysis of music notes based on the action field. By introducing the physics concept of actionfield to describe the association relationship of note primitives, it has good qualities withknowledgablity, robustness and precision. Further more, six substructures of notes are defined, anda model with priority identification for key structures is set up. This model imitates the wayhuman recognizes music score, which is prone to focus on point features and observe objects fromwhole to detail, so it helps to reduce the calculation complexity greatly, and gets rid of incorrectredundancy primitives successfully.
     Besides music notes, there are many text-like music symbols in the score. This paperproposes a method for those specific symbols based on classifying three groups of feature,including geometrical, normalized central moment and slicing feature. Such features have bothcapability of anti-noise remains to statistical feature and capability of distinguishing delicatedifference remains to structural feature. Additional, a three-level BP Neural Network with strongability of non-linear classification is employed as classifier. Experimental results with life scoresshow that the presented method can recognize the symbols effectively.
     Finally, by building the "tree-like structure of music score", this paper realizes theorganization and reconstruction of the music score from messy recognized data. Thereafter, bygenerating music event sequences, semantic interpretation of music score is carried out, and thesequences are written to a file by standard MIDI file format.
     As one of the main research achievements of this paper, a complete OMR prototype systemIOMRS is developed. This paper also proposes a performance evaluation criterion based on musicsymbols and semantics. In the light of the criterion, the IOMRS system is tested and comparedwith commercial OMR systems. The testing results show that the overall performance of IOMRShas achieved the standard of the current excellent commercial OMR system, and show obviousadvantages in music notes recognition, adaptability to the variety of raw music scores and thespeed of performance.
引文
[1] Reginald Smith Brindle著,黄枕宇译.新音乐——1945年以来的先锋派,北京:人民音乐出版社,2001.
    [2] 王瑞年.当代计算机音乐技术发展概览.中国音乐学,2003年第4期:120-125.
    [3] 何锫.数学、计算机与音乐.自然杂志,2002,24(3):181-184.
    [4] 龚镇雄.计算机音乐·音乐的本质·探索与前瞻.科技导报,1995年第11期:8-11.
    [5] 刘晓翔,张树生等.数字音乐图书馆与计算机光学乐谱识别技术.大学图书馆学报。2002,40(25):21-23.
    [6] S.E.George. Visual Perception of Music Notation: On-Line and Off-Line Recognition. IRM Press, Idea Group Inc., 2004.
    [7] N.P.Carter. Automatic Recognition of Printed Music in the Context of Electronic Publishing. Ph.D. thesis, University of Surrey, UK, February 1989.
    [8] N.P.Carter. Segmentation and preliminary recognition of madrigals notated in white mensural notation. Machine Vision and Applications, 1992, 5(3): 223-230.
    [9] N.P.Carter. Music score recognition: Problems and prospects. Computing in Musicology, 1994, 9: 152-158.
    [10] N.P.Carter. and R.A.Bacon. Automatic recognition of printed music, ed. Baird H, Bunke H, Yamamoto K. in Structured Document Image Analysis. Berlin: Springer-Verlag, 1992, pp. 456-465.
    [11] N.P.Carter, R. A. Bacon, et al. The acquisition, representation and reconstruction of printed music by computer: A review. Computers and the Humanities, 1988, 22(2): 117-136.
    [12] K.C.Ng. Optical Music Analysis for Printed Music Score and Music Handwritten Manuscript. in S. George (ed.), Visual Perception of Music Notation: On-line and Off-line Recognition, IRM Press, Idea Group Inc.2004, pp, 108-122.
    [13] K.C.Ng. Document Imaging for Music Manuscript. Proceedings of the Sixth World Multiconference on Systemics, Cybernetics and Informatics (SCI 2002), Orlando, U.S.A., July 2002, pp. 546-549.
    [14] K.C.Ng. Optical Music Analysis: A Reverse Engineering Approach, in Vito Cappellini, James Hemsley and Gerd Stanke (eds.). Proceedings of the Electronic Imaging & the Visual Arts (EVA2002), Florence, Italy, March 2002, pp. 287-292.
    [15] K.C.Ng. Music Manuscript Tracing. Proceedings of the Fourth IAPR International Workshop on Graphics Recognition (GREC 2001), Kingston, Ontario, Canada, September 2001, pp. 470-481.
    [16] K.C.Ng and D.Cooper.Enhancement of Optical Music Recognition using Metric Analysis. Proceedings of the ⅩⅢ CIM 2000-Colloquium on Musical Informatics, L'Aquila, Italy, September 2000, pp. 189-192.
    [17] K.C.Ng, D.Cooper, E.Stefani, R.D.Boyle, N.Bailey. Embracing the Composer: Optical Recognition of Hand-written Manuscripts. Proceedings of the International Computer Music Conference (ICMC'99) Tsinghua University, Beijing, China, October 1999, pp. 500-503,
    [18] K.C.Ng and R.D.Boyle. Recognition and reconstruction of primitives in music scores. Image and Vision Computing, 1996,14 (1): 39-46.
    [19] K.C.Ng. Automated Computer Recognition of Music Score. Ph.D. thesis, School of Computer Studies, University of Leeds, Leeds, England, 1995.
    [20] K.C.Ng, R.D.Boyle, and D.Cooper. Automated Optical Musical Score Recognition and its Enhancement using High-Level Musical Knowledge. XI Colloquium on Musical Informatics, Universita' degli Studi di Bologna, Dipartimento di Musica e Spettacolo, Bologna, Italia, November 1995, pp. 167-170.
    [21] K.C.Ng, R.D.Boyle, and D.Cooper. Low and High Level Approaches to Optical Music Score Recognition. Institution of Electrical Engineers (IEE) Colloquium Digest 1995/191, Document image processing and multimedia environments, Savoy Place, London WC2R 0BL, UK, November 1995, pp. 31-36.
    [22] M.Roth. An Approach to Recognition of Printed Music. Diploma Thesis, University of Leeds, Leeds, England, January 1994.
    [23] B.Couasnon. DMOS: A Generic Document Recognition Method, Application to an Automatic Generator of Musical Scores, Mathematical Formulae and Table Structures Recognition Systems. International Conference on Document Analysis and Recognition, (ICDAR'01). Seattle, USA, September 2001, pp. 215-220.
    [24] E.Anquetil, B.Coilasnon and F.Dambreville. A Symbol Classifier able to Reject Wrong Shapes for Document Recognition System. Graphics Recognition, Recent Advances, Third International Workshop (GREC'99), Jaipur, India, September 1999, pp. 209-218.
    [25] B.Couasnon. Segmentation and recognition of documents guided by a priori knowledge: Application to musical scores (in French). Ph.D. thesis, IRISA, France, January 1996.
    [26] B.Couasnon, P.Brisset, and I.Stephan. Using logic programming languages for optical music recognition. International Conference on the Practical Application of Prolog (PAP'95), Paris, France, April 1995, pp. 115-134.
    [27] B.Coilasnon, and B.Retif. Using a grammar for a reliable full score recognition system. Proceedings of the International Computer Music Conference (ICMC'95), Banff, Canada, September 1995, pp. 187-94.
    [28] B.CoUasnon and J.Camillerapp. A way to separate knowledge from program in structured document analysis: Application to optical music recognition. International Conference on Document Analysis and Recognition (ICDAR'95), Montreal, Canada, August 1995, pp. 1092-1097.
    [29] B.Couasnon and J.Camillerapp. Using grammars to segment and recognize music scores. International Association for Pattern Recognition Workshop on Document Analysis Systems (DAS'94), Kaiserslautern, Germany, October 1994, pp. 15-27.
    [30] V.P.d'Andecy, J.Camillerapp, and I.Leplumey. Kalman filtering for segment detection: application to music scores analysis. Proceedings of the 12th International Conference on Pattern Recognition (ICPR'94). Jerusalem, Israel, October 1994, pp. 301-305.
    [31] I. Leplumey, J.Camillerapp, and G.Lorette. A robust detector for music staves. Proceedings of the International Conference on Document Analysis and Recognition (ICDAR'93), Tsukuba, Japan, October 1993, pp. 902-905.
    [32] M.Droettboom. Correcting broken characters in the recognition of historical printed documents. Joint Conference on Digital Libraries (JCDL'03), Houston, Texas, U.S.A, May 2003, pp. 364-366.
    
    [33] M.Droettboom., K.MacMillan and I. Fujinaga. The Gamera framework for building custom recognition systems. Symposium on Document Image Understanding Technologies, Baltimore, Maryland, USA. 2003, pp. 275-286.
    
    [34] K.MacMillan, M.Droettboom, and I.Fujinaga. Gamera: Optical music recognition in a new shell. Proceedings of the International Computer Music Conference (ICMC'02),Oteborg, Sweden, September 2002, pp.482-485.
    [35] J.Riley, I.Fujinaga. Recommended Best Practices for Digital Image Capture of Musical Scores. OCLC Systems and Services, 2002,19(2): 62-69.
    [36] B. Wingenroth, M.Patton, T.DiLauro. Enhancing Access to the Levy Sheet Music Collection: Reconstructing Full-Text Lyrics from Syllables. ACM/IEEE Joint Conference on Digital Libraries (JCDL'02), Portland, Oregon, USA, July 2002, pp. 308-309.
    [37] M.Droettboom, I.Fujinaga, and Karl MacMillan. Optical music interpretation. Statistical, Structural and Syntactical Pattern Recognition Conference (SSPR'02), Ontario, Canada, August 2002, pp. 362-370.
    [38] M.Droettboom. Selected Research in Computer Music. Master Thesis, McGill University, Canada, 2002.
    [39] M.Droettboom, K. MacMillan, I. Fujinaga, G. S. Choudhury, T. DiLauro, M. Patton, and T. Anderson. Using the Gamera framework for the recognition of cultural heritage materials. ACM/IEEE Joint Conference on Digital Libraries (JCDL'02), Portland, Oregon, USA, July 2002, pp. 11-17.
    [40] M.Droettboom, and I. Fujinaga. 2001. Interpreting the semantics of music notation using an extensible and object-oriented system. Proceedings of the 9th International Python Conference (Python9), Long Beach, California, USA. March 2001, pp. 71-85.
    [41] K.MacMillan, M. Droettboom, I.Fujinaga. Gamera: A Python-based toolkit for structured document recognition. Proceedings of 10th International Python Conference (Python 10), Alexandria, Virginia, USA. February 2002, pp. 25-40.
    [42] K.MacMillan, M.Droettboom, and I.Fujinaga. Gamera: A Structured Document Recognition Application Development Environment. Proceedings of the 2nd Annual International Symposium on Music Information Retrieval (ISMIR'01), Bloomington, Indiana, USA. October 2001, pp. 15-17.
    [43] M.Droettboom, I.Fujinaga and K.MacMillan. Expressive and efficient retrieval of symbolic musical data. Proceedings of the 2nd Annual International Symposium on Music Information Retrieval (ISMIR'01), Bloomington, Indiana, USA. October 2001, pp. 173-178.
    [44] M.Droettboom. Study of Music Notation Description Languages. Technical Report. The Peabody Conservatory of Music of the Johns Hopkins University, Baltimore, Maryland, USA.2000.
    [45] M.Droettboom. Design and Implementation of an Optical Music Interpreter. Technical Report. The Peabody Conservatory of Music of the Johns Hopkins University, Baltimore, Maryland, USA.2000.
    [46] I.Fujinaga, Stephan Moore, David S. Sullivan, Jr. Implementation of exemplar-based learning model for music cognition. Proceedings of the 5th International Conference on Music Perception and Cognition (ICMPC'98), Seoul, South Korea, August 1998, pp. 171-179.
    [47] I.Fujinaga. Optical music recognition using projections. Master's thesis, McGill University, Canada, September1988.
    [48] I.Fujinaga, B.Pennycook, et al. The optical music recognition project. Computers in Music Research, 1991,3:139-42.
    [49] I.Fujinaga. Adaptive optical music recognition. Ph.D. thesis, McGill University, Canada, 1997.
    [50] I.Fujinaga. Exemplar-based learning in adaptive optical music recognition system. Proceedings of the International Computer Music Conference (ICMC'96), Hong Kong, August 1996, pp. 55-66.
    [51] D.Bainbridge and T.C.Bell. A music notation construction engine for optical music recognition. Software—Practice & Experience, 2003, 33(2): 173-200.
    [52] J.R.McPherson. Coordinating knowledge within an optical music recognition system. Ph.D Research Proposal. University of Waikato, Hamilton, New Zealand, March 2001.
    [53] D.Bainbridge and T.C.Bell. The Challenge of Optical Music Recognition. Computers and the Humanities, 2001, 35(2): 95-121.
    [54] D.Bainbridge and K.Wjaya. Bulk processing of optically scanned music. Seventh International Conference on Image Processing and Its Applications (IPA'99), Manchester, UK, July 1999, pp. 474-478.
    [55] D.Bainbridge and S. Inglis. Musical image compression. Proceedings of the IEEE Data Compression Conference (DCC'98), Snowbird, Utah, USA, March 1998, pp. 209-218.
    [56] D.Bainbridge. Extensible optical music recognition. Ph.D. thesis, University of Canterbury, Christchurch, New Zealand, 1997.
    [57] D.Bainbridge and N.P.Carter, Automatic reading of music notation, ed. H. Bunke and P. Wang. In Handbook of Character Recognition and Document Image Analysis. Singapore: World Scientific, 1997, pp. 583-603.
    [58] D.Bainbridge and T.C.Bell. Dealing with superimposed objects in optical music recognition. Sixth International Conference on Image Processing and its Applications (IPA'97), Dublin, Ireland, July 1997, pp. 756-760.
    [59] D.Bainbridge and T.C.Bell. An extensible optical music recognition system. Nineteenth Australasian Computer Science Conference (ACSC'96), Australian Computer Science Communications, 1996,18 (1): 308-317.
    [60] D.Bainbridge. Optical Music Recognition: Progress Report 2. Technical Report: TR-COSC 02/95, Department of Computer Science, University of Canterbury, New Zealand, 1995.
    [61] D.Bainbridge. Optical Music Recognition: Progress Report 1. Technical Report: TR-COSC 05/94, Department of Computer Science, University of Canterbury, New Zealand, 1994.
    [62] D.Bainbridge. A complete optical music recognition system: Looking to the future. Technical Report: TR-COSC 06/94, Department of Computer Science, University of Canterbury, New Zealand, 1994.
    [63] D.Bainbridge. and C.GNevill-Manning, Ian H. Witten, Lloyd A. Smith, and Rodger J. McNab. Towards a Digital Library of Popular Music. Proceedings of the Fourth ACM Conference on Digital Libraries (DL'99), Berkeley, California, USA, August 1999, pp. 161-169.
    [64] K.Wjaya and D.Bainbridge. Staff Line Restoration. Seventh International Conference on Image Processing and Its Applications (IPA'99), Manchester, UK, July 1999, pp. 760-764.
    [65] P. Bellini, I. Bruno, P. Nesi. Optical Music Sheet Segmentation. Proceedings of the First International Conference on WEB Delivering of Music (WEDELMUSIC'01), Florence, Italy, November 2001, pp. 183-190.
    [66] S.Marinai, P.Nesi. Projection Based Segmentation of Musical Sheets. Proceedings of the Fifth International Conference on Document Analysis and Recognition (ICDAR'99), Bangalore, India, September 1999, pp. 515-518.
    [67] D.Blostein. Using Diagram Generation Software to Improve Diagram Recognition: A Case Study of Music Notation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999,21 (11): 1121-1136.
    [68] H.Fahmy. A Graph-rewriting Papadigm for Discrete Relaxation: Application to Sheet-music Recognition. International Journal of Pattern Recognition and Artificial Intelligence, 1999, 12 (6): 763-799.
    [69] H.Fahmy and D.Blostein. A Graph-rewriting Approach to Discrete Relaxation Application to Music Recognition. Proceedings of SPIE, 1994,2181:291-302.
    [70] H.Fahmy and D.Blostein. A graph grammar programming style for recognition of music notation. Machine Vision and Applications, 1993, 6(2): 83-99.
    [71] D.Blostein and H.Baird. A critical survey of music image analysis, ed. Baird H, Bunke H, Yamamoto K. in Structured Document Image Analysis. Berlin: Springer-Verlag, 1992, pp. 405-434.
    [72] F.Rossant, Isabelle Blochb. A fuzzy model for optical recognition of musical scores. Fuzzy Sets and Systems, 2003,141(2): 165-201.
    [73] F.Rossant. A Global Method for Music Symbol Recognition in Typeset Music Sheets. Pattern Recognition Letters, 2002,23(10): 1129-1141.
    [74] B.Modayur. Music score recognition - a selective attention approach using mathematical morphology. Technical Report, Electrical Engineering Department, University of Washington, Seattle, 1996.
    [75] H Miyao and Y. Nakano. Note symbol extraction for printed piano scores using neural networks. IEICE Transactions on Information and Systems, 1996, E79-D (5): 548-554.
    [76] M.V.Stuckelberg and D.Doermann. Model-Based Graphics Recognition. Graphics Recognition, Recent Advances, Third International Workshop (GREC'99), Jaipur, India, September 1999, pp. 121-132.
    [77] M.V.Stuckelberg and D.Doermann. On Musical Score Recognition using Probabilistic Reasoning. Proceedings of the Fifth International Conference on Document Analysis and Recognition (ICDAR'99), Bangalore, India, September 1999, pp. 115-118.
    [78] M.V.Stuckelberg., C.Pellegrini, and M.Hilario. An architecture for musical score recognition using high-level domain knowledge. Proceedings of the Fourth International Conference on Document Analysis and Recognition (ICDAR'97), Ulm, Germany, August 1997, pp. 813-818.
    [79] M.V.Stuckelberg, C.Pellegrini, and M.Hillario. A preview of an architecture for musical score recognition. Technical Report: UNIGE-AI-97-01, University of Geneva, Switzerland, 1997.
    [80] J.C.Pinto, P.Vieira, J.M.Sousa. A new graph-like classification method applied to ancient handwritten musical symbols. International Journal on Document Analysis and Recognition, 2003, 6(1): 10-22.
    [81] J.C.Pinto, P.Vieira, J.M. Sousa. Recognition of Musical Symbols in Ancient Manuscripts. Proceedings of the International Conference on Image Processing (ICIP'01), Thessaloniki, Greece, October 2001, pp. 38-41.
    [82] J.C.Pinto, P.Vieira, M.Ramalho, M.Mengucci, P.Pina, and F.Muge, Ancient Music Recovery for Digital Libraries, ed. J. Borbinha and T. Baker, in Research and Advanced Technology for Digital Libraries. Berlin: Springer-Verlag, 2000, pp. 24-34.
    [83] Mu-Chun Su, Hsin-Hua Chen, Wan-Chi Cheng. A Neural-Network-Based Approach to Optical Symbol Recognition. Neural Processing Letters, 2002, 15(2): 117-135.
    [84] Mu-Chun Su, Chee-Yuen Tew, Hsin-Hua Chen. Musical Symbol Recognition using SOM-based Fuzzy Systems. Joint 9th IFSA World Congress and 20th NAFIPS International Conference, Vancouver, Canada, July 2001, pp. 2150-2153.
    [85] N.Luth. Automatic identification of music notations. Proceedings of the Second International Conference on WEB Delivering of Music (WEDELMUSIC'02), Darmsradt, Germany, 2002, pp. 203-210.
    [86] K.J.Cho and K.E.Cho. Recognition of piano score using skeletal lines and run-length information. Journal of KISS(C) (Computing Practices), 1996, 2(4): 461-473.
    [87] T.Akiyama and N. Hagita. Automated entry system for printed documents. Pattern Recognition, 1990,23(11): 1141-1154.
    [88] S. Soak, S. Chang, T. Shin, B. Ann, Kwangju. Music recognition system using ART-1 and GA. Proceedings of SPIE, 2002,4734:171-179.
    [89] S. Chang, S. Soak, T. Shin, B. Ann, Kwangju. Optical music recognition using skeleton structure and neural network. Proceedings of SPIE, 2002, 4734: 132-140.
    [90] T.Matsushima. Recent trend in optical music recognition and musical database (in Japanese). Systems, Control and Information, 2002,46(11): 665-670.
    [91] S.E.Fotinea, GGiakoupis, A.Liveris, S.Bakamidis, and GCarayannis. An Optical Notation Recognition System for Printed Music based on template matching and high level reasoning. The 6th Recherche d'Informations Assisted par Ordinateur (RJAO'00, Content-Based Multimedia Information Access), Paris, France, April 2000, pp. 19-27.
    [92] T.Hori. S.Wada. H.T.Kung. Automatic Music Score Recognition/Play System based on Decision Based Neural Network. 1999 IEEE Third Workshop on Multimedia Signal Processing, Copenhagen, Denmark, September 1999, pp. 183-184.
    [93] M.Ferrand, J.A.Leite, and A.Cardoso. Hypothetical reasoning: An application to optical music recognition. Proceedings of the APPIA-GULP-PRODE'99 Joint Conference on Declarative Programming (AGP'99), L'Aquila, Italy, September 1999, pp. 367-381.
    [94] M.Ferrand, J.A.Leite, and A.Cardoso. Improving optical music recognition by means of abductive constraint logic programming. 9th Portuguese International Conference on Artificial Intelligence (EPIA'99). Lecture Notes in Artificial Intelligence, 1999, 1695: 342-356.
    [95] M.Ferrand and A. Cardoso. Scheduling to reduce uncertainty in syntactical music structures. Advances in Artificial Intelligence. 14th Brazilian Symposium on Artificial Intelligence (SBIA'98). Lecture Notes in Artificial Intelligence, 1998, 1515: 249-258.
    [96] K.T.Reed, and J. R. Parker. Automatic Computer Recognition of Printed Music, Proceedings of the 13th International Conference on Pattern Recognition (ICPR'96), Vienna, Austria, 1996, pp.803-807.
    [97] G. Watkins. The Use of Fuzzy Graph Grammars for Recognising Noisy Two-dimensional Images. Conference of the North American Fuzzy Information Processing Society (NAFIP'96), Berkeley, California, U.S.A., June 1996, pp. 415-419.
    [98] S.Baumann. A simplified attributed graph grammar for high- level music recognition. Proceedings of the Third International Conference on Document Analysis and Recognition (ICDAR'95), Montreal, Canada, August 1995, pp. 1080-1083.
    [99] W.B.Seales, A.Rajasekar. Interpreting Music Manuscripts: A Logic-Based, Object-Oriented Approach. Image Analysis Applications and Computer Graphics, Third International Computer Science Conference (ICSC'95), Hong Kong, December 1995, pp. 181-188.
    [100] Yip-San Wong and Andrew Choi. A two-level model-based object recognition technique. International Symposium on Speech, Image Processing and Neural Networks Proceedings (ISSIPNN'94), Hong Kong, April 1994, pp. 319-322.
    [101] T.Kobayakawa. Auto music score recognizing system. Proceedings of SPIE: Character Recognition technologies, 1993, 1906: 112-123.
    [102] Jean-Pierre Armand. Musical Score Recognition: A hierarchical and Recursive Approach. Proceedings of the Second International Conference on Document Analysis and Recognition (ICDAR'93), Tsukuba, Japan, October 1993, pp. 906-909.
    [103] R.B. Dannenberg. A Brief Survey of Music Representation Issues, Techniques, and Systems. Computer Music Journal, 1993, 17(3): 20-30.
    [104] W.Homenda. Optical Pattern Recognition for Printed Music Notation. Proceedings of the SPIE: The International Society for Optical Engineering, 1995, 2490:230-239.
    [105] A.T.Clarke, B.M.Brown, et al.. Inexpensive optical character recognition of music notation: A new alternative for publishers, Proceedings of the Computers in Music Research Conference, Lancaster, UK, April 1988, pp. 84-87.
    [106] A.T.Clarke, B.M.Brown, et al. Coping with some really rotten problems in automatic music recognition. Microprocessing & Microprogramming, 1989, 27: 547-550.
    [107] A.T.Clarke, B.M.Brown, et al. Recognizing Musical Text. Proceedings of the SPIE, 1993, 2064: 222-33.
    [108] R.J.Randriamahefa, J. P. Cocquerez, et al. Printed Music Recognition. Proceedings of the Second International Conference on Document Analysis and Recognition (ICDAR'93), Tsukuba, Japan, October 1993, pp. 898-901.
    [109] E.Sicard. An efficient method for the recognition of printed music. Proceedings of 11th International Conference on Pattern Recognition (ICPR'92), Den Haag, Netherlands, 1992, pp. 573-576.
    [110] A.Ruttenberg. How I Handled Ambiguity in a System to Read Music Scores. Proceedings of SPIE, 1992, 1825: 189-194.
    [111] A.Ruttenberg. Optical Reading of Typeset Music. MS thesis, MIT, Cambridge, Massachusetts, USA, February 1991.
    [112] Lee Sau Dan. Automatic Optical Music Recognition. Final Year Project Report of Undergraduate Programme. Department of Computer Science, University of Hong Kong, Hong Kong. 1992.
    [113] H.Kato and S.Inokuchi. A recognition system for printed piano music using musical knowledge and constraints, ed. Baird H, Bunke H, Yamamoto K. in Structured Document Image Analysis. Berlin: Springer-Verlag, 1992, pp. 435-455.
    [114] P.Martin, C.Bellissanr. Low-level Analysis of Music Drawing Images. Proceedings of the First International Conference on Document Analysis and Recognition (ICDAR'91), Saint-Malo, France, September 1991, pp. 417-425.
    [115] 蔡自伟.印刷乐谱辨识系统.国立中山大学硕士学位论文,中国台湾,2004.7.
    [116] 陈根方.基于方向数探测法的倾斜乐谱识别技术研究.杭州师范学院学报(自然科学版),2004,3(2):101-104.
    [117] Chen Genfang, Xia Shunren. The Study and Prototype System of Printed Music Recognition. IEEE Int. Conf. Neural Networks & Signal Processing, Nanjing, China, December 2003, pp. 1002-1008.
    [118] 陈根方.OMR研究与原型系统开发.浙江大学硕士学位论文,杭州,2003.5.
    [119] 张登胜,马颂德.多声部乐谱图像识别系统.计算机工程,1998,24(3):41-43.
    [120] 张登胜,徐秉铮等.乐谱识别中的结构拆分及图像恢复.数据采集与处理,1997,12(3):238-242.
    [121] 张登胜,周悦珍.乐谱识别中的图像预处理技术.安庆师范学院学报(自然科学版),1997,3(2):7-12.
    [122] 张登胜,马颂德.基于句法规则和面向对象的乐谱识别系统.安庆师范学院学报(自然科学版),1997,3(3):13-16.
    [123] 张登胜,张铃等.电子印刷中的乐谱自动识别及其恢复.安庆师范学院学报(自然科学版),1996,2(3):20-24.
    [124] 张登胜,张铃等.乐谱印刷中图像数据的获取.安庆师范学院学报(自然科学版),1996,2(1):1-3.
    [125] 张登胜,李海州.基于投影方法的印刷体五线谱识别系统.模式识别与人工智能,1995,8(增刊):106-111.
    [126] 张登胜,李海州.乐谱图像识别方法的研究.安庆师范学院学报(自然科学版),1995,1(3):39-42.
    [127] 王林泉,章文怡等.乐谱识别的预处理和环境参数测定.计算机工程,1995,21(1):47-49。
    [128] 王林泉,章文怡等.区域特征的乐谱识别系统.软件学报,1994,5(11):44-49.
    [129] 沈清,汤霖.模式识别导论.长沙:国防科技大学出版社,1991.
    [130] 陆国栋,张数有等.工程图样数字化转换与智能理解.北京:机械工业出版社,2001.
    [131] 王晓红.矩技术及其在图像处理与识别中的应用研究.西北工业大学博士学位论文,西安,2001.4.
    [132] 崔屹.图象处理与分析——数学形态学方法及应用.北京:科学出版社,2000.
    [133] Abhijit Spandya著,徐勇,荆涛译.神经网络模式识别及其实现.北京:电子工业出版社,1999.
    [134] 蔡自兴,徐光佑.人工智能及其应用.北京:清华大学出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700