拟可微分析与优化中某些问题的研究结果:核·凸化集·最优性条件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对拟可微函数的微分理论,分别从拟微分核和凸化集两个方面作了一些工作,
    并研究了约束拟可微优化的最优性条件.主要结果可概括如下:
    1. 第3章,在正交互补的假设条件下,给出了凸紧集的Demyanov差的两个运算公式(等
    式),该公式可用于求解和函数与极大(小)值函数的次微分与负的超微分的Demyanov
    差(拟微分的Demyanov和);针对拟可微函数拟微分的不唯一性,在次微分与负的超
    微分的Demyanov差与Minkowski差相等的条件下,研究了高维空间上的拟可微函
    数的拟微分核的性质,给出了一个特殊的具有高维核(高岩意义下)的拟可微函数类
    一次超可微函数;对于一类特殊的拟可微优化-D.C.优化,给出了其最速下降算法
    的收敛性分析.
    2. 第4章,对一般的拟可微函数引入了凸化核的概念,给出了判定一般拟可微函数为
    次可微的一个充分条件;利用一般正齐次函数的回收函数给出了拟可微函数的一个
    具体的凸化集,并证明了该凸化集即为拟微分的Demyanov和.
    3. 第5章,对于一般的带有等式、不等式及抽象约束的拟可微优化问题,在较弱的假
    设条件(存在一对拟微分,使得次微分与超微分分别上半连续)下,利用Ekeland原
    理给出了用Demyanov差表示的Fritz John型的必要最优性条件,并在具有极大秩
    的假设条件下,给出了KKT型的必要最优性条件;作为应用,给出了用Demyanov
    和表述的双层优化的最优性条件;在没有任何假设条件下,给出了用次线性泛函表
    述的Fritz John型的必要最优性条件.两个结果的共同点是最优性条件与超梯度的
    特殊选取无关.
This dissertation studies the calculus theory of quadifferentiable functions in two ways, one of which is from the way of quasidifferential kernels, the other one is from the way of convexificators, and the necessary optimality conditions for constrained quasidif-ferentiable optimization are discussed. The main results may be summarized as follows:1. Chapter 3 establishes two formulae (equality) of Demyanov difference of convex compact sets under the assumption of orthogonal complementarity, which are useful to compute Demyanov difference of subdifferential and negative superdifferential (Demyanov sum of quasidifferential) for the summation functions and the maximal (minimal) functions. In order to solve the quasidifferential uniqueness for quasidifferen-tiable functions, some properties of high dimensional kernels are given under the assumption that Demyanov difference of subdifferential and negative superdifferential is consistent with Minkowski difference of those, and a special class of quasidiffer-entiable functions with high demensional kernels (in the sense of Yan Gao), sub-superdifferentiable functions, is presented. For a special class of quasidifferentiable optimization-D. C. optimization, the convergence analysis of the steepest descent algorithm is obtained.2. Chapter 4 proposes the concept of convexificator kernels for quasidifferentiable functions, which can be used to tell whether a quasidifferentiable function is subdiffer-entiable. Concrete convexificators of quasidifferentiable functions are given by the recession functions of positively homogeneous functions. We can show that the convexificators are consistent with Demyanov sum of quasidifferentials.3. Chapter 5 is devoted to the study of constrained quasidifferentiable optimization with equality, inequality and abstract constraints. Under the mild assumption (existing a pair of quasidifferential such that the subdifferential and the superdifferential are upper semi-continuous), Fritz John necessary optimality conditions via Demyanov difference are obtained by Ekeland principle. As an application, necessary optimality conditions for bilevel programming are given. If the condition of being of maximal rank is added, KKT necessary optimality conditions can be established. Moreover, Fritz John necessary optimality conditions via sublinear functional are given without any assmuption. The above two results are both independent of the choose of the supergradients.
引文
[1] J. P. Aubin, Optima and Equilibria, Berlin, Spring-Verlag, 1989.
    [2] J. F. Bonnans, A. D. Ioffe and A. Shapiro, Expansion of exact and approximate solutions in nonlinear programming, Proceeding of the French-German Conference on Optimization D. Pallaschke (Editor), Lecture Notes in Economics and Mathematical Systems, Springer, Berlin, Germany, 1992, 103-117.
    [3] 陈志平, 徐成贤, 极小拟可微陈函数的二阶方法, 工程数学学报, 12:2 (1995), 84-88.
    [4] F. H. Clarke, Genaralized gradients and applications, Trans. Amer. Math. Soc,205(1975), 247-262.
    [5] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, N. Y., 1983.
    [6] F. H. Clarke, Y. S. Ledyaev and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Spring-Verlag, N. Y., 1998.
    [7] V. F. Demyanov, L. N. Polyakova and A. M. Rubinov, On one genaralization of the notion of subdifferential, in: Abst. of All-Union Conf. on Dynamic Control,Sverdlovsk, 1979, 79-84.
    [8] V. F. Demyanov, On a relation between the Clarke subdifferential and quasidifferential,Vestnik Leningrad University, 13(1981), 183-189.
    [9] V. F. Demyanov and A. M. Rubinov, On quasidifferentiable functional, Doklady Akademi Nauk SSSR 250(1980), 21-25. (Translated in Soviet Mathematics Doklady 21(1980), 14-17).
    [10] V. F. Demyanov and A. M. Rubinov, Some approaches to a nonsmooth optmization problem (In Russian), Econom. i Mat. Metody, 17(1981), 1153-1174.
    [11] V. F. Demyanov and A. M. Rubinov, Quasidifferential Calculus, Optimization Software, New York, 1986.
    [12] V. F. Demyanov and A. M. Rubinov, Constructive Nonsmooth Analysis, Approximation & Optimization, by Brosowski, Deutsch and Guddat (eds.), Verlag Peter Lang,Berlin, 1995.
    [13] V. F. Demyanov and V. Jeyakumar, Hunting for a smaller convex subdifferential,Journal of Global Optimization, 10(1997), 305-326.
    [14] V. F. Demyanov and A. M. Rubinov, On quasidifferential mappings, Math. Operationsforsch.Statist. Ser. Optimization 14(1983), 3-21.
    [15] V. F.Demyanov and A. M. Rubinov, Quasidifferentiability and Related Topics, Nonconvex Optimization and Its Applications 43, Kluwer Academic Publishers, Nether-
     lands, 2000.
    
    
    [16] V. F. Demyanov and A. M. Rubinov, Elements of quasidifferential calculus, In: Nonsmooth Problems of Optimization Theory and Control, V. F. Demyanov(Ed), Leninggrad University Press, Leningrad, 1982, 5-127.
    [17] V. F. Demyanov, Exhaustive families of approximations revisited, in: From Convexity to Nonconvexity, R. P. Gilbert, P. D. Panagiotopoulos and P. M. Pardalos(Eds),Kluwer Academic Publishers, Netherlands, 2001, 43-50.
    [18] V. F. Demyanov and Z. Q. Xia, Minimal quasidifferentials, Private discussion, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria, June,1984.
    [19] V. F. Demyanov, The rise of nonsmooth analysis: Its main tools, Cybernetics and Systems Analysis, 38:4 (2002), 527-547.
    [20] 邓明荣, 高岩, 拟微分的一个性质 , 运筹学杂志, 10:1 (1991), 65-67
    [21] P. Diamond, P. Kloeden, A. Rubinov and A. Vladimirov, Comparative properties of three metrics in the space of compact convex sets, Set-Valued Analysis 5(1997),267-289.
    [22] J. Dutta and S. Chandra, Convexificators, generalized convexity, and optimality conditions, Journal of Optimization Theory and Application, 113:1 (2002), 41-64.
    [23] I. Ekeland, On the variational principle, Journal of Mathematical Analysis and Applications 47(1974), 324-353.
    [24] Y. Gao, Difference of two convex compact sets and the relation between Clarke generalized Jacobi and quasidifferential, Acta Mathematica Scientia, 22:4(2002), 548-556,(in Chinese).
    [25] Y. Gao, The star-kernel for a quasidifferentiable function in one dimensional space (in Chinese), J. Math. Research Exposition 8(1988), 152.
    [26] Y. Gao, Representative of quasidifferentials and its formula for a quasidifferentiable function, Set-Valued Analysis, 2005, forthcoming.
    [27] Y. Gao, Z.-Q. Xia and L.-W. zhang, Kernelled quasidifferential for a quasidifferntiable function in two-dimensional space, Journal of Convex Analysis, 8:2(2001),401-408.
    [28] Y. Gao, D, Pallaschke and R. Urbanski, New minimality criteria for a pair of compact convex sets, Optimization, to appear.
    
    [29] Y. Gao, Demyanov difference of two sets and optimality conditions of lagrange multiplier type for constrained quasidifferentiable optimization, Journal of Optimization Theory and Applications, 104(2000), 377-394.
    
    [30] Y. Gao, Optimality conditions in Lagrange Multiplier type for quasidifferentiable optimization with equality and inequality constraints, OR Transaction, 3:4 (1999), 47-54.
    [31] Y. Gao, New Lagrange rules for constrained quasidifferentiable optimization, Vietnam Journal of Mathematics, 30:1 (2002), 55-69.
    [32] Y. Gao, The structrue of Clarke's generalized gradient and computing some of its element for the smooth comosition of max-type functions, OR Transactions, 1:2 (1997),12-19.
    [33] 高岩, 一类拟可微函数在一点处可微性判别及在不可微优化中的应用,东北重型机械学院学报, 21:3 (1997), 263-267.
    [34] 高岩, 邓明荣, 一类不可微优化的一阶最优性必要条件,东北重型机械学院学报,20:1 (1996), 58-61.
    [35] J. Gauvin, A necessary and sufficient regularity condition to have bounded multipliers in nonconcave programming, Mathmatical Programming, 12 (1977), 136-138.
    [36] J. Gauvin and F. Dubeau, Differential properties of the marginal function in mathematical programming, Mathematical Programming Study, 19 (1982), 101-119.
    [37] J. Gauvin and J. W. Tolle, Differentialstability in nonlinear programming, SIAM Journal on Control and Optimization, 15 (1977), 294-311.
    [38] B. M. Glover, On quasidifferentiable functions and non-differentiable programming,Optimization, 24 (1992), 253-286.
    [39] B. M. Glover, A generalized Farkas lemma with application to quasidifferentiable programming, Zeitschrift fur operations research, 26 (1982), 125-141.
    [40] B. M. Glover, Farkas lemma for difference sublinear systems and quasidifferentiable programming, Mathematial Programming, 63 (1994), 109-125.
    [41] E. G. Golshtein, Theory of Convex Programming, Translations of Mathematical Monographs, American Mathematical Society, Providence, Rhode Island, 36, 1972.
    [42] M. Handschug, On one class of equivalent quasidifferentials, Vestnik of Leningrad Univ., 8 (1989), 28-31.
    [43] M. Handschug, On equivalent quasidifferentials in the two-dimensional case, Optimization, 20:1 (1989), 37-43.
    [44] J. Haslinger and P. Neittaanmaki, Finite Element Approximation of Optimal Shape Design: Theory and Application, J. Wiley, Chichester, 1988.
    [45] J.B. Hiriart-Urruty, Miscellanies on nonsmooth analysis and optimization, in: Nondifferentiable Optimization:Motivations and Applications, by Demyanov and Pallaschke (eds), Proceedings of a IIASA Workshop on Nondifferentiable Optimization,Soppron, September 17-22/1984, Lecture Notes in Economics and Mathematical Sys-
     terns 255, Springer-Verlag Berlin, 1985, 8-24.
    
    [46] W. W. Hogan, Point-To-Set maps in mathematical programming, SIAM Review 15:3(1973), 591-603.
    [47] R. Horst, P. M. Pardalos and N. V. Thoai, Introduction to Global Optimization, 中译本, 清华大学出版社, 2003年.
    [48] R. Horst and H. Tuy, Global Optimization: Deterministic Approches, Springer Verlag,Heidelberg, 1993.
    [49] R. Horst and N. V. Thoai, DC programming: overview, Journal of Optimization Theory and Applications 103:1(1999), 1-43.
    [50] A. D. Ioffe, Approximate subdifferentials and applications I, The finite dimensional theory, Trans. Amer. Math. Soc, 281(1984), 389-416.
    [51] A. D. Ioffe, Necessary and sufficient conditions for a local minimum I: A reduction theorem and first order conditions, SIAM Journal on Control and Optimization, 17:2(1979), 245-250.
    [52] V. Jeyakumar and D. T. Luc, Nonsmooth calculus, minimality and monotonicity of convexificators, Journal of Optimization Theory and Applications, 101(1999), 599-621.
    [53] L. Kuntz and A. Pielczyk, The method of common descent for a certain class of quusidifferentiable functions, Optimization, 22:5 (1991), 669-679.
    [54] S. Kurcyusz, On the existence and nonexistence of Lagrange multipliers in Banach spaces, Journal of Optimization Theory and Applications, 20 (1976), 81-110.
    [55] C. Lemarechal, An extension of Davidon methods to nondifferentiable problems,Mathematical Programming Study, 3 (1975), 95-109.
    [56] C. Lemarechal, Nondifferentiable optimization, in: Handbooks in Operations Research & Management Science, Nemhauser, Rinnooy & Todd(Eds), Elsevier Science Publishers, North-Holland, 1989, 529-571.
    [57] C. Lemarechal, F. Oustry and C. Sagastizabal, The U— Lagrangian of a convex function, Transactions of the American Mathematical Society, 352:2 (2000), 711-729.
    [58] F. Lempio and H. Maurer, Differential stability in infinite-dimensional nonlinear programming, Applied Mathematics and Optimization, 6 (1980), 139-152.
    [59] E. S. Levitin, On differential properties of the optimal value of parametric problems of mathematical programming, Doklady Akademii Nauk SSSR, 224 (1975), 1354-1358.
    [60] 刘光中, 凸分析与极值问题 , 高等教育出版社, 1991.
    [61] B. Luderder, R. Rosiger, On Shapiro's Results in Quasidifferential Calculus, Mathematical Programming, 46(1990), 403-407.
    
    [62] B. Luderer, Directional derivative estimates for the optimal value function of a qua-sidifferentiable programming problem, Mathmatical Programming, 51 (1991) , 333-348.
    [63] B. Luderer, R. Rosiger and U. Wurker, On necessary minimum conditions in qua-sidifferential calculus: independence of the specific choice of quasidifferentials, Optimization, 22:5 (1991) , 643-660.
    [64] B. Luderer and J. Weigelt, A solution method for a special class of nondifferentiable unconstrained optimization problems, Computational Optimization and Applications, 24 (2003) , 83-93.
    [65] 卢华,拟可微函数在Banach空间中的进一步研究,贵州工学院学报,3(1989) ,69-79.
    [66] 卢华, 等价拟微分集类的有界性,贵州工学院学报, 21:1(1992) ,65-70.
    [67] 卢华, Banach空间中的局部Lipschitz函数与拟可微函数,贵州工学院学报,23:1 (1994) ,55-59.
    [68] M. M. Makela, Survey of the methods for nonsmooth optimization, in: Prom Convexity to Nonconvexity, R. P. Gilbert, P. D. Panagiotopouslos and P. M. Pardalos(Eds), Kluwer Academic Publishers, Netherlands, 2001, 177-191.
    [69] M. M. Makela, Survey of bundle methods for nonsmooth optimization, Optimization Methods and Software, 17:1 (2002) , 1-29.
    [70] 孟凡文,高岩,夏尊铨, 极大值函数的二阶方向导数,大连理工大学学报, 38:6 (1998) ,621-624.
    [71] K. Miettinen, M. M. Makela and T. Mannkikko, Optimal control of continuous casting by nondifferentiable multiobjective optimization, Computational Optimization and Applications, 11(1998) , 177-194.
    [72] M. A. Noor, Generalized variational-like inequalities, Mathl. Comput. Modelling, 27:3 (1998) , 93-101.
    [73] D. Pallaschke, S. Scholtes and R. Urbanski, On minimal pairs of compact convex sets, Bull.acad.Polon.Sci., Ser.Sci.Math., 39(1991) , 1-5.
    [74] D. Pallaschke and R.Urbanski, Some criteria for the minimality of pairs of compact convex sets, Zeitschrift fur Operations Research (ZOR) A37(1993) , 129-150.
    [75] D. Pallaschke and R.Urbanski, Reduction of quasidifferentials and minimal representations, Mathematical Programming 66(1994) , 161-180.
    [76] D. Pallaschke and R.Urbanski, Minimal pairs of compact convex sets, with applications to quasidifferential calculus, in: Quasidifferentiability and Related Topics by V.F. Demyanov and A. Rubinov (eds.), Nonconvex Optimization and its Applications, 43, Kluwer Academic Publishers, (2000) , 173-213.
    [77] D. Pallaschke and R.Urbanski, A continuum of minimal pairs of compact convex sets which are not connected by translations, 3(1996), 83-95.
    
    
    [78] J.-P. Penot, On the minimization of difference functions, Journal of Global Optimization, 12 (1998), 373-382.
    [79] L. N. Polyakova, Necessary conditions for an extremum of quasidifferentiable functions, Vestnik Leningrad Univ. Math. (English Transl.), 13(1981), 241-247.
    [80] L. N. Polyakova, On the Minimization of a Quasidifferentiable Function subject to Equality-type Quasidifferentiable Constraints, Math. Prog. Study, 29(1986), 44-55.
    [81] L. N. Polyakova, Extremal properties of the difference between convex functions, Vestnik St. Petersburg University, Mathematics, 32:4 (1999), 47-53.
    [82] L. S. Pontryagin, On linear differential games, II Doklady of USSR Acad. of Sci.,175:4 (1967), 764-766.
    [83] B. N. Pshenichnyi, Convex Analysis and Extremal Problems, in Russian, Nauka Publishers, Moscow, 1980.
    [84] R. T. Rockfellar, Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.
    [85] R. T. Rockfellar and R. J.-B Wets, Variational Analysis, Springer-Verlag, Berlin Heidelberg, 1998.
    [86] R. T. Rockfellar, Generalized directional derivatives and subgradients of nonconvex functions, Can. J. Math., 32(1980), 157-180.
    [87] R. T. Rockfellar, First and second-order epi-differntiabhty in nonlinear programming,Trans. Amer. Math. Soc, 307(1988), 75-107.
    [88] A. M. Rubinov and I. S. Akhundov, Difference of compact sets in the sense of Demyanov and its application to nonsmooth analysis, Optimization, 23(1992), 179-188.
    [89] A. M. Rubinov and V. F. Demyanov, Differences of convex compacta and metric spaces of convex compacta with applications: A survey, in: Quasidifferentiability and Related Topics, by Demyanov and Rubinov (eds.), Nonconvex Optimization and its Applications 43, Kluwer Academic Publishers, (2000), 263-296.
    [90] A. M. Rubinov, Difference of convex compact sets and their application in nonsmooth analysis, Nonsmooth Optimization Methods and Applications, Singapore, 1991, 366-378.
    [91] A. M. Rubinov and I. S. Akhundov On properties of the difference of convex compact sets in the sense of V. F. Demyanov, Izvestiya Azerb. Acad. f Sci., 1 (1989), 7-10.
    [92] J. J. Ruckmann and A.Shapiro, First-Order optimality conditions in generalized semiinfinite programming, Journal of optimization and applications, 101:3 (1999), 677-691.
    
    [93] S. Scholtes, Minimal pairs of compact convex bodies in two dimensions, Mathematika 39(1992), 267-273.
    [94] S. Scholtes, On convex bodies and some applications to optimization, Mathematical Systems in Economics, Frankfurt, Anton Hain Verlag, 1990.
    [95] A. Shapiro, Quasidifferential calculus and first-order optimization conditions in nonsmooth optimization, Mathematical Programming Study, 29(1986), 56-68.
    [96] A. Shapiro, On Optimality Conditions in Quasidifferentiable Optimization, SIAM.Journal of Control and Optimizaition, 22:4(1984), 610-617.
    [97] N. Z. Shor, Minimization methods for nondifferentiable functions, Springer-Verlag,Berlin, 1985.
    [98] G. E. Stavroulakis, Quasidifferential modelling of adhesive contact, Mathematical Computing Modelling, 28:4-8, 1998, 455-467.
    [99] M. Studniarski and R. Jeyakumar, A generalized mean-value theorem and optimality conditions in composite in nonsmooth minimization, Nonlinear Analysis TM & A,24:6(1993), 883-894.
    [100] 谭中富, 拟可微函数的二阶极值条件, 东北重型机械学院学报, 15:3 (1991), 269-273.
    [101] H. Tuy, D. C. Optimization: Theory, Methods, in: Handbook of Global Optimization, editors R. Horst and P. M. Pardalos, Kluwer, Dordrecht, 1994 .
    [102] A. Uderzo, Quasi-multipliers rules for quasidifferentiable extremum problems, Optimization, 51:6(2002), 761-795.
    [103] A. Uderzo, On the convexification and subdifferentiation of operation between Banach space, In Russian, Vestnik Sankt Perterbuskogo Universitea,3(1999), 47-52.
    [104] A. Uderzo, Convex approximators, convexifications, exhausters: applications to constrained extremum problems, In: Quasidifferentiability and related topics, V. F. De-myanov and A. M. Rubinov (Eds), Kluwer Academic Publishers, 2000, 297-327.
    [105] E. F. Voiton, Quasidifferentiale functions in the optimal constructon of electricalcircuits, In: Nonsmooth Problems of Control Theory and Optimization, V. F. De-myanov (Ed), Leninggrad University Press, Leningrad, 1982, 332-349.
    [106] T. V. Voorhis and F. A. Al-Khayyal, Difference of convex solution of quadratically constrained optimization problems, European Journal of Operational Research,148(2003), 349-362.
    [107] 万仲平, 纪昌明, 姜明启, 某类拟可微函数极小的一种光滑逼近法,数学杂志, 18(1998), 28-32.
    [108] X. Wang and V. Jeyakumar, A sharp Lagrangian multiplier rule for nonsmooth mathematical programming problems involving equality constraints, SIAM Journal on
     optimization, 10 (2000) , 1136-1148.
    
    [109] 王希云,张可村,拟可微B-preinvex规划的最优性条件,太原重型机械学院学报, 17:4(1996) ,277-282.
    [110] 王先甲,王秋庭,罗荣桂,拟可微函数拟微分的唯一性,武汉工业大学学报,17:2 (1995) ,23-27.
    [111] 王炜,夏尊铨,庞丽萍,uv理论在一类半无限最小化问题的应用,运筹学学报, 8:3(2004) ,29-38.
    [112] D. E. Ward, A constraint qualification in quasidifferentiable programming, Optimization, 22:5(1991) , 661-668.
    [113] 夏凌青, ε拟可微规划的Fritz John型条件和Kuhn-Tucker条件,焦作工学院学 报,15:2(1996) ,87-92.
    [114] Z.-Q. Xia, A note on the *-kernel for quasidifferntiable functions, WP-87-66, IIASA, Laxenburg, Austria, 1987.
    [115] Z.-Q. Xia, The *-kernel for quasidifferntiable functions, WP-87-89, IIASA, Laxenburg, Austria, 1987.
    [116] Z.-Q. Xia, On quasidifferential kernels, Demonstratio Mathematica, XXVI(1993) , 159-182.
    [117] Z.-Q. Xia, M.-Z. Wang and L.-W. Zhang, Directional derivative of a class of set-valued mappings and its application, Journal of Convex Analysis, 10(2003) , 1-17.
    [118] Z.-Q. Xia and Y. Gao, On structure of directional derivative and kernel for quasidifferentiable functions, Pure Mathematics and Applications, 4(1993) , 211-226.
    [119] Z.-Q. Xia, Generalized Fritz John Necessary Conditions for Quasidifferentiable Minimization, Approximation, Optimization and Computing: Theory and Applications, 1990, 325-327.
    [120] Z.-Q. Xia, Second-Order expansions for a class of quasidifferentiable functions, WP-87-068, IIASA, Laxenburg, Austria, 1987.
    [121] Z.-Q. Xia, An algorithm for minimizing a class of quasidifferentiable functions, Journal of Mathematical Research and Exposition, 11:4 (1991) , 479-486.
    [122] Z.-Q. Xia, On mean value theorems in quasidifferential calculus, Journal of Mathematics Research and Exposition, 4(1987) , 681-684.
    [123] J. Yao, The minimization method for quasidifferentiable optimization (in Chinese), Acta Scientiarum Naturalium Universitatis Jilin Ensis, 3(2001) , 7-10.
    [124] 姚静,一类特殊拟可微函数最优化问题的线性化算法,高等学校计算数学学报,2 (2002) ,135-144.
    [125] H.-Y. Yin, Constraint qualifications and dual problems for quasidifferentiable pro- gramming, Transactions of Nanjing University of Aeronautics and Astronautics, 19:2 (2002) , 199-202.
    
    [126] 殷洪友,张可村,一类拟可微优化问题的最优性条件,工程数学学报,13:3(1996) , 47-52.
    [127] 殷洪友,张可村,具有等式约束的拟可微优化的Fritz John型条件及其充分性, 高校应用数学学报,13:1(1998) ,99-104.
    [128] B. Yu, G.-X. Liu and G.-C. Feng, The aggregate homotopy method for constrained sequential Max-Min problems, Northeast Mathematics, 19:4 (2003) , 287-290.
    [129] L.-W. Zhang, Some new results in quasidifferentiable analysis and optimization: Kernel · Equation · Differntial, Ph.D. dissertation, Dalian University of Technology, Dalian, 1998, 8-29.
    [130] L.-W. Zhang, Z.-Q. Xia, Y. Gao and M.-Z. Wang, Star-Kernels quasidifferential for a quasidifferentiable functions in two-dimensional space, Journal of Convex Analysis, 9(2002) , 139-158.
    [131] L.-W. Zhang and Z.-Q. Xia, Newton-Type methods for quasidderentiable equations, Journal of Optimization Theory and Applications, 108:2 (2001) , 439-456.
    [132] 张立卫,张鑫,求解拟可微方程组的非精确牛顿法,经济数学,18:1(2001) ,74-81。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700