三类集值映射的(方向)导数及在优化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对研究非光滑函数的高阶算法的理论基础和集值映射的微分的计算的课题,主要研究几类特殊类型的集值映射的(方向)导数的计算与近似,并将得到的结果应用到优化的最优性理论中。本文取得的主要结果可概括如下:
     1.在第2章中,建立了一类基于凸集对空间的理论在Tyurin(1965)和Banks & Jacobs(1970)意义下集值映射的导数的计算公式和凸函数的次微分映射的微分。
     2.在第3章中,将第2章的结果应用到参数规划的解集的估计,得到了参数线性规划和参数二次规划的稳定性结果,同时也给出参数线性规划的解集的界的估计,在相同的假设条件下得到的结果比目前已有的结果好(即,更sharper)。
     3.在第4章中,研究了拟可微分析中的微分结构—拟微分结构。在这一章里,首先给出核拟微分,星核与星微分的定义及其它们的运算性质;然后证明了拟核微分的一个充分条件定理及一个充要条件定理;最后讨论拟可微函数星核的存在性及方向可微函数星微分的存在性以及Penot-微分与上下导数之间的关系。
     4.在第5章中,针对近几年发展起来的集值优化,基于Clarke切锥利用Epigraph建立了一类集值映射的Epi-导数并讨论它的一些性质,同时给出集值优化的充分(或必要)的最优性条件。
This dissertation studies mainly approximations to special classes of set-valued maps and their applications, in order to compute differentials of some class of set-valued maps and to solve basis theories of constructing high-ordered methods of nonsmooth functions. Then results obtained in this dissertation are applied to optimality theories in optimization. The main results obtained in this dissertation are summarized as follows:
    1. Chapter 2 established derivatives of a class of set-valued maps and differentials of subdifferential maps of convex functions in the sense of Tyurin (1965) and Banks & Jacobs (1970) based on theories of convex pairs space.
    2. Chapter 3 applied the results obtained in Chapter 2 to estimate to solution-set of a parametric mathematical programming. Results about stability of a parametric linear programming and estimate to bound of solution-set of a parametric linear programming is established; under the assumptions in this Chapter, results obtained is more sharper than ones obtained in last.
    3. Chapter 4 is devoted to the study of diferential structure in Quasidiferential analysis-quasidiferential structure. This chapter proposes three conceptions, i.e., Kernelled quasidiferential, star-kernel and star-diferential, and establishes their operational properties. A sufficient theorem and a sufficent and necessity theorem for a quasi-kernel being a kernelled quasidiferential are proven. Both the existence of star-kernel for a quasidiferentiable function and the existence of star-differential for a direnction-ally diferentiable function are established. The relationships between sub- and super-derivatives and Penot diferentials are dicussed as well.
    4. In recent years, set-valued optimization make much progress. In Chapter 5, based on Clarke tangent cone, we establish epiderivative of a class of set-valued maps and its properties. And furthermore, sufficiency (or neccessity) optimization conditions of set-valued optimization are also obtained.
引文
[1] J.-P. Aubin, Contingent derivatives of set-valued mappings and existence of solutions to nonlinear inclusions and differential inclusions, In Advance in Mathematics Supplementary Studies, L.Nachbin(Ed.), Academic Press, New York, 1981, 160-232.
    [2] J.-P. Aubin, Ioffe's fans and generalized derivatives of vector-valued maps, In Convex Analysis and Optimization, J.-P. Aubin and R. Vinter (Ed.), Pitman. London. 1982, 1-18.
    [3] J.-P. Aubin, Lipschitz behavior of solution to convex minimization problems, Math. of Operations Reseach, 9(1984) . 87-111.
    [4] J.-P. Aubin and I. Ekeland, Applied nonlinear analysis. Wiley. 1984. 401-450.
    [5] J.-P. Aubin and H. Frankowska, set-valued Analysis. Birkhauser Boston. 1990.
    [6] A. Auslender and R. Comminetti. First-and second-order sensitivity analysis of nonlinear programs under directional constraint qualification conditions. Optimization, 21(1984) , 351-363.
    [7] J.Baier and J.Jahn, On subdifferentials of set-valued maps. Journal of Optimization theory and Applications. 100(1999) . 233-240.
    [8] B.J. Bank, J. Guddat. D. Klatte. B. Kummer and K. Tammer, Nonlinear parametric optimization, Akademie Verlag, Berlin 1982.
    [9] H.T. Banks and M.Q. Jacobs, A differential calculus for multifunction. J. of Mathematical Analysis and Application 29(1970) , 246-272.
    [10] A. Ben-Tal and J. Zowe, Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems. Mathematical Programming 24(1982) . 70-91.
    [11] J.F.Bonnans, Directional derivatives of optimal solutions in smooth nonlinear programming, Math. Programming, 34(1986) , 251-264.
    [12] J.F.Bonnan and A. Shapiro, Optimization problems with perturbations: a guided tour, SIAM Review, 40(1998) .
    [13] J.M. Borwein, multivalued Convexity and Optimization: A unified approach to inequality and equality constraints. math. Programming, 13(1977) , 183-199.
    [14] J. M. Borwein, A Lagrange multiplier theorem and a Sandwich theorem for convex relations, math. Scand., 48(1981) , 189-204.
    [15] J.M. Borwein, Adjoint process duality, math. Oper. Res., 8(1983) , 403-434.
    [16] B. Brosowski, Parametric semiinfinite optimization, peter D. Lang Verlag. Frankfurt/Main 1981.
    [17] R. H. Byrd & J. Nocedal, A tool for the analysis of quasi-Newton methods with
    
    application to unconstrained minimization. SIAM Journal on Numercal Analysis, 26(1989) , 727-739.
    [18] R. H. Byrd, J. Nocedal & Y. Yuan, Global convergence of a class of quasi-Newton methods on convex problems. SIAM Journal on Numercal Analysis, 24(1987) , 1171-1191.
    [19] W. Chaney, On second derivatives for nonsmooth functions, Nonlinear Analysis: Theory. Methods and Applications 9(1985) , 1189-1209.
    [20] G.Y. Chen, Special issue on 'Set-Valued Optimization'. Math. Methods of Oper. Res., 48(1998) issue 2.
    [21] F.H. Clarke, Generalized gradients and applications, Transaction of the American mathematical Society. 205(1975) 247-262.
    [22] F.H. Clarke. Optimization and Nonsmooth Analysis. John Wiley and Sons, New York, 1983.
    [23] R. Cominetti and R. Correa, A generalized second-order derivative in nonsmooth optimization, SIAM J. on Control and Optimization 28(1990) , 789-809.
    [24] W. Cook, A. M. H. Gerards, A. Schrdver, and E. Tards, Sensitivity theorems in integer linear programming. Math. Programming 34(1986) , 251-264.
    [25] H.W. Corley. Existence and Lagrangian Duality for Maximizations of Set-Valued Functions. Journal of Optimization Theory and Applications, 54(1987) , 489-500.
    [26] H.W. Corley. Optimality Conditions for Maximizations of Set-Valued Functions. Journal of Optimization Theory and Applications. 58(1988) . 1-10.
    [27] B. Cornet and J.P. Vial, Lipschitzian solutions of perturbed nonlinear programming problems, SIAM J. on Control and optimization. 24(1983) , 1123-1137.
    [28] M.R.Davidson, Stability of the Extreme Point Set of a Polyhedron, J.Optim.Theory Appl. 90(1996) , 357-380.
    [29] Y.F. Demyanov. C. Lemarechal. J. Zowe, Approximation to a set-valued mapping I: a proposal. Journal Applied Mathematics and Optimization, 14(1986) , 203-214.
    [30] Y.F.Demyanov and A.M.Rubinov, On quasidifferentiable functionals. Doklady of USSR Acad. of Sci., 250(1980) , 21-25.
    [31] Y.F.Demyanov and A.M.Rubinov, On quasidifferentiable mappings. Math. Opera-tionsforsch. Statist. Ser. Optimization 14(1983) , 3-21.
    [32] Y.F.Demyanov and A.M.Rubinov, Quasidifferential Calculus. N.Y.Optimization Sofe-ware, 1986.
    [33] Y.F.Demyanov and A.M.Rubinov. Constructive Nonsmooth Analysis. Peter Lang, Frankfurt an Main, 1995.
    
    
    [34] M.Y.Deng and Y.Gao, A property on quasidiferentials, Chinese J. of Operations Research, 1(1991) , 65-67.
    [35] J.E.Jr. Dennis & H. Wolkowicz, Sizing and least-change secant methods. SIAM Journal on Numercal Analysis, 30, 1291-1314.
    [36] W. Dinkelbach, Sensitivitatsanalysen und parametrische programmierrung, Springer-Verlag, Berlin, Heidelberg, New York 1969.
    [37] A.L. Dontchev, Perturbations, approximations and sensitivity analysis of control systems, lecture Notes in Control and Information Science, Springer-Verlag, Berlin, Heildelberg, New York 1983.
    [38] J. Dutta and V. Vetrivel, Theorems of the alternative in set-valued optimization. Manuscipt, India, 1999. To appear SIAM J. Optimiz.
    [39] A.V. Fiacco, Introduction to sensitivity and stability analysis in nonlinear programming, Academic press. New York, New York, 1983.
    [40] T. Gal, Multipaprametric linear programs as an aid for solving farm decision problems (in Czech), Ph.D-Thesis No2, Vysoka Skola zemedelska, Praia 1967.
    [41] T. Gal, Betriebliche Entcheidungsprobleme, Sensitivitatsanalyse und parametrische Programmierung, W. de Gruyter, Berlin, New York 1973. English translation: postop-timal analysis, parametric programming and related topics, 1979. The second update ed. 1995.
    [42] T. Gal postoptimal analysis, parametric programming and related topics, McGraw Hill, Berlin, New York, 1979.
    [43] T. Gal, A "historiogramme" of parametric progrmming, Journal of the Operations Research Society, 31(1980) , 449-451.
    [44] T. Gal postoptimal analysis, parametric programming and related topics, 2nd ed. W. de Gruyter, Berlin, New York, 1995.
    [45] T. Gal and H.J. Greenberg, Advances in sensitivity analysis and parametric programming. Kluwer Academic Publishers, Boston/Dordrecht/London, 1997.
    [46] Y.Gao, The star-kernel for a quasidiferentiable function in one dimensional space, J.Math.Res. & Exposition, 8(1998) , 152-153.
    [47] Y.Gao, Minimal quasidiferential for a quasidiferentiable function in one dimensional space, 1996, to appear.
    [48] Y.Gao, Minimal quasidiferential for a quasidiferentiable function in two dimensional space, 1997, to appear.
    [49] Y. Gao, D. Pallaschke and R.Urbanski, New minimality criteria for a pair of compact convex sets, Optimization, To appear.
    
    
    [50] Y. Gao, Z.Q. Xia and L.W. Zhang, Kernelled quasidifferential for a quasidifferentiable functions in two-dimensional space, Journal of Convex Analysis, 8(2001) , 401-408.
    [51] J. Gauvin and P. Janin, Directional behavior of the optimal solution in nonlinear mathematical programming, Math. Oper.Res., 13(1988) , 629-649.
    [52] G.H.Golub and C.F.Van loan, Matrix Computations, 3rd Edition, Johns Hopkins Univ., 1995.
    [53] A. Gotz and J. Jahn, The Lagrange multiplier rule in set-valued optimization, SIAM J. Optimization, To appear.
    [54] H.J. Greenberg, How to analyze the results of LP's: 1, Interfaces 23:4(1993) 56-57; 2, Interfaces 23:5(1993) 97-114; 3, interfaces 23:6(1993) ; 4, Interfaces 24:1(1994) 121-130.
    [55] J. Guddat, F. Guerra Vasques and H.T. Jongen, Parametric optimization: Singularities, pathfollowing and jumps, Teubner and Wiley, Chichester 1990.
    [56] L.X. Han and G.H. Liu, Global analysis of the Dennis-Wolkowicz least-change secant algorithm . SIAM Journal on Optimization, 18(1998) , 813-832.
    [57] J.-B.Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces. Mathematics of Operations Research, 4(1979) 79-97.
    [58] J.-B. Hiriart-Urruty, The approximate first-order and second-order direrctional derivatives for a convex function. In: J.-P.Cecconi and T.Zolezzi. eds. Mathematical Theories of optimization, Lecture notes in Mathematics, no.979. Springer-Verlag. 1983, 154-166.
    [59] J.B. Hiriart-Urruty and A. Seeger. Calculus rules on a new set-valued second order derivative for congvex functions, Nonlinear Analysis. Theory, Method & Applications, 13(1989) 721-738.
    [60] W. W. Hogan, Directional derivatives for extremal value functions with application to the completely convex case, Operations Research 21(1973) 188-209.
    [61] L. Hormander, Sur la fonction d'appui des ensembles convexes dans un espace locale-ment convexe, Arkiv for Matematik 3(1954) , 181-186.
    [62] P. Huard ed., Point-to-set maps and mathematical programming, Mathematical Programming Study 10(1979) , 1-190.
    [63] J. Jahn and R. Rauh, Contingent epiderivatives and set-valued optimization. Mathematical Method of Operations Research. 46(1997) , 357-380.
    [64] U. Kausmann, K. Lommatzsch and F. Nozicka, Lineare paprametrische optimierung, Akademie Verlag, Berlin 1976.
    [65] M. Kawasaki, An envelope-like effect of infinitely many inequality constraints on
    
    second-order conditions for minimization problems. Mathematical programming. 41 (1988) , 73-96.
    [66] D. Klatte, Lipschitz continuity of infima and optimal solutions in parametric Optimization and Related Topics, Math. Res., 35(1987) , Akademic-Verlag, Berlin, 229-248.
    [67] D. Klatte, Error bounds for solutions of linear equalities and inequlities, Mathematical Method of Operations Research, 41(1995) , 191-214.
    [68] J. Klose, Sensitivity analysis using the tangent derivative. Numer. Funct. Anal. Optimiz., 13(1992) , 143-153.
    [69] H. P. Kunzi and W.Krelle, Nichtlinere Programmierung, Springer Berlin Gottingen Heidelberg, 1962.
    [70] D. kuroiwa, Natural criteria of set-valued optimization. Manuscript, Shimane university, Japan.
    [71] S. S. Kutateladze and A. M. Rubinov, Minkowski duality and its applications, Nauka, Moscow, 1976.
    [72] C. Lemarechal, F. Oustry, C. Sagastizdbal, The U-Lagrangian of a convex function. Transactions of American Mathematical Society, 352(2000) , 711-729.
    [73] C. Lemarechal, J. Zowe, Approximation to a multivalued mapping: existence, uniqueness, characterization. Report No. 5, Mathematisches Institut, universitat Bayreuth. 1987.
    [74] W. Li, The sharp Lipschits constants for feasible and optimal solutions of a perturbed linear program, Linear Algebra Appl. 187(1993) , 15-40.
    [75] W. Li, The sharp Lipschits constants for basic optimal solutions basic feasible solutions of a linear program, SLAM J. Control. Optim. 32(1994) , 140-153.
    [76] Z. Li, A Theorem of the Alternative and Its Application to the Optimizations of Set-Valued Maps. Journal of Optimization Theory and Applications, 100(1999) , 365-375
    [77] G. Lorenzen, Parametrische optimierung und einige Anwendungen, R. Oldenbourg Verlag, Munchen-Wien 1974.
    [78] P. Loridan, Necessary Conditions for ε-Optimality. Mathematical Programming Study, 19(1982) , 140-152
    [79] P. Loridan, ε-Solutions in Vector Minimization Problems. Journal of Optimization Theory and Applications, 43(1984) , 265-276
    [80] D.T. Luc and J. Jahn , Axiomatic approach to duality in optimization. Numer. Funct. Anal Optimiz. 13(1982) 305-326.
    [81] D.T. Luc, Theory of Vector Optimization, Lecture Notes in Economics and Mathe-
    
    matical Systems. Springer Verlag, Berlin, Germany, 1989
    [82] D.T. Luc, Contingent derivatives of set-valued maps and applications to vector optimization. Mathematical Programming, 50(1991) , 99-111.
    [83] D.T.Luc, Invex optimization problems. Bull. Austral. Math. Soc., 46(1992) , 47-66.
    [84] O. L. Magasarian and T.-H. Shiau, Lipschitz continuity of solutions of linear inequalities, Programs, and complementarity problems, SIAM J. Control Optim. 25(1987) , 583-595.
    [85] V.L.Makarov and A.M.Rubinov. Mathematical theory of economic dynamics and equilibria, Nauka, Moscow, 1973.
    [86] K. Malanowski, Differentiability with respect to parameters of solutions to convex progrmming, Mathematical Progrmming, 33(1985) , 352-361.
    [87] B. Margolis. Campact, convex sets in (?)n and a new Banach lattice. I.-theory. Nu-mer. Func. Anal, and Optim., 11(1990) 555-588.
    [88] G. Mihoc and I. Nadejde, Programovanie parametricke, nelinearne a stochasticke, Vyd. techn. a ekon. Lit., Bratislava 1974.
    [89] L.Minchenko and A. Volosevich. Strongly differentiate Multifunctions and directional differentiability of marginal functions, in: Quasidifferentiability and Related Topics (V. Demyanov and A. Rubinov, eds.), Kluwer Academic Publishers, Netherlands, 2000.
    [90] B.S. Mordukhovich, Generalized differential calculus for nonsmooth and set-valued mappings, J.of Math. Anal, and Appl., 183(1994) 250-288.
    [91] B.S. Mordukhovich, sensitivity analysis for constraint and variational systems by means of set-valued diferentiation, Optimization, 31(1994) 13-46.
    [92] B.S. Mordukhovich and Y.H.Shao, Stability of set-valued mappings in infinite dimen-tions: point criteria and applications, SIAM J. Control & Optimization, 35(1997) 285-314.
    [93] R.M Nass, Integer parametric programming. University of Missouri Press 1979
    [94] N. Noltemeier, Sensitivitdtsanalyse bei diskreten linearen optimierungsproblemen, Lecture Notes in Operations Research and Mathematical Systems, Springer-Verlag, Berlin, Heidelberg, New York 1970.
    [95] F. Nozicka. J. Guddat, H. Hollatz and B. Bank, Theorie der linearen parametrischen optimierung, Akademie Verlag, Berlin 1974.
    [96] W. Oettli, Optimality conditions for programming problems involving multivalued mapd. Manuscript, university of Mannheim, Germany.
    [97] D.Pallaschke, S. Scholtes and R.Urbanski, On minimal pairs of compact convex sets,
    
    Bull. Acad. Polon. Sci., Ser.Sci.Math., 39(1991) , 1-5.
    [98] D.Pallaschke and R.Urbariski, Some criteria for the Minimality of pairs of compact convex sets, ZOR, Series Theorem, 37(1993) , 129-150.
    [99] D.Pallaschke and R.Urbanski, Reductin of quasidifferentials and minimal representations, Math. Programming, Series A, 66(1994) , 161-180.
    [100] D.Pallaschke and R.Urbanski, A continuum of minimal pairs of compact convex sets which are not connected dy translations, J. Convex Analysis, 3 (1996) , 83-95.
    [101] D.Pallaschke and R.Urbanski, Minimal pairs of compact convex sets with application to quasidifferential caculus, in: Quasidifferentiability and Related Topics (V. Demyanov and A. Rubinov eds.), Kluwer Academic Publishers, Netherlands, 2000.
    [102] N. A. Percherskaya. Differentiability of set-valued mappings, in: V.F.Demyanov,ed., Nonsmooth problems of control and optimization, Leninggrad University Press. 1982 128-147.
    [103] N. A. Pecherskaya, Quasidifferentiable mappings and the differentiability of maximum functions. Mathematical Programming Study 29(1986) 145-159.
    [104] R.A. Poliquin, R.T. Rockafellar, A calculus of epi-derivatives applicable to optimization. Can. J.Math., 45(1993) , 879-896.
    [105] R.A. Poliquin, R.T. Rockafellar, Proto-derivative formulas for basic subgradient mappings in mathematical programming. Set-Valued Analysis, 2(1994) , 275-290.
    [106] R.A. Poliquin, R.T. Rockafellar, Generalized hessian properties of regularized non-smooth functions. SIAM J. on Optimization. 6(1996) , 1121-1137.
    [107] V. Postolica, Vectorial optimization programs with multifunction and duality. Ann. Sci. math. Quebec. 10(1986) 85-102
    [108] M.J.D. Powell, Some global convergence properties of a variable metric algorithm for minimization without exact line searches. In Nonlinear programming: IX, SIAM-AMS Proceedings, Providence RI: AMS, 1976.
    [109] S. M. Robinson, Bounds for error in the solution set of a perturbed linear program, Linear Algebra Appl. 6(1973) 69-81.
    [110] S. M. Robinson, Generalized equations and their solutions, Part 2, Mathematical Programming Study, 12(1982) , 200-221.
    [111] R.T. Rockafellar, Convex Analysis, Princeton University Press, 1970.
    [112] R.T.Rockafellar, Clarke's tangent cones and the boundaries of closed sets in (?)n. Nonlinear Analysis, 3(1979) , 145-154.
    [113] R.T. Rockafellar, First-and second-order epidifferentiability in nonlinear programming, Transaction of the American Mathematical Society. 307(1988) , 75-108.
    
    
    [114]R.T. Rockafellar, Generalized second derivatives of convex function and saddle functions. Transactions of the American Mathematical Society, 322(1990), 51-78.
    [115]R.T. Rockafellar, Second-order Convex Analysis, Journal of Nonlinear and Convex Analysis, 1(2000), 1-16.
    [116]W.D.Rong and Y.N. Wu, ε- Weak Minimal Solutions of Vector Optimization Problems with Set-Valued Maps. Journal of Optimization Theory and Applications, 106(2000), 569-579.
    [117]A.M. Rubinov, Superlinear multimappings and their application to economic and mathematical problems, Nauka. 1980.
    [118]A.M. Rubinov and A.A. Yagubov, The space cf star-shaped sets and its application in nonsmooth optimization, Math. Programming Study, 29(1986).
    [119]S. Scholtes, Minimal pairs of convex bodies in two dimensions, Acta Applicandae Mathematicae, 5(1986), 209-237.
    [120]A. Shapiro, Sensitivity analysis of nonlinear programs and differentiability properties of metric projections, SIAM J. on Control and Optimization, 26(1988), 628-645.
    [121]W. Song, A generalization of fenchel duality in set-valued vector optimization. math. Methods of Oper. Res., 48(1998), 259-272.
    [122]K.B. Tlegenov, K.K. Kaltshaev and P.P. Zapletin, Mathematical programming methods, (in Russian). Nauka, Alma Ata 1975.
    [123]Y.N. Tyurin, A simplified model of production pianning, Econ. and Math. Methods, 1(1965), 391-410.
    [124]I. Valyi, Approximate Saddle-Point Theorems in Vector Optimization. Journal of Optimization Theory and Applications, 55(1987), 435-448
    [125]M.Z. Wang and Z.Q. Xia, Approximation of the subdifferential mappings of convex functions. Submmitted to PUMA (2002).
    [126]M.Z. Wang and Z.Q. Xia On an Epiderivative of Set-Valued Maps and Its Application. Accepted to OR Transactions.
    [127]王明征,夏尊铨,带有广义次类凸型集值映射的集值优化中的数乘与δ-对偶.投于应用数学学报.
    [128]M. Z. Wang, Z.Q. Xia and L.W. Zhang, On linear Stability of Parametric Convex Quadratic Programming. OR TRansactions, 7(2003), 11-18.
    [129]王明征,张立卫和夏尊铨,D-W最小改变割线算法的超线性收敛性.大连理工大学学报,40(2000),259-262.
    [130]Z.Q.Xia A note on star-kernel for quasidifferentiable functions, WP-87-66, SDS/IIASA, Laxenburg, Austria, 1987.
    
    
    [131]Z.Q.Xia The star-kernel for a quasidifferentiable function, WP-87-89, IIASA, Laxenburg, Austria, 1987.
    [132]Z.Q.Xia, On quasidifferential kernel, Demonstratio Mathematica, 26(1993), 159-182.
    [133]Z.Q. Xia, Y.Gao, On structure of directional derivative and kernel for quasidiferentiable functions, P.U.M.A., 4(1993), 211-226.
    [134]Z.-Q. Xia, Z.-M. Wang and L.-W. Zhang, Directional derivative of a class of set-valued mappings and its application. To appear to Journal of Convex Analysis,10(2003), 1-17.
    [135]X.M. Yang, X.Q. Yang and G.Y. Chen, Theorems of the Alternative and Optimizations with Set-Valued Maps. Journal of Optimization Theory and Applications, 107(2000), 627-640.
    [136]袁亚湘,彭积明.ψ-函数的性质和它的应用.计算数学,1(1992),102-107.
    [137]H.W.Zhang, L.W.Zhang and Z.Q.Xia, Calculus of generalized quasidifferentiable functions Ⅰ: Some results on the space of pairs of convex-set collections, Northeast Mathematics, 19(2003), 75-85.
    [138]张立卫,拟可微分析与优化中的某些新结果:核·方程·微分,博士论文,大连里工大学,1998.
    [139]Zhang L.W. Xia Z.Q. Gao Y. and Wang M-Z, Star-kernels and star-differentials of quasi differential analysis. Journal of Convex Analysis, 9(2002), 139-158.
    [140]D. Zhuang Rugulary and minimality properties of set-valued structures in optimization. Dissertation, Dalhousie University, Halifax.
    [141]J. Zowe, Konvexe Funktionen und konvexe Dualittstheoric in geordneten Vektorrumen. Habilitation Thesis, University of Wurzburg, 1976.
    
    
    [1] J.-P. Aubin, Contingent derivatives of set-valued mappings and existence of solutions to nonlinear inclusions and differential inclusions, In Advance in Mathematics Supplementary Studies, L.Nachbin(Ed.), Academic Press, New York, 1981, 160-232.
    [2] J. Baier and J.Jahn, On subdifferentials of set-valued maps. Journal of Optimization theory and Applications. 100(1999) , 233-240.
    [3] H. T. Banks and M.Q. Jacobs, A differential calculus for multifunction, J. of Mathematical Analysis and Application 29(1970) . 246-272.
    [4] R. H. Byrd &: J. Nocedal, A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. SIAM Journal on Numercal Analysis, 26(1989) , 727-739.
    [5] R. H. Byrd, J. Nocedal & Y. Yuan, Global convergence of a class of quasi-Newton methods on convex problems. SIAM Journal on Numercal Analysis, 24(1987) , 1171-1191.
    [6] G.Y. Chen, Special issue on 'Set-Valued Optimization'. Math. Methods of Oper. Res., 48(1998) issue 2.
    [7] H.W. Corley, Optimality Conditions for Maximizations of Set-Valued Functions. Journal of Optimization Theory and Applications. 58(1988) . 1-10.
    [8] Y.F.Demyanov and A.M.Rubinov, On quasidifferentiable functionals. Doklady of USSR Acad. of Sci.. 250(1980) , 21-25.
    [9] M.Y.Deng and Y.Gao. A property on quasidiferentials, Chinese J. of Operations Research, 1(1991) , 65-67.
    [10] J.E.Jr. Dennis &; H. Wolkowicz, Sizing and least-change secant methods. SIAM Journal on Numercal Analysis. 30, 1291-1314.
    [11] Y.Gao, The star-kernel for a quasidiferentiable function in one dimensional space, J.Math.Res. & Exposition, 8(1998) , 152-153.
    [12] Y.Gao, Minimal quasidiferential for a quasidiferentiable function in one dimensional space, 1996, to appear.
    [13] Y.Gao, Minimal quasidiferential for a quasidiferentiable function in two dimensional space, 1997, to appear.
    [14] Y. Gao, Z.Q. Xia and L.W. Zhang, Kernelled quasidifferential for a quasidifferentiable functions in two-dimensional space, Journal of Convex Analysis. 8(2001) , 401-408.
    [15] L.X. Han and G.H. Liu. Global analysis of the Dennis-Wolkowicz least-change secant algorithm . SIAM Journal on Optimization, 18(1998) , 813-832.
    
    
    [16] J. Jahn and R. Rauh, Contingent epiderivatives and set-valued optimization. Mathematical Method of Operations Research. 46(1997) , 357-380.
    [17] D. Klatte, Error bounds for solutions of linear equalities and inequlities, Mathematical Method of Operations Research, 41(1995) , 191-214.
    [18] W. Li, The sharp Lipschits constants for feasible and optimal solutions of a perturbed linear program, Linear Algebra Appl. 187(1993) , 15-40.
    [19] W. Li, The sharp Lipschits constants for basic optimal solutions basic feasible solutions of a linear program, SLA.M J. Control. Optim. 32(1994) , 140-153.
    [20] Z. Li, A Theorem of the Alternative and Its Application to the Optimizations of Set-Valued Maps. Journal of Optimization Theory and Applications, 100(1999) , 365-375
    [21] D.T. Luc. Contingent derivatives of set-valued maps and applications to vector optimization. Mathematical Programming, 50(1991) , 99-111.
    [22] O. L. Magasarian and T.-H.Shiau, Lipschitz continuity of solutions of linear inequalities, Programs, and complementarity problems, SIAM J. Control Optim. 25(1987) , 583-595.
    [23] K. Malanowski, Differentiability with respect to parameters of solutions to convex progrmming, Mathematical Progrmming, 33(1985) , 352-361.
    [24] W. Oettli, Optimality conditions for programming problems involving multivalued map Manuscript, university of Mannheim, Germany.
    [25] D.Pallaschke and R.Urbanski, Minimal pairs of compact convex sets with application to quasidifferential caculus, in: Quasidifferentiability and Related Topics (V. De-myanov and A. Rubinov eds.), Kluwer Academic Publishers. Netherlands, 2000.
    [26] N. A. Percherskaya. Differentiability of set-valued mappings, in: V.F.Demyanov,ed.. Nonsmooth problems of control and optimization. Leninggrad University Press, 1982 128-147.
    [27] N. A. Pecherskaya, Quasidifferentiable mappings and the differentiability of maximum functions, Mathematical Programming Study 29(1986) 145-159.
    [28] S. M. Robinson, Bounds for error in the solution set of a perturbed linear program, Linear Algebra Appl. 6(1973) 69-81.
    [29] R.T. Rockafellar, Second-order Convex Analysis, Journal of Nonlinear and Convex Analysis, 1(2000) , 1-16.
    [30] W.D.Rong and Y.N. Wu, ε-Weak Minimal Solutions of Vector Optimization Problems with Set-Valued Maps. Journal of Optimization Theory and Applications, 106(2000) 569-579.
    [31] A.M. Rubinov and A.A.Yagubov, The space of star-shaped sets and its application
    
    in nonsmooth optimization, Math. Programming Study, 29(1986).
    [32]Y.N. Tyurin, A simplified model of production planning, Econ. and Math. Methods, 1(1965), 391-410.
    [33]I. Valyi, Approximate Saddle-Point Theorems in Vector Optimization. Journal of Optimization Theory and Applications, 55(1987), 435-448
    [34]M.Z. Wang, Z.Q. Xia and L.W. Zhang, On linear Stability of Parametric Convex Quadratic Programming. OR TRansactions, 7(2003), 1-7.
    [35]M.Z. Wang and Z.Q. Xia, Approximation of the subdifferential mappings of convex functions. Submmitted to PUMA (2002).
    [36]M.Z. Wang and Z.Q. Xia, On an Epiderivative of Set- Valued Maps and Its Application Accepted to OR Transactions (待发表).
    [37]王明征,夏尊铨,带有广义次类凸型集值映射的集值优化中的数乘与ε-对偶.投于应用数学学报(2002).
    [38]王明征,张立卫和夏尊铨,D-W最小改变割线算法的超线性收敛性.大连理工大学学报,2000年40卷,259-262.
    [39]Z.Q.Xia A note on star-kernel for quasidifferentiable functions, WP-87-66, SDS/ILASA, Laxenburg, Austria, 1987.
    [40]Z.Q.Xia The star-kernel for a quasidifferentiable function, WP-87-89, IIASA, Laxenburg, Austria, 1987.
    [41]Z.Q.Xia, On quasidifferential kernel, Demonstratio Mathematica, 26(1993), 159-182.
    [42]Z.Q. Xia, Y.Gao, On structure of directional derivative and kernel for quasidiferentiabIe functions, P.U.M.A., 4(1993), 211-226.
    [43]Z-Q Xia, M-Zh Wang and L-W Zhang, Directional derivative of a class of set-valued mappings and its application. Journal of Convex Analysis, 10(2003), 1-17.
    [44]X.M. hang, X.Q. Yang and G.Y. Chen, Theorems of the Alternative and Optimizations with Set-Valued Maps. Journal of Optimization Theory and Applications, 107(2000), 627-640.
    [45]袁亚湘,彭积明.ψ-函数的性质和它的应用.计算数学,1(1992),102-107.
    [46]张立卫,拟可微分析与优化中的某些新结果:核·方程·微分,博士论文,大连里工大学,1998.
    [47]L.W. Zhang Z.Q. Xia Y. Gao and M.Z. Wang Star-kernels and star-differentials of quasi differential analysis. Journal of Convex Analysis, 9(2002), 139-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700