特种小卫星扩频通信系统中自适应门限及Rake接收技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于特种小卫星扩频通信系统,衰落及干扰状况是系统设计时必须考虑的重要方面。特别是卫星在低仰角进行通信时,多径衰落尤其严重,并且由于卫星与地面接收点(地面站或移动用户)的相对运动较快,高多普勒频移可能使信号经历快衰落。信号在传播过程中还将遭受人为和自然噪声的干扰,通常表现为窄带干扰、阻塞干扰、单频连续波干扰、脉冲干扰及多址干扰的形式,它们可以等效为同道干扰(CCI),对星上及地面信号的接收造成严重影响。由于这些干扰和多径衰落的存在,导致了接收信号强度变化剧烈,波动范围较大,把已经开发成功的特种小卫星通信系统在实际的信道环境中应用时,系统出现了同步慢和可靠性低等问题。分析发现,造成这一问题的原因除了接收信号波动范围较大外,还与系统采用固定的判决门限有关。
    结合这一情况,为了进一步确保特种小卫星通信系统在干扰和衰落环境下可靠地运行,在已有的数字匹配滤波器(DMF)研究基础上,本论文提出了采用自适应门限技术。由于自适应门限技术在信噪比非常低的环境中性能都不佳,本文还提出了运用时域1D Rake接收和空时2D Rake接收技术先改善接收信号质量,再结合自适应门限技术,以期能为改善特种小卫星扩频通信系统的性能提供有价值的参考。
    下面是本文在“特种小卫星扩频系统”课题中所完成的主要研究工作:
    (1)详细分析了固定门限时,基于DMF的接收系统在非衰落信道和衰落信道(非频率选择性和频率选择性衰落信道)中混有各种噪声和干扰时的符号差错性能及捕获性能;利用状态转移图获得了基于DMF的捕获系统的平均捕获时间与判决门限的关系式;通过数值分析,揭示了系统采用固定的判决门限不能适应信号衰落及干扰等信道环境的动态变化,反映出的问题是虚警率高或漏检率大。
    (2)提出了两种自适应门限算法。针对固定的判决门限设置不当会增大系统的虚警概率,采用了恒虚警门限设置法;恒虚警门限设置法需要进行功率估计,本文在介绍了几种经典功率估计方法后,重点讨论了基于有序统计(OS)和剔除平均(TM)的最大选择恒虚警(OSTMGO-CFAR)检测器,该检测器在均匀背景及多目标和杂波边缘引起的非均匀背景中均具有很好的检测性能。由于恒虚警门限设置法没有充分利用信号能量导致信号的检测概率低,为了使接收机能够有效接收,当输入信号幅度的动态范围很大时,提出了运用自动电平控制电路(ADTLC)来设置门限;进一步分析了ADTLC电路在各种噪声和干扰环境下都能够同时提供虚警概率和检测概率的判决条件。如果影响系统性能的主要因素是单频
    
    
    连续波干扰或脉冲干扰,提出了利用中值滤波器辅助数字匹配滤波器的捕获方法(MF+MeF法),MF+MeF法能够彻底消除单频连续波干扰或脉冲干扰对系统性能的影响。不过在信噪比非常低的环境中,自适应门限技术的性能都不佳。
    (3)由于卫星信道为频率选择性衰落信道,接收信号中存在多径衰落。如果采用常规的接收机,没有充分利用多径分量,故接收信号的信噪比很低。本文在1D Rake接收机的理论基础上,给出了一种具有工程实现价值的基于DMF的准最佳接收方案。数值分析说明,当接收的多径分量路数超过4时,该方案能够较好抵抗多径衰落。
    (4)特种通信系统中,同信道干扰(CCI)和多径衰落通常一起存在,而时域Rake接收机对CCI无能为力。为了同时抑制CCI和多径衰落,本文提出在特种通信系统的接收装置中运用空时2D Rake接收技术。该技术采用天线阵列在空域收集期望用户所有信息,经过空域处理,形成期望用户的多径信号分量,同时消除CCI;期望用户的多径信号分量在时域进行Rake合并。2D Rake接收机结合了空域和时域的优点,是抑制CCI和多径衰落的有效方法,能明显提高接收信号的信噪比。
    本文介绍了利用CDMA信号的恒模特性以及用户已知的扩频码来确定2D Rake接收机的加权系数,使用这样一种综合技术构成的算法称为最小二乘解扩重扩恒模算法(空时LS-DRCMA)。空时LS-DRCMA的优点是不需要训练序列和避免了权矢量的正交化,降低了运算量,且性能好于除了空时最小均方误差算法(ST-MMSE)外的其它算法。
    (5)为了分析空时2D Rake接收机的性能,采用了等效空域滤波器。利用空域滤波器把干扰等效处理以及阵列增益获得了空时2D Rake接收机误码性能的数学模型;还利用空域滤波器和状态转移图,对空时2D Rake接收机的捕获性能进行了深入分析。
    (6)给出了硬件实验系统。用FPGA实现了自适应门限算法和时域Rake接收。给出了大量的测试结果。
When designing a special type small satellite (STSS) communication system with spread-spectrum technology, the fading and the interference must be considered carefully. The satellite system is doomed to suffer from the multipath fading in the presence of little elevation. Because the speed of the satellite comparing to it of the ground station is fast, the high Doppler shifts may lead to fast fading of the signal. There are many interference sources in the transmission channels of the low-orbit satellite communications, such as the narrow band interference, the barrage interference, the continuous carrier interference, the pulse interference and the multi-access interference. Because the existing of these interferences and fading, the received signal will be characterized by very low signal to noise (SNR) and large amplitude dynamics of the input signal. When it was used in the actual channel, the STSS communication system can’t operate properly with slow synchronization. Through analyzing these problems, the author found the reason included the system using the fixed threshold except large amplitude dynamics of the input signal.
    For efficient operation of the STSS communication system under the environments full of fading and interferences, the adaptive threshold must be adopted. The adaptive decision thresholds are offered based on the studies of the digital matched-filter (DMF) in this paper. Aims at the bad effect of the adaptive decision thresholds under the very low SNR, the author give a new means which combines the adaptive decision threshold with Rake receiver or 2D-Rake receiver. By this way, we can obtain the optimum performance of the STSS communication system.
    The study of the STSS communication system is as follows:
    (I) The author fully analyzed the bit error ratio (BER) performance and acquisition performance over non-fading channel and fading channel (including non-frequency selective and frequency selective fading channel) with noise and interference when the system adopts fixed threshold. Using the state transition diagram, the analytic expression of the mean acquisition time of the PN code acquisition by one dwell decision approach is derived. Numerical analysis is also given. It is shown that the system can’t operate properly at fixed threshold.
    (II) Two adaptive algorithms about the decision threshold setting are presented in this
    
    
    paper. In constant false alarm (CFAR), the case of the probability of a false alarm is fixed independently of the SNR. In order to keep constant false alarm, the system needs to estimate the noise power to set an adaptive threshold. After introducing some classic approaches for noise power estimation, a new CFAR detector (OSTMGO) based on ordered statistics (OS) and trimmed mean (TM) is proposed in this paper. The detection performance of OSTMGO is good both in homogeneous background and in non-homogeneous environment caused by strong interfering targets and clutter edges. For efficient operation of the receiver the threshold must be automatically controlled to provide the decision conditions where the sync false alarm probability and sync correct detection probability even in the case of large amplitude dynamics of the input signal. If they are main ingredients to deteriorate the system performance, the influence of the continuous carrier interference and the pulse interference can be eliminated almost totally, by using a median filter as an assistant of the DMF.
    (III) Because the satellite communication channel is modeled as frequency selective fading, the communication is doomed to suffer from the multipath fading. The performance of the conventional receiver is bad over the frequency selective fading channel because it utilizes only one of multipath components. Therefore, a creative sub-optimum diversity receiver based on the theory of Rake receiver is proposed. The results of emulation indicate that the Rake receiver can largely eliminate the deleterious effects of the multi-path transmission when the received multi-path signal number exceeds
引文
[1] 孙宇彤. “现代的小卫星技术”. 电信快报. 1999,4:13-15.
    [2] 崔建奇,杨喜根. “小卫星通信技术”. 军事通信技术. 1999,9:26-31.
    [3] 谢文君,韦玉春等. “遥感小卫星的进展”. 遥感信息. 2000,3:41-44.
    [4] 周景灏. “通信技术发展综述及分析”. 技术发展论文集. 1995, 1.
    [5] Jhong Sam Lee, Leonard E.Milter著. “CDMA系统工程手册”. 许希斌,赵明等译. 北京. 人民邮电出版社. 2001.
    [6] Simon Hackin著. “Communication Systems”. McMaster University. 1983.
    [7] John G. Proakis著. “Digital Communication”. 北京. 电子工业出版社. 1998.
    [8] 沈允春著. “扩谱技术”. 北京. 国防工业出版社. 1995.
    [9] 朱近康编著. “CDMA通信技术”. 北京. 人民邮电出版社. 2001.
    [10] 朱近康著. “扩展频谱通信及应用”. 合肥. 中国科技大学出版社. 1991.
    [11] 查光明,熊贤祚著. “扩频通信”. 西安. 西安电子科技大学出版社. 1990.
    [12] 李振玉,卢玉民著. “扩频选址通信”. 北京. 国防工业出版社. 1988.
    [13] A.J.维特比著. 李世鹤,鲍刚,彭容译. “CDMA扩频通信原理”. 北京. 人民邮电出版社. 1998.
    [14] 胡捍英等著. “CDMA通信中匹配滤波器的应用”. 电路与系统学报. 1999,4.
    [15] 张厥盛,郑继禹,万心平著. “锁相技术”. 西安. 西安电子科技大学出版社. 1994.
    [16] 曹志刚,钱亚生著. “现代通信原理”. 北京. 清华大学出版社. 1992.
    [17] 王士林等著. “现代数字调制技术”. 北京. 人民邮电出版社. 1987.
    [18] 杨士中著. “锁相技术基础”. 北京. 人民邮电出版社. 1981.
    [19] 杨士中著. “合成孔径雷达”. 北京. 国防工业出版社.1978.
    [20] Andreas F.Molisch编著. 许希斌,赵明,栗欣等译. “宽带无线数字通信”. 北京. 电子工业出版社. 2002.
    [21] Theodore S.Rappaport著. 蔡涛,李旭,杜振民译. “无线通信原理与应用”. 北京. 电子工业出版社. 1999.
    [22] James Tsui著. 杨小牛,陆安南,金飚译. “宽带数字接收机”. 北京. 电子工业出版社. 2002.
    [23] 杨小牛,楼才义,徐建良著. “软件无线电原理与应用”. 北京. 电子工业出版社.2001.
    [24] 张健,向敬成编著. “软件无线电技术导论”. 成都. 电子科技大学出版社. 2000.
    [25] 王立宁,乐光新,詹菲编著. “MATLAB 与通信仿真”. 北京. 人民邮电出版社. 2001.
    [26] 杨士中等著. “无源非线性延迟锁定保护电路的分析”. 电子学报.1996,4.
    [27] 胡捍英著. “两级混合型DS/CDMA捕捉结构”. 电子学报. 1999,11.
    
    [28] 郭福成,皇甫堪,李纲. “数字下变频实现技术研究”. 国防科技大学学报.1999,5,20(5):95-97.
    [29] 宋征,林勇,王保东,谢国锋等编著. “Mathcad 7.0入门及其工程应用”. 北京. 人民邮电出版社. 1999.
    [30] A?帕普里斯著. 保铮,章潜五,吕胜尚译. “概率随机变量与随机过程”. 西安. 西北电讯工程学院出版社. 1986.
    [31] Oh-soon Shin, and Kwang Bok Lee, “Utilization of multipaths for spread-spectrum code acquisition in frequency-selective Rayleigh fading channels”, IEEE Trans.Commun., Vol.49, No.4, April 2001, pp.734-743.
    [32] Lie-Liang Yang, and Lajos Hanzo, “Serial acquisition of DS-CDMA signals in multipath fading mobile channels”, IEEE Trans.vehicular technology, Vol.50, No.2, March 2001, pp.617-628.
    [33] Hyon-Sock Chang, Keun-Moo Lee, and Yong H.Lee, “Adaptive acquisition for DS-SS systems with antenna diversity”, in proc.IEEE VTC’2000, pp.467-472.
    [34] Andreas Polydoros, and Charles L.Weber, “A unified approach to serial search spread-spectrum code acquisition--part I: general theory”, IEEE Trans.Commun., Vol.com-32, No.5, May 1984, pp.542-549.
    [35] Yu T.Su, “Rapid code acquisition algorithm employing PN matched filters”, IEEE Trans.Commun., Vol.36, No.6, June 1988, pp.724-733.
    [36] Andreas Polydoros, and Charles L.Weber, “A unified approach to serial search spread-spectrum code acquisition--part II: a matched-filter receiver”, IEEE Trans.Commun., Vol.com-32, No.5, May 1984, pp.550-560.
    [37] Jack K.Holmes, and Chang C.Chen, “Acquisition time performance of PN Spread-Spectrum systems”, IEEE Trans.Commun., Vol.com-25, Aug.1977, pp.778-783.
    [38] Jung H.Kim, Shanuj V.Sarin, Moritoshi Yasunaga, and Hyunseo, “Robust noncoherent PN-code acquisition for CDMA communication systems”. IEEE Trans. Vehicular Technology, Vol.50, No.1, Jan.2001, pp.278-286.
    [39] Jeich Mar, and Hung-Yi Chen, “Performance analysis of cellular CDMA networks over frequency-selective fading channel”, IEEE Trans. Vehicular Technology, Vol.47, No.4, Nov.2001, pp.1234-1243.
    [40] Yang Shizhong, Zhang Jian, Tang Chaowei, and Han Zhigang, “A study on the large step delay locked loop”, Chinese Journal of Electronics, Vol.6, No.4, 1997, pp.60-66.
    [41] Thomas Eng, and Laurence B.Milstein, “Coherent DS-CDMA performance in Nakagami multipath fading”, IEEE Trans.Commun., Vol.43, No.2/3/4, Feb/Mar/Apr.1995, pp.1134-1143.
    [42] 杨士中等著. “延迟锁定环路的大步进快速捕获”. 电子学报. 1993,10.
    
    [43] 聂景楠等著. “CDMA移动通信中的判决反馈多用户信号检测器”. 通信学报. 1996,3.
    [44] 朱近康著. “扩频通信的频谱相关检测方法”. 通信学报. 1998,12.
    [45] 姚富强,杜武林. “直接序列扩频相关峰的概率分布”. 电子学报. 1993,1,21(1):52-58.
    [46] 黄振,陆建华,杨士中. “基于DMF直扩系统捕获性能的研究”.电路与系统学报.2002,3:pp.91-94.
    [47] Chang-Joo Kim, Hyuk-Jae Lee, and Hwang-Soo Lee, “Adaptive acquisition of PN sequences for DSSS communications”, IEEE Trans.Commun., Vol.46, No.8, Aug.1988, pp993-996.
    [48] 刘乃安,曾兴雯,陈健,尹伟谊,裴昌幸. “高速数据传输中的自动增益控制”. 西安电子科技大学学报.1996,9,23(3):423-428.
    [49] 候俊才,董绍平. “自适应门限恒虚警检测的研究”. 系统工程与电子技术.1994,7:6-12.
    [50] Sanguoon Chung, “A new serial search acquisition approach with automatic decision threshold control”, in proc.IEEE VTC’95, pp.621-625.
    [51] Jari H.J.Iinatti, “On the threshold setting principles in code acquisition of DS-SS signals”, IEEE Journal on selected areas in commun., Vol.18, No.1, Jan.2000, pp.62-72.
    [52] 唐友喜,李少谦,朱近康. “空时发射分集CDMA的多径分集接收”. 电子学报. 2000,11,28(11):62-66.
    [53] 刘乃安,曾兴雯,郭峰,强刚. “高速突发通信中的自适应门限技术及其性能”. 电子学报. 1998,1,26(1):111-113.
    [54] GARY M.COMPARETTO, “A generalized analysis for a dual threshold sequential detection PN acquisition receiver”, IEEE Trans.Commun., Vol.com.-35, No.9, Sept.1987, pp956-960.
    [55] Jaakko Astola, and Yrjo Neuvo, “Mathed median filtering”. IEEE Trans.Commun., Vol.40, No.4, April 1992.
    [56] Jari Iinatti, “Performance comparison of DS signal data detection using matched filter with median filter and with transversal filter”, in proc.IEEE VTC’96, pp.656-660.
    [57] Jari Iinatti, “Performance comparison of DS signal matched filter acquisition using median filter and transversal filter as an aiding device in pulsed tone jamming”, in proc.IEEE MILCOM '95, Nov.1995, pp.1190-1194.
    [58] Jari Iinatti, Tim Arnheiter, and Felix Schafer, “Comparison of noncoherent matched filter acquisition using median filter and transversal filter in AWGN channel and CW jamming”, IEEE 4th Int.Symp.on Spread-Spectrum Tech.& Appli., Sept.1996, pp.404-408.
    [59] Jari Iinatti, and Pentti Leppanen, “Approximated probability density functions for the output signal of coherent matched filter and median filter code acquisition structure in an AWGN channel”, in proc.IEEE PIMRC'95, Sept.1995, pp.1005-1009.
    
    [60] Chang-Joo Kim, Tae-Won Hwang, Hyuck-Jae, and Hwang-Soo Lee, “Acquisition of PN code with adaptive threshold for DS/SS communications”, Electronics Letters, Vol.33, No.16, July 1997, pp.1352-1354.
    [61] Wen-Sheng Hou, and Bor-Sen Chen, “Adaptive detection in asynchronous code-division multiple-access system in multipath fading channels”, IEEE Trans.Commun., Vol.48, No.5, May.2000, pp.863-874.
    [62] 张蔚等著. “直接序列扩频捕获的门限调整技术与混合方案”. 江苏通信技术. 2000,4.
    [63] El-Tarhuni M.G., and Sheikh A.U.H., “Performance analysis for an adaptive filter code-tracking technique in direct-sequence spread-spectrum systems”, IEEE Trans.Commun., Vol.46, No.8 , Aug.1998, pp.1058 –1064
    [64] Finn, H.M., and Johnson, R.S., “Adaptive detection mode with threshold control as a function of spatially sampled clutter-level estimates”, RCA Review, 1968,9(29): pp.414-463.
    [65] Hansen, V.G., “Constant false alarm rate processing in search radars”, in proc.IEEE Radar, 1973: pp.325-332.
    [66] Trunk, G.V., “Range resolution of targets using automatic detectors”, IEEE Trans., AES-14, 1978(5): pp.750-755.
    [67] Weiss, M., “Analysis of some modified cell-averaging CFAR processors in multiple target situations”, IEEE Trans., AES-18, 1982(1):102-114.
    [68] Rohling, H., “Radar CFAR thresholding in clutter and multiple target situations”. IEEE Trans., AES-19, 1983: pp.608-621.
    [69] Rickard, J.T., and Dillard, G.H., “Adaptive detection algorithms for multiple target situation”, IEEE Trans., AES-13, 1977(14): pp.338-343.
    [70] Ritcey, J.A., “Performance analysis of the censored mean-level detector”. IEEE Trans., AES-22, 1986(4): pp.443-454.
    [71]Gandhi, P.P., and Kassam, S.A., “Analysis of CFAR processors in nonhomogeneous background”, IEEE Trans., AES-24, 1989(4): pp.427-445.
    [72] Elias-Fuste, A.R., and Davo, E.R., “Analysis of some modified order statistic CFAR: OSGO and OSSO CFAR. IEEE Trans., AES-24, 1990(1): pp.197-202.
    [73] Ritcey, J.A., and Hines, J.L., “Performance of max family of order-statistic CFAR detectors”. IEEE Trans., AES-27, 1991(1): pp.48-57.
    [74]何友, H.ROHLING. “两种具有自动筛选技术的广义有序统计恒虚警检测器及在多目标情况下的性能”. 电子科学学刊. 1994年第5期.
    [75]B.HE., “Performance of some generalized modified order statistics CFAR
    
    
    detection with automatic censoring technique in mutiple target situations”, IEE proceedings-F vol.141 PT 1994.
    [76]何友,关键,H.ROHLING. “基于最大和最小选择的两种新的恒虚警检测器”. 系统工程与电子技术. 1995:6-16.
    [77]何友,关键,H.ROHLING. “一种基于排序和平均的新恒虚警检测器”. 现代雷达. 1995(8):32-36.
    [78] 孟祥伟,何友,王国轰. “一种新的基于有序统计和筛选平均的最大选择恒虚警检测器”. 信号处理. 1996, Vol.12, No.4:316-321.
    [79] 李建东,杨家玮编著. “个人通信”. 北京. 人民邮电出版社. 1998.
    [80] 郭梯云,杨家玮,李建东编著. “数字移动通信”. 北京. 人民邮电出版社. 2001.
    [81] 邱玲,朱近康,孙葆根,张磊编著. “第三代移动通信技术”. 北京. 人民邮电出版社. 2001.
    [82] 胡捍英,杨峰义编著. “第三代移动通信系统”. 北京. 人民邮电出版社. 2001.
    [83] 王新梅,肖国镇编著. “纠错码-原理与方法”. 西安. 西安电子科技大学出版社. 2001.
    [84] Joseph C.Libert,Jr. and Theodore S.Rappaport著. 马凉等译. “无线通信中的智能天线—IS-95和第3代CDMA应用”. 北京. 机械工业出版社. 2002.
    [85] 张贤达, 保铮著. “通信信号处理”. 北京. 国防工业出版社. 2000.
    [86] Tero Ojanpera and Ramjee Prasad著. 朱旭红,卢学军,卓天真,朗保真译. “宽带CDMA:第三代移动通信技术”. 北京. 人民邮电出版社. 2000.
    [87] Henry L.Bertoni著. 顾金星,南亲良,王尔为等译. “现代无线通信系统电波传播”. 北京. 电子工业出版社. 2000.
    [88] 陈德荣,周继成,殷益群等著. “通信新技术续篇”. 北京. 北京邮电大学出版社. 1997.
    [89] 竺南直,肖辉,刘景波编著. “码分多址(CDMA)移动通信系统”. 北京. 电子工业出版社. 1999.
    [90] Savo Glisic ,and Marcos D.Katz, “Modeling of the code acquisition process for RAKE receivers in CDMA wireless networks with multipath and transmitter diversity”, IEEE Journal on selected areas in commun., Vol.19, Jan.2001, pp.21 –32.
    [91] 聂景楠等著. “IS-95基站RAKE接收机的设计与实现”. 通信学报. 1998,4.
    [92] 尤肖虎,陈国安. “数字移动通信中的抗多径衰落技术”. 电子学报. 1995,10, 23(10):12-18.
    [93] 王永良,彭应宁著. “空时自适应信号处理”. 北京. 清华大学出版社. 2000.
    [94] Han shuangfeng, Wang youzheng, and Wangjing, “Performance comparison of 2D-RAKE and smart antenna”, in proc.IEEE VTC’2002, pp.1359-1363.
    [95] Oh-Soon Shin, and Kwang Bok (Ed) Lee, “Use of multiple antennas for DS/CDMA code acquisition”, in proc.IEEE ICC’02, pp.621-625.
    [96] Javier Ramos, Michael D.Zoltowski, and Hui Liu, “Low-complexity space-time
    
    
    processor for DS-CDMA communications”, IEEE Trans.Signal Processing, Vol.48, No.1, Jan.2000, pp.39-52.
    [97] Brunner C., Haardt M., and Nossek J.A., “On space-time RAKE receiver structures for WCDMA”, the Thirty-Third Asilomar Conference on Signals, Systems, and Computers, Vol.2, Oct.1999, pp.1546 –1551.
    [98] B.Xu, and T.B.Vu, “Blind MAI and CCI suppression using adaptive array antennas in DS/CDMA mobile communications systems”, in proceeding of ICSP’98, pp.365-368.
    [99] Min Fang, Jing Wang, Ke Gong, and Yan Yao, “Optimal 2D-RAKE receiver for coherent DS-CDMA in multipath”, in proc.IEEE VTC’99, pp.181-185.
    [100] Babak H.Khalaj, Arogyaswami Paulraj, and Thomas Kailath, “2D RAKE receivers for CDMA cellular systems”, in proc.IEEE GLOBECOM '94, pp.400-404.
    [101]Zhigang Rong, Theodore S.Rappaport, Paul Petrust, and Jeff H.Reed,“Simulation of multitarget adaptive array algorithms for wireless CDMA systems”, in proc.IEEE VTC’97, pp.1-5.
    [102] Logeshwaran Vijayan, and James Roberts, “BER performance of 2-D-RAKE receivers with power control error in Nakagami fading channels”, IEEE Communications Letters, Vol.6, No.10, Oct.2002, pp.434-436.
    [103] Zhigang Rong, Paul Prtrus, Theodore S.Rappaport, and Jeffrey H.Reed, “Despread-respread multi-target constant modulus array for CDMA systems”, IEEE Communications Letters, Vol.1, No.4, July 1997, pp.114-116.
    [104] Bing Wang, and Hyuck M.Kwon, “PN code acquisition using smart antenna for DS-CDMA wireless communications”, in proc.IEEE MILCOM 2000, Oct.2000 , pp.821-825.
    [105]Won Hyung Ryu, Min Kyu Park, and Seong Keun Oh, “Code acquisition schemes using antenna arrays for DS-SS systems and their performance in spatially correlated fading channels”, IEEE Trans.Commun., Vol.50, No.8, Aug.2002, pp.1337-1347.
    [106] Angelo Poloni, and Umberto Spagnolini, “A simple method to calculate the error probability for 2D RAKE receivers”, in proc.IEEE VTC’01, pp.590-594.
    [107] 李广军,孟宪元编著. “可编程ASIC设计及应用”. 成都. 电子科技大学出版社. 2000.
    [108] 胡广书编著. “数字信号处理-理论、算法与实现”. 北京. 清华大学出版社. 1997.
    [109] 郭经红,尤肖虎,陈时昕. “WCDMA系统中匹配滤波器的FPGA实现”. 通信学报. 2001,1,22(1):52-58.
    [110] 谭晓衡,廖明,杨士中,王韬.“基于DMF的捕获系统频率选择性信道下捕获性能的分析”. 电路与系统学报.已录用.
    [111] 谭晓衡,杨士中,安敏.“非频率选择性信道下捕获性能的分析”. 电讯技术.已录用.
    [112] 杨士中,杨力生,谭晓衡,邓晓琴.“多飞行器测控技术的研究”.宇航学报.2002, Vol.23, No.6:12-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700