通信对抗中的现代信号处理技术应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息技术在现代军事领域占有越来越重要的地位,成为决定战争胜负的一个关键因素。信息战已经成为现代战争的主要作战形式之一。以控制电磁频谱为目的的电子战是信息战中最重要的核心部分。通信对抗是电子战的重要组成部分。
     应用于军事通信对抗的信号处理理论发展非常迅速,这得益于两个方面的动力:其一,军事通信的技术和手段不断更新,在数字化的基础上逐步走向软件化、智能化、宽带化和网络化,出现了自适应跳频、突发通信、宽带调制和复杂编码等新的实用技术,推动了具有很强针对性的信号侦测和处理领域的算法研究;其二,现代信号处理的三大热点——谱估计、高阶统计量方法、时频分析的理论和技术日臻完善,并逐渐应用于通信对抗领域。此外,全数字接收机和软件无线电技术的应用和发展为现代信号处理技术提供了应用平台。
     本文研究军事通信对抗中的信号处理问题。以构建对敌方电台进行侦收和指纹识别的系统为目的,本文提出了多种算法,仿真实现了复杂电磁环境中的电台信号提取、信号调制模式识别、扩频信号检测、扩频参数估计,并实现了电台的指纹识别。本文涉及非合作条件下的通信信号处理、非平稳信号分析与处理,并将高阶累积量方法、模式识别、聚类分析和神经网络等多个领域的技术用于信号的分析与处理。
     本文首先给出了研究背景、研究目标和系统总体方案,然后根据总体方案的各个模块在各章讨论了相关的算法、仿真实现和性能分析。
     接收到多个电台的混合信号后,首先通过信源数目估计、波达方向估计、波束形成和信号聚焦模块,将不同电台的信号分开,并将噪声、电台的暂态信号与通信信号分离。本文提出了改进的基于Gerschgorin理论的信源数目估计算法,提出了基于奇异性的信号聚焦算法,并仿真实现了信号预处理的全过程。
     其次,对通信信号,检测是否有扩频信号存在并估计扩频参数;如果是非扩频的一般调制信号,则识别其调制模式。本文提出了一种信号调制模式识别算法,能同时识别7种模拟调制信号(AM、DSB、USB、LSB、CW、FM、AM-FM信号)和7种数字调制信号(2ASK、4ASK、2FSK、4FSK、2PSK、4PSK、16QAM信号)。对直序扩频(DSSS)信号,本文提出了一种假设检验算法检测其存在性;利用DSSS信号的循环平稳特性,提出了估计DSSS信号符号周期的方法。对跳频(FH)信号,本文提出了基于多跳自相关的信号检测方法和基于时频分析的跳频参数估计方法。
     再次,利用暂态信号和通信信号的细微特征进行电台的指纹识别。对暂态信号,在没有训练样本的条件下,本文提出了综合聚类算法实现信号的盲分类;在有训练样本的情况下,提出了一种信号特征参数的提取方法,能够更好地表现不同信号类之间的差异,并利用神经网络实现了分类。此外,提出了分析通信信号细微特征的思路,并尝试用高阶统计量方法提取特征参数并识别电台。
Information technique plays more and more important role in advanced military fields. It becomes a key factor determining the war victory or defeat. Information warfare is now a main battle form of the modern war. Electronic warfare, whose intention is to control the electromagnetism, is the most important core subsystem of information warfare. Communications Counter-Measures is a main part of electronic warfare.
    Signal processing theory using in military Communications Counter-Measures has been making great progresses. This is by two reasons: the first, as the development of military communication technologies, it transit from digital to software implementation, intelligence, Broad Band implementation and network implementation. Many new technologies such as adaptive frequency hopping, burst communication, broadband modulation and complex coding accelerate the research about pertinence algorithms of signal sense and signal processing. The second, three hotspots of modern signal processing-spectrum estimation, High-Order Statistics (HOS) and time-frequency analysis theory become more and more consummately and being used in communication jamming and anti-jamming field. Besides, the usage and the development of the all-digital receiver and the software radio technology provide the application platform for modern signal processing technology.
    This dissertation discussed the signal processing theory and technology using in military Communications Counter-Measures. In order to construct a system to sense and recognize the enemy transceivers, we proposed many algorithms to emulate signal extraction, signal modulation recognition, blind spread spectrum signal detection and parameter estimation, and the fingerprint identification of the transceiver. It deals with the communication signal processing and non-stationary signal processing under non-cooperation situations. Many technologies such as HOS, pattern recognition, clustering and Neural Network (NN) are used here for signal processing.
    Research background, research goal and the whole system scheme are given in the first chapter, then all kinds of algorithms, emulations and performance analyses of the subsystems are given in chapters later.
    After we received the mixed signals of transceivers more than one, we estimate the number of signals and the directions of arrival (DOA), form the beams of one transceiver, focus the partition points between the noises, the transients generated when a transceiver turned on and the communication signals. Here we proposed two algorithms, one is a improved algorithm which can be used to estimate the number of signals based on the Gerschgorin theory, the other is a signal focusing algorithm based on the singularities of signals. The whole preprocessing procedure is emulated here.
    
    
    For communication signals, we detect if there exist spread spectrum signals such as Direct Sequence Spread Spectrum (DSSS) or Frequency-Hopped (FH) signals and estimate their parameters if the DSSS or FH signals exist. If there exist normal communication signals, we identify the modulation types. Here a modulation recognition algorithm is proposed which can be used to identify 7 kinds of analog modulations such as AM, DSB, USB, LSB, CW, FM, AM-FM and 7 kinds of digital modulations such as 2ASK, 4ASK, 2FSK, 4FSK, 2PSK, 4PSK, 16QAM. For DSSS signals, we proposed two algorithms, one is a hypothesis test algorithm that can be used to detect if there are DSSS signals, the other is a symbol period estimation algorithm using the cycle-stationary feature of DSSS signals. For FH signals, we proposed two algorithms too, one is a signal detection algorithm based multiple-hop autocorrelation (MHAC) of FH signals, and the other is a parameter estimation algorithm based on time-frequency analysis.
    The transients generated just when a transceiver turned on and the fine features of communication signals are regarded as the fingerprints of a transceiver. For transients, we proposed two algorithms, one is a improved clustering algorithm which can be used to classif
引文
[1] 张贤达.现代信号处理.北京,清华大学出版社,ISBN 7-302-01707-7,1994.
    [2] 张贤达,保铮.非平稳信号分析与处理.北京,国防工业出版社,ISBN 7-118-01941-0,1998.
    [3] 张贤达,保铮.通信信号处理.北京,国防工业出版社,ISBN 7-118-02443-0,2000.
    [4] 梁百川.信息战与信息国防.电子对抗,1996年第4期:43-47.
    [5] 王心福.从局部战争看电子战的作用.电子对抗技术,vol.14(4),1999:39-45.
    [6] 王燕,朱松.科索沃危机中的电子战.电子对抗技术,vol.14(4),1999:47-53.
    [7] 易正红.从北约空袭南联盟分析现代高技术战争中的电子战.电子对抗技术,vol.14(4),1999:21-25.
    [8] 韩春久.通信对抗战术的发展趋势.电子对抗技术,vol.18(1),2003:10-13.
    [9] 杨景曙,竺小松,张巨泉,祁建清.通信对抗装备的发展及关键技术.电子对抗技术,vol.18(1),2003:3-10.
    [10] 邓勇,陈刚,周一宇.软件无线电技术及其在电子战领域的应用研究.电子对抗,2001年第2期:16-20.
    [11] 肖先赐.混沌信号处理.电子对抗,2002年第2期:20-30.
    [12] M. Wax and T. Kailath, "Detection of signals by information theoretic criteria," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-33, no..2, 1985, pp. 387-392,.
    [13] M. Wax and I. Ziskind, "Detection of the number of coherent signals by the MDL principle," IEEE Trans. Acoust., Speech, Signal Processing, vol.37, no..8, pp.1190-1196, Aug. 1989.
    [14] Chia-Chang Li, "Estimating the number of signals by chi-square statistics," IEEE, 1988, pp. 2336-2339.
    [15] B. W. Dahanayake and K. M. Wong, "Detection: A new approach," IEEE, 1988, pp. 2773-2776.
    [16] K. M. Wong, Q. T. Zhang, J. P. Reilly and P. Yip, "A new criterion for the determination of the number of signals in high-resolution array processing," IEEE, 1988, pp. 2769-2772.
    [17] Jean-Jacques Fuchs, "Estimation of the number of signals in the presence of unknown correlated sensor noise," IEEE, 1989, pp.2684-2687.
    [18] Zhaoda Zhu, Simon Haykin and Xinping Huang, "Estimating the number of signals using reference noise samples," IEEE, 1991, pp. 575-579.
    [19] Weiguo Chen, Kon Max Wong and James P. Reilly, "Detection of the number of signals: A predicted eigen-threshold approach," IEEE Transactions of signal processing, vol.39, no. 5, pp.1088-1098, May 1991.
    
    
    [20] Qiang Wu and Kon Max Wong, "Array signal number detection for coherent and uncoherent signals in unknown noise environments," Acoustics, Speech, and Signal Processing, 1994. ICASSP-94, 1994 IEEE International Conference on, Volume: ⅳ, 19-22 April 1994 pp:Ⅳ/257-Ⅳ/260 vol.4
    [21] Bill. M. Radich and Kevin M. Buckley, "The effect of source number underestimation on MUSIC location estimates," IEEE Transactions of signal processing, vol.42, no.1, pp. 233-236, Jan 1994.
    [22] Hsien-Tsai Wu, Jar-Ferr Yang and Fwu-Kuen Chen, "Source number estimation using Gerschgorin disks," IEEE, 1994.
    [23] Harry Lee and Fu Li, "An eigenvector technique for detection the number of emitters in a duster," IEEE Transactions on Signal Processing, vol.42, no.9, pp.2380-2388, Sep 1994.
    [24] Hsien-Tsai Wu, Jar-Fen" Yang and Fwu-Kuen Chen, "Source number estimators using transformed Gerschgorin radii," IEEE Transactions on Signal Processing, vol.43, no.6, pp. 1325-1333, Jun 1995.
    [25] Qiang Wu and Kon Max Wong, "Determination of the number of signals in unknown noise environments-PARADE," IEEE Transactions on Signal Processing, vol.43, no. l, pp. 362-365, Jan 1995.
    [26] You Zhigang Li Xiaobo and Liu Deshu, "Study on the source number estimation using Gerschgorin radii," Proceedings of ICSP'98, pp:152-155.
    [27] Olivia Hu, Fuchun Zheng and Michael Faukner, "Detecting the number of signals using antenna array: A single threshold solution," FiSh ISSPA'99, pp.905-908, Brisbane, Australia, 22-25 Aug 1999.
    [28] Hsien-Tsai Wu and Chan-Li Chen, "A new Gerschgorin radii based method for source number detection," IEEE 2000.
    [29] Hsien-Tsai Wu, "Sample correlation method for source number detection," Proceedings of ICSP2000, pp.206-209.
    [30] Fu Li, Kwok-Wai Tam and Yuehua Wu, "Determining the number of sources in signal processing," Proceedings of ICSP2000, pp.413-420.
    [31] Masakiyo Suzuki, Hirofumi Sanada and Nobuo Nags, "Detection of signal number based on statistics of maximum likelihood," IEEE 2000, pp.733-736.
    [32] Jooshik Lee, Lickho Song and Hyungmoon Kwon, "Performance analysis of estimation methods for incoherently distributed source number," pp.1434-1438, IEEE 2001.
    [33] Xiaoli Lu, R. Lynn Kirlin and Jian Wang, "Joint estimation of target number and DOA using reversible jump MCMC in sea clutter," pp.346-349, IEEE 2002.
    [34] Ralph O.Schmidt, "Multiple emitter location and signal parameter estimation, " IEEE transactions on Antennas and Propagation, Vol.AP-34, No.3, March 1986.
    [35] Roy R, A Paulraj, T Kailath, "Esprit-A subspace rotation approach to estimation of parameters ofcisoids in noise, "IEEE Trans, ASSP, 1986, 34: 1340-1342.
    
    
    [36] Mati Wax, Ruby Tweg, "Direction of arrival tracking below the ambiguity threshold," IEEE Trans. On Aerospace and Electronic Systems, Vol. 36(2), Apr. 2000: 354-363.
    [37] Shah T. J, Wax M, Kaitath T., "On spatial smoothing for direction-of-arrival estimation of coherent signals," IEEE Trans ASSP, 1985, Aug, ASSP-33(4).
    [38] Gao ShiWei, Bao Zheng., "Data-based matrix decomposition technique for high-resolution array processing of coherent signals," Electronics Letters, 1987, 23(12): 643-645.
    [39] Williams R. T, Prasad S, Mahalanabis A. K, Sibul L. H., "An improved spatial smoothing technique for bearing estimation in a multipath environment," IEEE Trans ASSP, 1988, Apr., 36: 425-432.
    [40] Pillai S. U, Kwon B. H., "Forward-backward spatial smoothing techniques for the coherent signal identification," IEEE Trans ASSP, 1989, Jan., 37:8-15.
    [41] Du W, Kirlin R.L., "Improved spatial smoothing techniques for DOA estimation of coherent signals," IEEE Trans SP, 39(5): 1208-1210.
    [42] Kirlin R. L, Du W., "Improvement on the estimation of covariance matrices by incorporating cross-correlations," IEE Pro-F, 138(5), 1991, Oct.
    [43] Cadzow J. A., "A high resolution direction-of-arrival algorithm for narrow-band coherent and incoherent sources," IEEE Trans ASSP, 1988, 36: 956-979.
    [44]叶中付.空间平滑差分方法.通信学报,Vol.18 No.9,1997:1-7.
    [45] J. Capon, "High-resolution frequency-wave number spectrum analysis," Proc. IEEE, Vol. 57, Aug. 1969:1408-1418.
    [46] S. Haykin, "Adaptive filter theory," 3rd Englewood Cliffs, NJ: Prentice-Hall, 1996: 227-235.
    [47] Mcwhirter, Shepherd, "Systolic array processor for MVDR beamforming," IEE Proc. London, Part F, Vol. 136, 1989: 75-80.
    [48] Wax M, Anu Y, "Performance analysis of the minimum variance beamformer," IEEE Trans Signal Processing, Vol.44(4), 1996: 928-937.
    [49] Bresler Y, Reddy V. U, Kailath T, "Optimum beamforming for coherent signal and interferences," IEEE Trans Acoust, Speech, Signal Processing, Vol. 36(6), 1988: 833-843.
    [50] Bresler Y, Macovski A, "Exact maximum likelihood parameter estimation of superimposed exponential signals in noise," IEEE Trans Acoust, Speech, Signal Processing, Vol.34(5), 1966: 1081-1089.
    [51] Dogan M. C, Mendel J. M., "Cumulant-based blind optimum beamforming," IEEE Trans Aerospace and Electronic Systems, Vol.30(3), 1994: 722-741.
    [52] Lee T. S., Lin T. T., "Coherent interference suppression with eomplementally transformed adaptive beamformer," IEEE Trans Antennas and Propagation, Vol.46(5), 1998: 609-617.
    
    
    [53] Yeh C. C, Wang W. D., "Coherent interference suppression by an antennas array of arbitrary geometry," IEEE Trans Antennas and Propagation, Vol. 37(10), 1989: 1317-1322.
    [54] Lee T. S., Lin T. T., "Reception of coherent signals with steering restoral beamformer," Signal Processing, Vol. 72(3), 1999: 141-145.
    [55]赵永波,张守宏.存在相干信号时的最优波束形成.通信学报,vol.23 No.2,2002:113-121.
    [56] Stephane. Mallat, A Wavelet Tour of Signal Processing, Second Edition, Copyright◎ 1998, 1999 by Academic Press.
    [57] D.B. Shaw, W.Kinsner, "Fraetal modeling of radio transmitter transients for classification," Proc.IEEE Conference on Communications, Power, and Computing (Winnipeg), IEEE Cat. No.97CH36117, ISBN 0-7803-4147-3, pp. 305-312, May 1997.
    [58] W.Grieder, W.Kinsner, "Speech segmentation by variance fractal dimension," Proc. IEEE Can.Conf. Electrical & Computer Engineering, CCE&CE'94(Halifax), IEEE Cat. No.94THS023, pp.481-485, September. 1994.
    [59] D.B.Shaw, "Classification of transmitter transients using fractai meatures and probalilistic neural networks," M.Sc.Thesis, Department of Electrical and Computer Engineering, Univercity of Manitoba, 1997.
    [60] W.Kinsner, "A unified approach to fractal and muitifractal dimensions," Technical Report, DEL94-4. Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Manitoba, Canada, May 1994, pp. 40-45.
    [61] K.Pawelzik, H.G.Schuster, "Generalized dimensions and entropies from a measured time series," Phys.Rew.A35, pp.481-484, 1987.
    [62] Shue-Zen Hsue, Samir S.Soliman,. "Automatic Modulation Recognition of Digitally Modulated Signals". in Proc. MILCOM'89,Boston, MA, Oct. 1989, pp.37.4.1-37.4.5.
    [63] A.Polydoros and K.Kim, "On the Detection and Classification of Quadrature Digital Modulation in Broad-Band Noise," IEEE Trans. Com., Vol.38, No.8, August 1990, pp:1199-1211.
    [64] Y.Yang and S.Soliman, "Statistical Moments Based Classifier for MPSK Signals,". IEEE GLOBECOM'91 Phoenix AZ, Dec.1991.
    [65] Samir S.Soliman, Shue-Zen Hsue. "Signal Classification Using Statistical Moments.". IEEE TRANSACTIONS ON COMMUNICATIONS, Vol.40, No.5, MAY 1992, pp. 908-916.
    [66] A.K.Nandi and E.E.Azzouz, "Recognition of Analogue Modulations," Signal Process., Vol.46, No.2, pp.211-222, Oct.1995.
    [67] E.E.Azzouz and A.K.Nandi, "Automatic Identification of Digital Modulations," Signal Processing, Vol.47, No.1, pp.55-69, Nov.1995.
    [68] Asoke K.Nandi and E.E.Azzouz, "Algorithms for Automatic Modulation Recognition of Communication Signals," IEEE TRANSACTIONS ON COMMUNICATIONS, Vol.46, No.4, pp.431-436, April 1998.
    
    
    [69] Y.T.Chan, J.W.Plews and K.C.Ho, "Symbol Rate Estimation by The Wavelet Transform," IEEE International Symposium on Circuits and Systems, June 9-12, 1997, Hong Kong, pp.177-180.
    [70] Liang Hong and K.C.Ho, "Identification of Digital Modulation Types Using The Wavelet Transform," in Proc. IEEE Millcom'99, Vol.1, 31 Oct-3 Nov. 1999, pp:427-431.
    [71] K.C.Ho, W.Prokopiw and Y.T.Chan, "Modulation Identification of Digital Signals by The Wavelet Transform," IEE Proc-Radar, Sonar Navig., Vol.147, No.4, August 2000.
    [72] Liang Hong and K.C.Ho, "BPSK And QPSK Modulation Classification With Unknown Signal Level," in Proc. IEEE MILCOM'2000., Los Angeles, California, Oct 2000, pp976-980.
    [73] Liang Hong and K.C.Ho, "An Antenna Array Likelihood Modulation Classifier For BPSK and QPSK Signals," in Proc. IEEE MILCOM'2002, 7-10 Oct.2002, pp:647-651.
    [74] Liang Hong and K.C.Ho, "Classification of BPSK and QPSK Signals With Unknown Signal Level Using The Bayes Technique," in Proc. IEEE ISCAS'2003, 25-28 May 2003, Vol.4, pp:1-4.
    [75]胡延平,李广森,李纲,皇甫堪.利用参数统计方法白动识别数字调制信号.通信学报,Vol.23 No.2,Feb 2002,pp58-65.
    [76] Y. T. Chan, J. W. Plews, K. C. Ho, "Symbol rate estimation by the wavelet transform," IEEE International Symposium on Circuits and Systems, Hong Kong, June 9-12, 1997: 177-180.
    [77]纪勇,徐佩霞.基于小波变换的数字信号符合率估计.电路与系统学报,Vol.8 No.1,Feb 2003.pp12-15.
    [78]陈卫东,杨绍全,董春曦,徐松涛.多径信道中MPSK信号的调制识别算法.通信学报,Vol.23,No.6,June 2002,pp14-21.
    [79] Raymond.L.Picholtz, Donald L.Schilling, Laurence B. Milstein, "Theory of Spread-Specturm Communications-A tutorial," IEEE Trans. on Communications, Vol COM-30,No.5,May 1982: 855-884.
    [80] Gardner W. A., "Signal interception: a unifying theoretical framework for feature detection," IEEE Trans. On Comm., 36, 1988: 897-906.
    [81] P. C. J Hill, E. R. Adams & V. E. Comley, "Techniques for detecting & characterizing covert communication signals," European Conference on Security and Detection, 28-30 April 1997, Conference Publication No. 437, IEE, 1997: 57-60.
    [82] Ernest R Adams & Peter C J Hill, "Detection of direct sequence spread spectrum signals using higher-order statistical processing," 0-8186-7919-0/97 IEEE, 1997:3849-3852.
    [83] Ernest R Adams, Marndouh Gouda & Peter C J Hill, "Statistical techniques for blind detection & discrimination of M-Sequence codes in DS/SS systems," 0-7903-4281-Ⅹ/97 IEEE 1998: 853-857.
    [84]杨超斌,邱玲,朱近康.一种直扩通信信号快速检测识别方法.电子学报,Vol.27 No.7 1999.
    
    
    [85] 赵旦峰,赵春晖,宋朝玲,路春.循环谱理论在MSK扩频信号检测与识别中的应用.哈尔滨工程大学学报,Vol.22,No.5,2001:62-64.
    [86] Burel, G., Bouder. C., "Blind estimation of the pseudo-random sequence of a direct sequence spread spectrum signal," MILCOM 2000. 21st Century Military Communications Conference Proceedings, Vol. 2, 2000: 967-970.
    [87] Burel, G., Bouder, C., Berder, O., "Detection of direct sequence spread spectrum transmissions without prior knowledge," Global Telecommunications Conference. GLOBECOM'01, IEEE, Vol.1, 2001:236-239.
    [88] John F. Kuehls and Evaggelos Geraniotis, "Presence Detection of Binary-Phase-Shift-Keyed and Direct-Sequence Spread-Spectrum Signals Using a Prefilter-Delay-and-Multiply Device," IEEE Journal On Selected Areas In Communications, Vol. 8, No. 5, June 1990: 915-933.
    [89] John G Proakis, "Digital communications," Third Edition, Mac Graw Hill International Editions, 1995.
    [90] D.T. Magill, E D..Natali, G. P. Edwards, "Spread-Spectrum technology for commercial applications," Proceedings of the IEEE, vol. 82, No. 4, April 1994: 572-584.
    [91] 张大琪,周正中.低信噪比直扩信号伪码周期检测的谱方法.仪器仪表学报,Vol.22,No.3,2001:43-44.
    [92] P. C. J. Hill and M. E. Ridley, "Blind estimation of direct-sequence spread spectrum m-sequence chip codes," IEEE on 6th Int. Symp. on Spread-Spectrum Technique & Application., New Jersey, USA, Sept. 6-8, 2000: 305-309.
    [93] Larry W, Nemsick, Evaggelos Geraniotis, "Adaptive Muitichannel Detection of Frequency Hopping Signals," IEEE Transactions on Communications, Vol.40, No.9, Sept. 1992.
    [94] J.D.Edeil, "Wideband, Noncoherent, Frequency Hopped Waveforms and Their Hybirds in Low Probability of Intercept Communications," Naval Research Laboratory, Washington D. C., Report 8025, Nov.1976.
    [95] I.E.Miller, J.S.Lee, "Frequency Hopping Signal Detection Using Partial Band Coverage," IEEE Transaction on Aerospace and Electronic Systems, Vol.29, No.2, 1993.
    [96] A.Polydoros and K.T.Woo, "LPI Detection of Frequency Hopping Signal Using Autocorrelation Techniques," IEEE Selected Areas in Communications, Vol. SAC-3, sept, 1985: 714-726.
    [97] S.Hinedi and A.Polydoros, "DS/LPI Autocorrelation Detection in Noise Plus Random-Tone Interference," IEEE Transaction on Communications, June 1990:805-817.
    [98] Char-Dir Chung, Andreas Polydoros, "Parameter Estimation of Random FH signals Using Autocorrelation Techniques," IEEE Trans on Communications ,Vol.43, No. 2/3/4, 1995: 1097-1106.
    
    
    [99]Char-Dir Chung, Andreas Polydoros, "Detection and Hop-Rate Estimation of Random FH Signals via Autocorrelation Technique," Military Communications Conference, Vol. l, 1991: 345-349.
    [100]盛骤,谢式千,潘承毅.《概率论与数理统计》(第二版).杭州,浙江大学出版社,1989.
    [101](美)范特里斯(H.L.Van Trees)著.毛士艺等译.《检测、估计和调制理论 卷Ⅰ 检测、估计和线性调制理论》.北京,国防工业出版社,1983年6月.
    [102]S. Barbarossa, "Analysis of multicomponent LFM signals by a combined Wigner-Hough transform," IEEE Trans. on SignalProcessing. Vol. 43, No. 6, June 1995.
    [103]S. Barbarossa. "Analysis of nonlinear FM signals by pattern recognition of their time-frequency representation," IEEE Signal Processing Letters, Vol.3, No.4, April 1996.
    [104]S. Barbarossa, "Parameter estimation of spread spectrum frequency hopping signals using time-frequency distributions," Signal Processing Advances in Wireless Communications, First IEEE Signal Processing Workshop on, 1997, pp.213-216,.
    [105]F.Auger and P.Flandrin, "Improving the readability of time-frequency and time-scale representations by the reassignment method," IEEE Trans. Signal Processing, Vol, 43, No. 5, May 1995. pp.1068-1089.
    [106]Monique.P.Fargues and Howard EOverdyk, "Wavelet-based detection of frequency hopping signals," Signals, Systems & Computers, 1997. Conference Record of the Thirty-First Asilomar Conference on, Vol.1, 1997, pp. 515-518,.
    [107]Davidson Ian. "Understanding K-Means No-hierarchical clustering,", Suny Albany-Technical Report 02-2.
    [108]Faber Vance. "Clustering and the Continuous k-Means Algorithm," Los Alamos Science, 1994, 22.
    [109]Berkhin Pavel. "Survey of Clustering Data Mining Techniques," Technical Report of Accrue Software, Inc.
    [110]Ray Siddheswar, Turi Rose H. "Determination of Number of Clusters in K-Means Clustering and Application in Colour Image Segmentation," Technical Report of Helsiniki University of Technology, Finland.
    [111]Duda R O, Hart P E. "Pattern Classification and Scene Analysis," New York: John Wiley and Sons, 1973.
    [112]Thiesson B, Meek C, Chickering D, Heckerman P. "Learning Mixture of Bayesian Networks," Microsoft Reserarch Technical Report TR-97-30, Redmond, WA, 1997.
    [113]Bradley P S, Mangasarian O L, Street W N. "Clustering via Concave Minimization," In Advances in Neural Information Processing SystemiC]. MIT Press, 1997, 368-374.
    [114]Bradley P, Fayyad U M, C A. "Refining Initial Points for KM Clustering," Microsoft Technical Report MSR-TR-98-36, 1998-05.
    [115]Aristidis Likas, Nokos Vlassis and Jakob Verbeek, "The global k-means clustering algorithm,".
    
    
    [116]Greg Hamerly and Charles Elkan, "Alternatives to the k-means algorithm that find better clusterings,".
    [117]Toonstra, J.; Kinsner, W., "A radio transmitter fingerprinting system ODO-1," Electrical and Computer Engineering, 1996. Canadian Conference on, Volume: 1, 1996 Page(s): 60-63 vol. 1.
    [118]Mao, P.L.; Aggarwal, R.K, "A novel approach to the classification of the transient phenomena in power transformers using combined wavelet transform and neural network Power Delivery," IEEE Transactions on, Volume: 16 Issue: 4, Oct. 2001, Page(s): 654-660.
    [119]Donoho, D.L., "De-noising by soft-thresholding.Information Theory," IEEE Transactions on, Volume: 41 Issue: 3, May 1995,Page(s): 613-627.
    [120]Santoso, S., Powers, E.J., Grady, W.M., Parsons, A.C., "Power quality disturbance waveform recognition using wavelet-based neural classifier, Ⅱ. Application Power Delivery," IEEE Transactions on, Volume: 15 Issue: 1, Jan. 2000 Page(s): 229-235.
    [121]J. S.Mallat, "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Trans, Pattern Anal.Machine Intell. 11 (7)(1989)674-693.
    [122]袁曾任.人工神经元网络及其应用.北京,清华大学出版社,ISBN 7-302-03580-6,1999年第1版:pp66—131.
    [123]穆世强.雷达信号脉内细微特征分析.电子对抗技术,Vol.6,No.5,1991:28—37.
    [124]范金平,刘文林.雷达信号细微特征提取算法研究.电子对抗,1992年第3期,1992:28—34.
    [125]魏东升.雷达信号脉内细微特征的时频分析.电子对抗,1993年第4期,1993:7—19.
    [126]张庆荣,单佩钧.雷达信号脉内特征分析的谱相关方法.电子对抗,1993年第4期,1993:1—6.
    [127]贾朝文,张超,徐汉林.雷达弱信号提取的参数实现方法.电子对抗技术,Vol.16,No.1,2001:6—10.
    [128]朱振波,何明浩.基于中频直接采样正交相干检波技术的信号脉冲特征提取.电子对抗技术,Vol.17,No.4,2002:3—7.
    [129]刘刚.雷达指纹分析的基本理论探讨.电子对抗,2002年第6期,2002:1—6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700