自适应单载波、多载波调制中信号盲检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自适应传输技术是新一代移动通信和智能传输的核心技术之一。自适应调制是根据信道的实时状态以及业务的不同特性动态调整传输参数,从而可以充分挖掘系统的传输潜力,提高频谱利用率,以获得最大的传输容量和最高的可靠性。自适应传输中采用信号盲检测技术对信号的传输参数进行检测以实现收发双方的信息互通,可以节省信令的开销,对提高接收机的智能化水平有重要的研究意义。本文基于智能化传输的思想,对自适应调制中的信号盲检测技术进行了探索性的研究。本文的主要内容和成果如下:
     1.研究了自适应调制中波特率,信噪比和载波相位等参数的估计算法;提出一种基于修改的欧几里得算法的波特率估计算法,这种算法可以对突发分组的波特率做出准确估计;提出一种星型QAM信号的信噪比估计算法,在中等信噪比条件下,具有较好估计性能。
     2.对自适应单载波和多载波调制中的调制方式盲检测算法进行了研究;在自适应单载波调制中,研究了窄带信道下的AQAM调制原理和AQAM调制最佳星座图结构;在Rayleigh信道下和高斯信道下,提出一种基于高阶累积量的AQAM和ADPSK调制方式盲检测算法,算法具有良好的检测性能。对于自适应多载波调制,我们研究了OFDM调制和基于盲检测辅助的自适应OFDM的原理,提出一种在频率选择性衰落信道中AOFDM信号子信道调制方式盲检测算法,并与已有的文献进行了比较,证明了算法的有效性和稳健性。
     3.研究了载波同步和码元定时同步与调制方式盲检测算法的关系;以自适应单载波中高阶累积量调制方式盲检测算法为例,对于载波同步误差引起的频偏问题,提出一种基于频偏稳健的MDPSK信号调制方式盲检测算法;对于未知调制方式信号的定时同步问题,提出一种盲定时估计算法,该算法可以估计MDPSK和MQAM信号的定时同步信息,实现数字信号的同步分类;提出了一种基于调制方式盲检测的自适应接收机结构,把调制方式盲检测,信噪比估计和同步解调联合起来进行,实现调制方式随信道质量而自适应变化的信号的正确接收。
     4.在调制识别分类器的设计上,首次将统计学习理论的新成果——支撑矢量机应用在通信信号调制识别中;讨论了分类特征的选取,把接收信号的小波特征或高阶统计量特征作为识别特征,利用支撑矢量机分类器实现信号的调制识别。支撑矢量机把各个识别特征映射到一个高维空间,并在高维
    
    空间中构造最优识别超平面分类数据,实现通信信号的调制识别。该方法
    在信噪比变化范围较大的情况下,采用较少的训练数据就可以达到令人满
    意的识别正确率。
As one of the key techniques of new generation mobile communication systems and broadband wireless communications systems, "Adaptive transmission" technique can exploit potential channel transmission ability sufficiently so that it enables the systems to reach the maximum transmission capacity and reliability by dynamically adjusting transmission parameters according to channel estimation and traffic QoS requirement.
    The most important character of the next generation mobile system will be smart transmission whose function module will be implemented by smart processing unit. This paper deals with the blind detection techniques in adaptive transmission. The main research works and results are listed as follows.
    1. Methods of estimating baud rate, Signal to Noise Ratio (SNR) and reference phase are investigated. A modified Euclidean algorithm is proposed to estimate baud rate of the burst packets. A cumulant based algorithm of estimating SNR of star-QAM is proposed which has better estimation performance in medium scope of SNR.
    2. The blind modulation detection algorithms in adaptive single- and multi-carrier modulation are studied. The principles of adaptive star-QAM and the optimum constellation of star QAM are given. In adaptive single-carrier modulation, a blind modulation detection algorithm based on Higher Order Cumulants (HOC) for AQAM and APSK is proposed. The excellent detection performance of algorithm is evaluated in Gaussian and narrow-band Rayleigh fading channel. In adaptive multi-carrier modulation, the principle of blind detection assisted adaptive OFDM (AOFDM) is given and a blind modulation detection algorithm is proposed for AOFDM in frequency selective fading channel. The performance of the algorithm is compared with the available algorithms and the effectiveness and robustness of the blind detection algorithm are proved through simulation.
    3. Take the HOC based blind modulation detection algorithm as an example, the relationship between the blind modulation detection algorithm and synchronization is investigated. An unproved detection algorithm robust to frequency offset is proposed which solves the problem caused by the error in
    
    
    carrier synchronization. How to synchronize a received signal with unknown modulation type is studied and a blind algorithm to estimate symbol timing of the signals with unknown modulation type is presented. The algorithm finds the best samples for the unknown received signals and realizes coherent recognition of modulations. An adaptive receiver structure is proposed which combines the blind modulation detection, SNR estimation, synchronization and demodulation. The receiver can properly receive the adaptive modulated signals.
    4. The design of classifier is dealt with and the support vector machine (SVM), a new result of statistics learning theory, is used in modulation recognition firstly. The choice of classification feature is analyzed. The classification feature vectors are extracted from Multi-level Wavelet Decomposition (MWD) and HOC of the received signals. SVM maps input vectors nonlinearly into a high dimensional feature space and constructs the optimum separating hyperplane in the spade to realize modulation recognition. Moreover, this method is robust to the variety of SNR and avoids overfitting and local minimum in neural nelwork. The percenlage of correcl idenlificalion for signals is salisfied wilh the fewer training data.
引文
[1] Jorgen Bach Andersen, et al., Propagation measurements and models for wireless communication channels, IEEE Commun. Mag. 1995 33(1):42:49
    [2] Gerard J. M. Janssen, et al., Wideband indor channel measurements and BER analysis of frequency selective multipath channels at 2.4, 4.75, and 11.5 GHz, IEEE Trans. Commun. 1996 44(10): 1272-1287
    [3] Dongsoo Har, et al., Path-Loss prediction model for microcells, IEEE Trans. Veh. Tech. 1999 48(5): 1453-1462
    [4] S. Y. Tan, et al., Multipath delay measurements and modeling for interfloor wireless
    
    communications, IEEE Trans. Veh. Tech. 2000 49(4): 1334-1341
    [5] Homayoun Hashemi, et al., Impulse response modeling of indoor radio propagation channels, IEEE JSAC 1993 11(7): 967-977
    [6] J. Mitola. Software radios: survey, critical evaluation and future directions. Proceeding of the National Telesystems Conference. 1992, May, pp 13.15-13.23.
    [7] J. Mitola. Software Radios, IEEE Communications Magazine, 1995,33(5): 24-25.
    [8] J. Mitola. Software radio architecture. IEEE Communications Magazine, 1995, 33(5): 26-39.
    [9] J. Mitola. Software radio architecture: a mathematical perspective. IEEE Journal on SAC. 1999, April, 17(4): 514-538.
    [10] Ascheid G, Oerder M etc. An all digital receiver architecture for bandwidth efficient transmission at high data rates. IEEE Trans. Commun., 1989, 37(8): 804-813
    [11] J. P. Cummings, Software Radios for airborne Platforms. IEEE Journal on SAC. 1999, April, 17(4): 732-747.
    [12] L. Hanzo, C. H. Wong, M. S. Yee, Adaptive Wireless Transceivers: Trubo-coded, Turbo-Equalized and Space-Time Coded TDMA, CDMA and OFDM System, England, John Wiley IEEE press, 2002
    [13] J. F. Hayes, Adaptive feedback communications, IEEE Trans. Commun., Vol.16, No.l, pp.29-34, 1968
    [14] W. T. Webb. QAM: The modulation scheme for future mobile radio communications. Electron. & Commun. Eng. J., 1992(8): 167-176.
    [15] W. T. Webb. Modulation Methods for PCNs. IEEE Communications Magazine. 1992, 30(12): 90-95.
    [16] W. T. Webb, R.Steele. Bandwidth-efficient QAM schemes for Rayleigh fading channels. IEE Proc. Part I, 1991, 138(3): 169-175.
    [17] R. Steele and W. T. Webb. Variable rate QAM for data transmissions over mobile radio channels. Keynote Paper, Wireless'91, Calgry, Alber, June 1991.
    [18] W. T. Webb and R. Steele. Variable rate QAM for mobile radio. IEEE Trans. Commun., 1995,43(7) :2223-2230.
    [19] A. Goldsmith, P. Varaiya, Capacity of fading channels with channel side information, IEEE Trans. Information Theory, vol.43, pp. 1986-1992, Nov. 1997,
    [20] M. S. Alouini, A.J. Goldsmith, Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combing technique, IEEE Trans. Vehicular Technology, vol.48, pp. 1165-1181, July 1999
    [21] S. Otsuki, S. Sampei and N. Morinaga, Square QAM adaptive
    
    modulation/TDMA/TDD ststem using modulation level estimation with Walsh function, Electronics Letters, vol. 31, pp. 169-171, February 1995
    [22] V. Lau and S. Maric, Variable rate adaptive modulation for DS-CDMA, IEEE Trans. on Commun., vol. 47, pp. 577-589, April 1999.
    [23] T. Ue, S. Sampei and N. Morinaga, Symbol rate controlled adaptive modulation/TDMA/TDD for wireless personal communication system, IEICE Transactions on Communication, vol. E78- B, pp. 1117-1124, August 1995
    [24] H. Matsuoka, S. Sampei, N. Morinaga, and Y. Kamio, "Adaptive modulation system with variable coding rate concatenated code for high quality multi-media communications systems," in Proceedings of IEEE VTC'96, vol. 1, (Atlanta, GA, USA), pp. 487-491, IEEE, 28 April-1 May 1996.
    [25] A. J. Goldsmith and S. G. Chua, "Adaptive coded modulation for fading channels," in Proceedings of IEEE International Conference on Communications, vol. 3, (Montreal, Canada), pp. 1488-1492, 8-12 June 1997.
    [26] S. X. Ng, C. H. Wong and L. Hanzo, Burst-by-Burst Adaptive Decision Feedback Equalized TCM, TTCM, BICM and BICM-ID, International Conference on Communications(ICC), pp. 3031-3035, June 2001
    [27] S. Sampei, N. Morinaga, and Y. Kamio, "Adaptive modulation/TDMA with a BDDFE for 2 mbit/s multi-media wireless communication systems," in Proceedings of IEEE Vehicular Technology Conference (VTC'95), vol. 1, (Chicago, USA), pp. 311-315, IEEE, 15-28 July 1995
    [28] M. Yee and L. Hanzo, "Radial Basis Function decision feedback equaliser assisted burst-by-burst adaptive modulation," in Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), (Rio de Janeiro, Brazil), 5-9 December 1999
    [29] T. Ikeda, S. Sampei, and N. Morinaga, "TDMA-based adaptive modulation with dynamic channel assignment (AMDCA) for high capacity multi-media microcellular systems," in Proceedings of IEEE Vehicular Technology Conference, (Phoenix, USA), pp. 1479-1483, May 1997
    [30] M. Naijoh, S. Sampei, N. Morinaga, and Y. Kamio, "ARQ schemes with adaptive modulation/TDMA/TDD systems for wireless multimedia communication systems," in Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), (Helsinki, Finland), pp. 709-713, 1-4 September 1997
    [31] Sanjiv nanda, et al., Performance of PRMA: a packet voice protocol for cellular
    
    systems, IEEE Trans. Veh. Tech. 1991 40(3): 584-598
    [32] D. J. Goodman, R. A. Valenzuela, et al., Packet reservation multiple access for local wireless communications, IEEE Trans. on Comp., 37(1989)8, 885-890
    [33] Sanjiv Nanda, Stability evaluation and design of the PRMA joint voice data system, IEEE Trans. on Comm., 42 (1994)5, 2092-2104
    [34] Giuseppe Bianchi, Flaminio Borgonovo, et al., C-PRMA: A centralized packet reservation multiple access for local wireless communications, IEEE Trans. on Veh. Technol., 46(1997)2, 422-435
    [35] Romano Fantacci, Francesco Innocenti, Performance evaluation of a modified PRMA protocol for joint voice and data packet wireless networks, IEEE Trans. on Comm., 47(1999)12, 1837-1848
    [36] Romano Fantacci, et al., Performance evaluation of a reservation TDMA protocol for voice/data transmission in personal communication networks with nonindependent channel errors, IEEE JSAC 2000 18(9): 1636-1646
    [37] Masayuki Kawagishi, et al., A novel reservation TDMA based multiple access scheme using adaptive modulation, IEEE Veh. Tech. Conf. 1998 112: 116
    [38] Takehiro Ikeda, et al., TDMA-based adaptive modelation with dynamic channel assignment for high-capacity communication systems, IEEE Trans. Veh. Tech. 2000 49(2): 404-412
    [39] Hongbing zhang, et al., Adynamic reservation protocol for prioritized multirate mobile data services based on DECT air interface, IEEE Trans. Veh. Tech. 2000 49(2): 672-676
    [40] Lajos Hanzo, et al., Apacket reservation multiple access assisted cordless telecommunication scheme, IEEE Trans. Veh. Tech. 1994 43(2): 234-244
    [41] I. Kalet, "The multitone channel," IEEE Transactions 9n Communications, vol. 37, pp. 119-124, February 1989
    [42] A. Czylwik, "Adaptive OFDM for wideband radio channels," in Proceeding of IEEE Global Telecommunications Conference, Globecom 96, (London, UK), pp. 713-718, IEEE, 18-22 November 1996
    [43] P. Chow, J. Cioffi, and J. Bingham, "A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels," IEEE Transactions on Communications, vol. 48, pp. 772-775, 1995
    [44] L. Hanzo, W. Webb, and T. Keller, Single- and Multi-carrier Quadrature Amplitude Modulation. New York, USA: IEEE Press-John Wiley, April 2000
    [45] T. Keller and L. Hanzo, "Adaptive orthogonal frequency division multiplexing
    
    schemes," in Proceeding of ACTS Mobile Communication Summit' 98, (Rhodes, Greece), pp. 794-799, ACTS, 8-11 June 1998.
    [46] C. Wong, T. Liew, and L. Hanzo, "Turbo coded burst by burst adaptive wideband modulation with blind modemmode detection," in Proceeding of ACTS Mobile Communication Summit '99, (Sorrento, Italy), pp. 303-308, ACTS, 8-11 June 1999
    [47] S. Otsuki, S. Sampei, and N. Morinaga, "Square QAM adaptive modulation/TDMA/TDD systems using modulation level estimation with Walsh function," Electronics Letters, vol. 31, pp. 169-171, February 1995
    [48] J. Torrance and L. Hanzo, "Demodulation level selection in adaptive modulation," Electronics Letters, vol. 32, pp. 1751-1752, 12 September 1996
    [49] 李夏,移动通信中自适应传输技术研究,西安电子科技大学博士学位论文,2002,11
    [50] scheid, G.; Oerder, M.; Stahl, J.; Meyr, H., An all digital receiver architecture for bandwidth efficient transmission at high data rates, IEEE Trans. on Comm., vol. 37, No. 8, pp. 804 -813, 1989
    [51] Chuang J, Sollenberger N. Burst Coherent Demodulation with Combined Symbol Timing, Frequency Offset Estimation, and Diversity Selection[J]. IEEE Trans. on Comm., 1991, 39(7): pp. 1157-1164.
    [52] Krishna. Balachandran., Rate adaptation over mobile radio channels using channel quality information, Proc. GLOBECOM, Nov. 1998
    [53] Krishna. Balachandran., Channel quality estmation and rate adaptation for cellular mobile radio, IEEE JSAC, July 1999
    [54] M. Andersin, et al., Subspace Based Estimation of the Signal to Interference Radio for TDMA Celluar Systems, IEEE, Veh. Tech. Conf., 1996, 1155-1159
    [55] M. Ttlrkboylari., An efficient Algorithm for Estimating the Signal to Interference Radio in TDMA Cellular Systems, IEEE Transaction on Communications, 1998 46(6): 728-731
    [56] M. K. Simon and A. Mileant, "SNR estimation for the baseband as-sembly," Jet Propulsion Lab., Pasadena, CA, Telecommunications and Data Acquisition Prog. Rep. 42-85, May 15, 1986
    [57] B. Shah and S. Hinedi, "The split symbol moments SNR estimator in narrow-band channels," IEEE Trans. Aerosp. Electron. Syst., vol. AES-26, pp. 737-747, Sept. 1990
    [58] B. Shah and J. K. Holmes, "Improving the Split-Symbol Moments SNR Estimator," Jet Prooulsion Lab., Pasadena, CA, Interoffice Memo. 3338-90-223, Dec. 19, 1990
    
    
    [59] D. R. Pauluzzi, "Signal-to-Noise Ratio and Signal-to-Impairment Ratio Estimation in AWGN and Wireless Channels," M. Sc. (Eng.) thesis, Queen's Univ., Kingston, ON, Canada, 1997
    [60] H. L. Van Trees, Detection, Estimation, and Modulation Theory. New York: Wiley, 1968, vol. 1.
    [61] R. Matzner, "An SNR estimation algorithm for complex baseband signals using higher order statistics," Facta Universitatis (Nis), no. 6, pp. 41-52, 1993
    [62] R. Matzner and F. Engleberger, "An SNR estimation algorithm using fourth-order moments," in Proc. IEEE Int. Syrup. Information Theory, Trondheim, Norway, June 1994, p. 119
    [63] 陈卫东,数字通信信号调制识别算法研究,西安电子科技大学博士论文 2001.11
    [64] J. B. Anderson, J. Jensen, et al. "Prediction of future fading based on past measurements," in Proc. IEEE Veh. Technol. Conf., VTC'99, Sept. 1999
    [65] T. Eyceoz, A. Duel-Hallen, et al. "Deterministic channel modeling and long range prediction of fast mobile radio channels," IEEE Commun. Lett, 1998(2), 254-256
    [66] J. K. Hwang, J. H. Winters, Sinusoidal modeling and prediction of fast fading process, in Proc. IEEE GLOBECOM'98, 892-897
    [67] X. M. Gao, et al., Comparision of linear and neural network based power prediction scheme for mobile DS/CDMA systems, in Proc. IEEE Veh. Tech. Conf., VTC96'96, 61-65
    [68] C. Splillard and G. J. R. Provey, Application of the Prony algorithm to a predictive RAKE receiver, in Proc. IEEE 4th Int. Symp. Spread spectrum Tech, and applications, 1996 vol 3, 1039-1042
    [69] Hong Shen Wang, et al., On verifying the first-order Markovian assumption for a Rayleigh channel model, IEEE Trans. Veh. Tech. 1996 45(2): 353-357
    [70] Michael J. Chu, Effect of mobile velocity on communications in fading channels, IEEE Trans. Veh. Tech. 2000 49(1): 202-210
    [71] Kim, K., Ploydoros, A., Digital modulation classification: the BPSK versus QPSK case, MILCOM'88, San Diego, CA, vol. 2, pp. 431-436, 1998
    [72] Yang, Yawpo, Soliman, S. S., An improved moment-based algorithm for signal classification, Signal Processing, vol. 43, No. 3, pp231-244, 1995
    [73] Soliman, S. S., Hsue, Shue-Zen, Signal classification using statistical moments, IEEE Transactions on Communications, vol. 40, No. 5, pp. 908-916, May 1992
    [74] Wei, Wen, Mendel, J. M., Maximum-likelihood classification for digital
    
    amplitude-phase modulations, IEEE Transactions on Communications, vol. 48, No. 2, pp. 189-193, Feb. 2000
    [75] Boiteau, D., Le Martret, A general maximum likelihood framework for modulation classification, ICASSP' 98, Seattle, WA, pp. 2165-2168, 1998
    [76] Liedtke, F. F. "Computer simulation of an automatic classification procedure for digitally modulated communication signals with unknown parameters", Signal Processing, Aug. 1984, Vol. 6, No. 4, pp, 311-323
    [77] Hong, Liang; Ho, K. C., "Identification of digital modulation types using the wavelet transform", MILCOM' 99, Atlantic City, N J, 1999. pp. 427-431
    [78] Hsue, S. Z.; Soliman, S. S., "Automatic modulation classification using zero crossing", IEE Proceedings F, Radar and Signal Procssing, Dec. 1990, Vol. 137, No. 6, pp459-464
    [79] Blount, R.; Dankberg, M.; Nolan, P.; Thornton, R.. "A compact simulator for CNI RF environments". MILCOM'91, McLean, VA. 1991. Vol. 1, pp. 278-282
    [80] Einicke, G. A., "A flexible architecture for real-time modulation recognition", Australian ASSPA' 89, 1989, pp. 133-137
    [81] Swami, A.; Sadler, B. M., "Hierarchical digital modulation classification using cumulants", IEEE Transactions on Communications, March 2000, Vol. 48, No. 3, pp. 141-144
    [82] Le martret, C. J., Boiteau D. M., Modulation classification by means of different orders statistical moments, MILCOM'97, Monterey, CA, vol. 3, pp. 1387-1391, 1997
    [83] Akmouche W., Detection of multicarrier modulations using 4th-order cumulants, MILCOM'99, Atlantic City, NJ, pp. 432-436, 1999
    [84] Sapiano P. C., Martin J. D., Maximum likelihood PSK classification using the DFT of phase histogram, GLOBECOM'95, Singapore, pp. 1029-1033, Nov. 1995
    [85] Sapiano P. C., Martin J. D., Holbeche R. J., Classification of PSK Signals using the DFT of phase histogram, ICASSP'95, Detroit, MI, pp. 1868-1871, 1995
    [86] Zhu Q., Kam M. Yeager R., Non-parametric identification of QAM constellations in noise, ICASSP'93, Minneapolis, MN, vol. 4, pp. 184-187, 1993
    [87] Ta, Nhi P., "Wavelet packet approach to radio signal modulation classification", ICCS'94, Singapore, 1994, Vol. 1, pp. 210-214
    [88] A. K. Nandi & E. E. Azzouz, "'Algorithms for Automatic Modulation Recognition of Communication Signals" IEEE Transactions on Communications, vol 46, No. 4, p. p. 431-436, January 1997
    [89] Jondral F., Automatic classification of high frequency signals, Signal Processing,
    
    vol. 9, No. 3, pp. 177-190, Oct. 1985
    [90] Donoho D. L., Huo Xiaoming, Large-sample modulation classification using Hellinger representation, IEEE Signal Processing Workshop on signal Processing Advances in Wireless Communications, SPAWC'97, pp. 133-136, 1997
    [91] Huo Xiaoming, Donoho D., A simple and robust modulation classification method via counting, ICASSP'98, Seattle, WA, pp. 3289-3292, 1998
    [92] Weaver, C. S.; Cole, c. a.; Krumland, R. B.; Miller, M. L., "The automatic classification of modulaton types by pattern recognition", AD691069, April, 1969
    [93] Hi11, P. C. J.; Orzeszko, G. R.. "Performance. comparison of neural network and statistical discriminant processing techniques for automatic modulation recognition", SPIE. 1991, Vol. 1469, pt. 1, pp. 329-340
    [94] 吕铁军,郭双冰,肖先赐,“基于模糊积分的通信信号调制识别方法研究”,电子学报,June 2001,Vol.29,No.6,pp.808-810
    [95] S Pittner, S V Kamarthi, Feature extraction from wavelet coefficients for pattern recognition tasks [J]. IEEE Trans. Pattern analysis and machine intelligence, January, 1999, 21(1)
    [96] Y Mallet, D Coomans, J Kautsky, O D Vel. Classification using adaptive wavelet for feature extraction [J]. IEEE Trans. Pattern analysis and machine intelligence, October, 1999, 21(1)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700